algebraic_topology.dold_kan.n_comp_gamma
⟷
Mathlib.AlgebraicTopology.DoldKan.NCompGamma
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>
@@ -21,6 +21,8 @@ that it becomes an isomorphism after the application of the functor
`N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ)`
which reflects isomorphisms.
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
-/
noncomputable theory
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -46,30 +46,30 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
by
induction' Δ' using SimplexCategory.rec with m
obtain ⟨k, hk⟩ :=
- Nat.exists_eq_add_of_lt (len_lt_of_mono i fun h => by rw [← h] at h₁ ; exact h₁ rfl)
- simp only [len_mk] at hk
+ Nat.exists_eq_add_of_lt (len_lt_of_mono i fun h => by rw [← h] at h₁; exact h₁ rfl)
+ simp only [len_mk] at hk
cases k
- · change n = m + 1 at hk
+ · change n = m + 1 at hk
subst hk; obtain ⟨j, rfl⟩ := eq_δ_of_mono i
- rw [is_δ₀.iff] at h₂
+ rw [is_δ₀.iff] at h₂
have h₃ : 1 ≤ (j : ℕ) := by
by_contra
exact h₂ (by simpa only [Fin.ext_iff, not_le, Nat.lt_one_iff] using h)
exact (higher_faces_vanish.of_P (m + 1) m).comp_δ_eq_zero j h₂ (by linarith)
- · simp only [Nat.succ_eq_add_one, ← add_assoc] at hk
+ · simp only [Nat.succ_eq_add_one, ← add_assoc] at hk
clear h₂ hi
subst hk
obtain ⟨j₁, i, rfl⟩ :=
eq_comp_δ_of_not_surjective i fun h =>
by
have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h)
- dsimp at h'
+ dsimp at h'
linarith
obtain ⟨j₂, i, rfl⟩ :=
eq_comp_δ_of_not_surjective i fun h =>
by
have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h)
- dsimp at h'
+ dsimp at h'
linarith
by_cases hj₁ : j₁ = 0
· subst hj₁
@@ -258,7 +258,7 @@ instance : IsIso (Γ₂N₂.natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤
have : is_iso (N₂.map (Γ₂N₂.nat_trans.app P)) :=
by
have h := identity_N₂_objectwise P
- erw [hom_comp_eq_id] at h
+ erw [hom_comp_eq_id] at h
rw [h]
infer_instance
exact is_iso_of_reflects_iso _ N₂
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -172,12 +172,12 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
end Γ₂N₁
-#print AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ /-
+#print AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso /-
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
@[simps]
-def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
+def Γ₂N₂ToKaroubiIso : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
eqToIso (Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi _ _) (N₁ ⋙ Γ₂))
-#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂
+#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso
-/
namespace Γ₂N₂
@@ -185,25 +185,22 @@ namespace Γ₂N₂
#print AlgebraicTopology.DoldKan.Γ₂N₂.natTrans /-
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)`. -/
def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
- ((whiskeringLeft _ _ _).obj _).Preimage (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans)
+ ((whiskeringLeft _ _ _).obj _).Preimage (Γ₂N₂ToKaroubiIso.Hom ≫ Γ₂N₁.natTrans)
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
-/
#print AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app /-
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
- (N₂ ⋙ Γ₂).map P.decompId_i ≫
- (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
- whiskeringLeft_obj_preimage_app (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
+ (N₂ ⋙ Γ₂).map P.decompId_i ≫ (Γ₂N₂ToKaroubiIso.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
+ whiskeringLeft_obj_preimage_app (Γ₂N₂ToKaroubiIso.Hom ≫ Γ₂N₁.natTrans) P
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
-/
end Γ₂N₂
-#print AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans /-
-theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
- Γ₂N₁.natTrans.app X =
- (compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ Γ₂N₂.natTrans.app ((toKaroubi _).obj X) :=
+theorem Γ₂N₂ToKaroubiIso_natTrans (X : SimplicialObject C) :
+ Γ₂N₁.natTrans.app X = (Γ₂N₂ToKaroubiIso.app X).inv ≫ Γ₂N₂.natTrans.app ((toKaroubi _).obj X) :=
by
rw [← cancel_epi (compatibility_Γ₂N₁_Γ₂N₂.app X).Hom, iso.hom_inv_id_assoc]
exact
@@ -211,8 +208,7 @@ theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
(((whiskering_left _ _ _).obj _).image_preimage
(compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.nat_trans : _ ⟶ to_karoubi _ ⋙ 𝟭 _)).symm
X
-#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans
--/
+#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_natTrans
#print AlgebraicTopology.DoldKan.identity_N₂_objectwise /-
theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
-import Mathbin.AlgebraicTopology.DoldKan.GammaCompN
-import Mathbin.AlgebraicTopology.DoldKan.NReflectsIso
+import AlgebraicTopology.DoldKan.GammaCompN
+import AlgebraicTopology.DoldKan.NReflectsIso
#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -6,7 +6,7 @@ Authors: Joël Riou
import Mathbin.AlgebraicTopology.DoldKan.GammaCompN
import Mathbin.AlgebraicTopology.DoldKan.NReflectsIso
-#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
/-!
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
@@ -22,6 +22,8 @@ that it becomes an isomorphism after the application of the functor
`N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ)`
which reflects isomorphisms.
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/63721b2c3eba6c325ecf8ae8cca27155a4f6306f
@@ -71,7 +71,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
linarith
by_cases hj₁ : j₁ = 0
· subst hj₁
- rw [assoc, ← SimplexCategory.δ_comp_δ'' (Fin.zero_le _)]
+ rw [assoc, ← SimplexCategory.δ_comp_δ'' (Fin.zero_le' _)]
simp only [op_comp, X.map_comp, assoc, P_infty_f]
erw [(higher_faces_vanish.of_P _ _).comp_δ_eq_zero_assoc _ j₂.succ_ne_zero, zero_comp]
rw [Fin.val_succ]
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.n_comp_gamma
-! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.AlgebraicTopology.DoldKan.GammaCompN
import Mathbin.AlgebraicTopology.DoldKan.NReflectsIso
+#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+
/-!
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -41,6 +41,7 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C]
+#print AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero /-
theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
(i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) : PInfty.f n ≫ X.map i.op = 0 :=
by
@@ -83,7 +84,9 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
by_contra
exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith)
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
+-/
+#print AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty /-
@[reassoc]
theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
(i : Δ ⟶ Δ') [Mono i] :
@@ -123,11 +126,13 @@ theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ'
· by_contra h'
exact hi h'
#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty
+-/
variable [HasFiniteCoproducts C]
namespace Γ₂N₁
+#print AlgebraicTopology.DoldKan.Γ₂N₁.natTrans /-
/-- The natural transformation `N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)`. -/
@[simps]
def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
@@ -164,31 +169,39 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
HomologicalComplex.comp_f, alternating_face_map_complex.map_f, P_infty_f_naturality_assoc,
nat_trans.naturality]
#align algebraic_topology.dold_kan.Γ₂N₁.nat_trans AlgebraicTopology.DoldKan.Γ₂N₁.natTrans
+-/
end Γ₂N₁
+#print AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ /-
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
@[simps]
def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
eqToIso (Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi _ _) (N₁ ⋙ Γ₂))
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂
+-/
namespace Γ₂N₂
+#print AlgebraicTopology.DoldKan.Γ₂N₂.natTrans /-
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)`. -/
def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
((whiskeringLeft _ _ _).obj _).Preimage (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans)
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
+-/
+#print AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app /-
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
(N₂ ⋙ Γ₂).map P.decompId_i ≫
(compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
whiskeringLeft_obj_preimage_app (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
+-/
end Γ₂N₂
+#print AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans /-
theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
Γ₂N₁.natTrans.app X =
(compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ Γ₂N₂.natTrans.app ((toKaroubi _).obj X) :=
@@ -200,7 +213,9 @@ theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
(compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.nat_trans : _ ⟶ to_karoubi _ ⋙ 𝟭 _)).symm
X
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans
+-/
+#print AlgebraicTopology.DoldKan.identity_N₂_objectwise /-
theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
N₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
by
@@ -230,12 +245,15 @@ theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
simp only [karoubi.comp_f, HomologicalComplex.comp_f, karoubi.id_eq, N₂_obj_p_f, assoc, eq₁, eq₂,
P_infty_f_naturality_assoc, app_idem, P_infty_f_idem_assoc]
#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwise
+-/
+#print AlgebraicTopology.DoldKan.identity_N₂ /-
theorem identity_N₂ :
((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
𝟙 N₂ :=
by ext P : 2; dsimp; rw [Γ₂.map_id, N₂.map_id, comp_id, id_comp, identity_N₂_objectwise P]
#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_N₂
+-/
instance : IsIso (Γ₂N₂.natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ _ ⟶ _) :=
by
@@ -260,17 +278,21 @@ instance : IsIso (Γ₂N₁.natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ _
infer_instance
apply nat_iso.is_iso_of_is_iso_app
+#print AlgebraicTopology.DoldKan.Γ₂N₂ /-
/-- The unit isomorphism of the Dold-Kan equivalence. -/
@[simp]
def Γ₂N₂ : 𝟭 _ ≅ (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ :=
(asIso Γ₂N₂.natTrans).symm
#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂
+-/
+#print AlgebraicTopology.DoldKan.Γ₂N₁ /-
/-- The natural isomorphism `to_karoubi (simplicial_object C) ≅ N₁ ⋙ Γ₂`. -/
@[simps]
def Γ₂N₁ : toKaroubi _ ≅ (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ :=
(asIso Γ₂N₁.natTrans).symm
#align algebraic_topology.dold_kan.Γ₂N₁ AlgebraicTopology.DoldKan.Γ₂N₁
+-/
end DoldKan
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -30,8 +30,8 @@ which reflects isomorphisms.
noncomputable section
-open
- CategoryTheory CategoryTheory.Category CategoryTheory.Limits CategoryTheory.Idempotents SimplexCategory Opposite SimplicialObject
+open CategoryTheory CategoryTheory.Category CategoryTheory.Limits CategoryTheory.Idempotents
+ SimplexCategory Opposite SimplicialObject
open scoped Simplicial DoldKan
@@ -46,30 +46,30 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
by
induction' Δ' using SimplexCategory.rec with m
obtain ⟨k, hk⟩ :=
- Nat.exists_eq_add_of_lt (len_lt_of_mono i fun h => by rw [← h] at h₁; exact h₁ rfl)
- simp only [len_mk] at hk
+ Nat.exists_eq_add_of_lt (len_lt_of_mono i fun h => by rw [← h] at h₁ ; exact h₁ rfl)
+ simp only [len_mk] at hk
cases k
- · change n = m + 1 at hk
+ · change n = m + 1 at hk
subst hk; obtain ⟨j, rfl⟩ := eq_δ_of_mono i
- rw [is_δ₀.iff] at h₂
+ rw [is_δ₀.iff] at h₂
have h₃ : 1 ≤ (j : ℕ) := by
by_contra
exact h₂ (by simpa only [Fin.ext_iff, not_le, Nat.lt_one_iff] using h)
exact (higher_faces_vanish.of_P (m + 1) m).comp_δ_eq_zero j h₂ (by linarith)
- · simp only [Nat.succ_eq_add_one, ← add_assoc] at hk
+ · simp only [Nat.succ_eq_add_one, ← add_assoc] at hk
clear h₂ hi
subst hk
obtain ⟨j₁, i, rfl⟩ :=
eq_comp_δ_of_not_surjective i fun h =>
by
have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h)
- dsimp at h'
+ dsimp at h'
linarith
obtain ⟨j₂, i, rfl⟩ :=
eq_comp_δ_of_not_surjective i fun h =>
by
have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h)
- dsimp at h'
+ dsimp at h'
linarith
by_cases hj₁ : j₁ = 0
· subst hj₁
@@ -245,7 +245,7 @@ instance : IsIso (Γ₂N₂.natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤
have : is_iso (N₂.map (Γ₂N₂.nat_trans.app P)) :=
by
have h := identity_N₂_objectwise P
- erw [hom_comp_eq_id] at h
+ erw [hom_comp_eq_id] at h
rw [h]
infer_instance
exact is_iso_of_reflects_iso _ N₂
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -33,7 +33,7 @@ noncomputable section
open
CategoryTheory CategoryTheory.Category CategoryTheory.Limits CategoryTheory.Idempotents SimplexCategory Opposite SimplicialObject
-open Simplicial DoldKan
+open scoped Simplicial DoldKan
namespace AlgebraicTopology
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -41,9 +41,6 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C]
-/- warning: algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero -> AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zeroₓ'. -/
theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
(i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) : PInfty.f n ≫ X.map i.op = 0 :=
by
@@ -87,9 +84,6 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith)
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
-/- warning: algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty -> AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInftyₓ'. -/
@[reassoc]
theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
(i : Δ ⟶ Δ') [Mono i] :
@@ -134,9 +128,6 @@ variable [HasFiniteCoproducts C]
namespace Γ₂N₁
-/- warning: algebraic_topology.dold_kan.Γ₂N₁.nat_trans -> AlgebraicTopology.DoldKan.Γ₂N₁.natTrans is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₁.nat_trans AlgebraicTopology.DoldKan.Γ₂N₁.natTransₓ'. -/
/-- The natural transformation `N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)`. -/
@[simps]
def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
@@ -176,9 +167,6 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
end Γ₂N₁
-/- warning: algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ -> AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ₓ'. -/
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
@[simps]
def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
@@ -187,17 +175,11 @@ def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂
namespace Γ₂N₂
-/- warning: algebraic_topology.dold_kan.Γ₂N₂.nat_trans -> AlgebraicTopology.DoldKan.Γ₂N₂.natTrans is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTransₓ'. -/
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)`. -/
def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
((whiskeringLeft _ _ _).obj _).Preimage (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans)
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
-/- warning: algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app -> AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_appₓ'. -/
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
(N₂ ⋙ Γ₂).map P.decompId_i ≫
@@ -207,9 +189,6 @@ theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
end Γ₂N₂
-/- warning: algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans -> AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTransₓ'. -/
theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
Γ₂N₁.natTrans.app X =
(compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ Γ₂N₂.natTrans.app ((toKaroubi _).obj X) :=
@@ -222,9 +201,6 @@ theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
X
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans
-/- warning: algebraic_topology.dold_kan.identity_N₂_objectwise -> AlgebraicTopology.DoldKan.identity_N₂_objectwise is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwiseₓ'. -/
theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
N₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
by
@@ -255,9 +231,6 @@ theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
P_infty_f_naturality_assoc, app_idem, P_infty_f_idem_assoc]
#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwise
-/- warning: algebraic_topology.dold_kan.identity_N₂ -> AlgebraicTopology.DoldKan.identity_N₂ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_N₂ₓ'. -/
theorem identity_N₂ :
((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
𝟙 N₂ :=
@@ -287,21 +260,12 @@ instance : IsIso (Γ₂N₁.natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ _
infer_instance
apply nat_iso.is_iso_of_is_iso_app
-/- warning: algebraic_topology.dold_kan.Γ₂N₂ -> AlgebraicTopology.DoldKan.Γ₂N₂ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂ₓ'. -/
/-- The unit isomorphism of the Dold-Kan equivalence. -/
@[simp]
def Γ₂N₂ : 𝟭 _ ≅ (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ :=
(asIso Γ₂N₂.natTrans).symm
#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂
-/- warning: algebraic_topology.dold_kan.Γ₂N₁ -> AlgebraicTopology.DoldKan.Γ₂N₁ is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₁ AlgebraicTopology.DoldKan.Γ₂N₁ₓ'. -/
/-- The natural isomorphism `to_karoubi (simplicial_object C) ≅ N₁ ⋙ Γ₂`. -/
@[simps]
def Γ₂N₁ : toKaroubi _ ≅ (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -49,15 +49,11 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
by
induction' Δ' using SimplexCategory.rec with m
obtain ⟨k, hk⟩ :=
- Nat.exists_eq_add_of_lt
- (len_lt_of_mono i fun h => by
- rw [← h] at h₁
- exact h₁ rfl)
+ Nat.exists_eq_add_of_lt (len_lt_of_mono i fun h => by rw [← h] at h₁; exact h₁ rfl)
simp only [len_mk] at hk
cases k
· change n = m + 1 at hk
- subst hk
- obtain ⟨j, rfl⟩ := eq_δ_of_mono i
+ subst hk; obtain ⟨j, rfl⟩ := eq_δ_of_mono i
rw [is_δ₀.iff] at h₂
have h₃ : 1 ≤ (j : ℕ) := by
by_contra
@@ -88,11 +84,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
· simp only [op_comp, X.map_comp, assoc, P_infty_f]
erw [(higher_faces_vanish.of_P _ _).comp_δ_eq_zero_assoc _ hj₁, zero_comp]
by_contra
- exact
- hj₁
- (by
- simp only [Fin.ext_iff, Fin.val_zero]
- linarith)
+ exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith)
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
/- warning: algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty -> AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty is a dubious translation:
@@ -121,20 +113,15 @@ theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ'
dsimp
rw [← P_infty.comm' _ n rfl, alternating_face_map_complex.obj_d_eq]
simp only [eq_self_iff_true, id_comp, if_true, preadditive.comp_sum]
- rw [Finset.sum_eq_single (0 : Fin (n + 2))]
- rotate_left
+ rw [Finset.sum_eq_single (0 : Fin (n + 2))]; rotate_left
· intro b hb hb'
rw [preadditive.comp_zsmul]
- erw [P_infty_comp_map_mono_eq_zero X (SimplexCategory.δ b) h
- (by
- rw [is_δ₀.iff]
- exact hb'),
+ erw [P_infty_comp_map_mono_eq_zero X (SimplexCategory.δ b) h (by rw [is_δ₀.iff]; exact hb'),
zsmul_zero]
· simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff]
· simpa only [hi.eq_δ₀, Fin.val_zero, pow_zero, one_zsmul]
-- The case `i ≠ δ 0`
- · rw [Γ₀.obj.termwise.map_mono_eq_zero _ i _ hi, zero_comp]
- swap
+ · rw [Γ₀.obj.termwise.map_mono_eq_zero _ i _ hi, zero_comp]; swap
· by_contra h'
exact h (congr_arg SimplexCategory.len h'.symm)
rw [P_infty_comp_map_mono_eq_zero]
@@ -274,10 +261,7 @@ Case conversion may be inaccurate. Consider using '#align algebraic_topology.dol
theorem identity_N₂ :
((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
𝟙 N₂ :=
- by
- ext P : 2
- dsimp
- rw [Γ₂.map_id, N₂.map_id, comp_id, id_comp, identity_N₂_objectwise P]
+ by ext P : 2; dsimp; rw [Γ₂.map_id, N₂.map_id, comp_id, id_comp, identity_N₂_objectwise P]
#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_N₂
instance : IsIso (Γ₂N₂.natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ _ ⟶ _) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -42,10 +42,7 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C]
/- warning: algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero -> AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {n : Nat} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n)) [hi : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' (SimplexCategory.mk n) i], (Ne.{1} Nat (SimplexCategory.len Δ') n) -> (Not (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk n) Δ' i hi)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ')) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n) i))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ')))))))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {n : Nat} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n)) [hi : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' (SimplexCategory.mk n) i], (Ne.{1} Nat (SimplexCategory.len Δ') n) -> (Not (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk n) Δ' i hi)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ')) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n) i))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zeroₓ'. -/
theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
(i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) : PInfty.f n ≫ X.map i.op = 0 :=
@@ -99,10 +96,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
/- warning: algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty -> AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) Δ Δ' i _inst_3) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ'))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ))) (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' i)))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) Δ Δ' i _inst_3) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ'))) (Opposite.op.{1} SimplexCategory Δ) (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' i)))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInftyₓ'. -/
@[reassoc]
theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
@@ -154,10 +148,7 @@ variable [HasFiniteCoproducts C]
namespace Γ₂N₁
/- warning: algebraic_topology.dold_kan.Γ₂N₁.nat_trans -> AlgebraicTopology.DoldKan.Γ₂N₁.natTrans is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{succ (max u2 u1), max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{max (succ u1) (succ u2), max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₁.nat_trans AlgebraicTopology.DoldKan.Γ₂N₁.natTransₓ'. -/
/-- The natural transformation `N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)`. -/
@[simps]
@@ -199,10 +190,7 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
end Γ₂N₁
/- warning: algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ -> AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ₓ'. -/
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
@[simps]
@@ -213,10 +201,7 @@ def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂
namespace Γ₂N₂
/- warning: algebraic_topology.dold_kan.Γ₂N₂.nat_trans -> AlgebraicTopology.DoldKan.Γ₂N₂.natTrans is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{succ (max u2 u1), max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{max (succ u1) (succ u2), max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTransₓ'. -/
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)`. -/
def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
@@ -224,10 +209,7 @@ def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
/- warning: algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app -> AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)), Eq.{succ u2} (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) P) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) P) (CategoryTheory.CategoryStruct.comp.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) P) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) ((fun (a : Type.{max u2 u1}) (b : Sort.{max (succ (max u2 u1)) (succ u2)}) [self : HasLiftT.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} a b] => self.0) (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (HasLiftT.mk.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CoeTCₓ.coe.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.coe.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P) (CategoryTheory.Functor.map.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) P ((fun (a : Type.{max u2 u1}) (b : Sort.{max (succ (max u2 u1)) (succ u2)}) [self : HasLiftT.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} a b] => self.0) (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (HasLiftT.mk.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CoeTCₓ.coe.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.coe.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.decompId_i.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.CategoryStruct.comp.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) ((fun (a : Type.{max u2 u1}) (b : Sort.{max (succ (max u2 u1)) (succ u2)}) [self : HasLiftT.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} a b] => self.0) (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (HasLiftT.mk.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CoeTCₓ.coe.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.coe.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Iso.hom.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.decompId_p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)), Eq.{succ u1} (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) P) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P)) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3) P) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) P) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.Karoubi.mk.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.coe.proof_1.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P) (Prefunctor.map.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) P (CategoryTheory.Idempotents.Karoubi.mk.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.coe.proof_1.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P))) (CategoryTheory.Idempotents.Karoubi.decompId_i.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.Karoubi.mk.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.coe.proof_1.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.comp.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Functor.category.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Iso.hom.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.decompId_p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_appₓ'. -/
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
@@ -239,10 +221,7 @@ theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
end Γ₂N₂
/- warning: algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans -> AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) X) (CategoryTheory.CategoryStruct.comp.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) X) (CategoryTheory.Iso.inv.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) X) (CategoryTheory.Iso.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u1, u2} C _inst_1 _inst_2 _inst_3) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) X)))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) X) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X)) (CategoryTheory.Iso.inv.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (CategoryTheory.Iso.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u1, u2} C _inst_1 _inst_2 _inst_3) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X)))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTransₓ'. -/
theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
Γ₂N₁.natTrans.app X =
@@ -257,10 +236,7 @@ theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans
/- warning: algebraic_topology.dold_kan.identity_N₂_objectwise -> AlgebraicTopology.DoldKan.identity_N₂_objectwise is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P))) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P)) (CategoryTheory.NatTrans.app.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.map.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) P))) (CategoryTheory.CategoryStruct.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)), Eq.{succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P))) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P)) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.map.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3) P))) (CategoryTheory.CategoryStruct.id.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwiseₓ'. -/
theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
N₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
@@ -293,10 +269,7 @@ theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwise
/- warning: algebraic_topology.dold_kan.identity_N₂ -> AlgebraicTopology.DoldKan.identity_N₂ is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Eq.{succ (max u2 u1)} (Quiver.Hom.{succ (max u2 u1), max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.NatTrans.hcomp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.NatTrans.hcomp.{u2, u2, u2, max u2 u1, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u1, u2} C _inst_1], Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.NatTrans.hcomp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.Functor.associator.{max u2 u1, u1, max u2 u1, u1, max u2 u1, u1, max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.NatTrans.hcomp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))))) (CategoryTheory.CategoryStruct.id.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_N₂ₓ'. -/
theorem identity_N₂ :
((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
@@ -331,10 +304,7 @@ instance : IsIso (Γ₂N₁.natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ _
apply nat_iso.is_iso_of_is_iso_app
/- warning: algebraic_topology.dold_kan.Γ₂N₂ -> AlgebraicTopology.DoldKan.Γ₂N₂ is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂ₓ'. -/
/-- The unit isomorphism of the Dold-Kan equivalence. -/
@[simp]
mathlib commit https://github.com/leanprover-community/mathlib/commit/75e7fca56381d056096ce5d05e938f63a6567828
@@ -104,7 +104,7 @@ lean 3 declaration is
but is expected to have type
forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) Δ Δ' i _inst_3) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ'))) (Opposite.op.{1} SimplexCategory Δ) (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' i)))
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInftyₓ'. -/
-@[reassoc.1]
+@[reassoc]
theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
(i : Δ ⟶ Δ') [Mono i] :
Γ₀.Obj.Termwise.mapMono (AlternatingFaceMapComplex.obj X) i ≫ PInfty.f Δ.len =
mathlib commit https://github.com/leanprover-community/mathlib/commit/fa78268d4d77cb2b2fbc89f0527e2e7807763780
@@ -4,14 +4,17 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
! This file was ported from Lean 3 source module algebraic_topology.dold_kan.n_comp_gamma
-! leanprover-community/mathlib commit 19d6240dcc5e5c8bd6e1e3c588b92e837af76f9e
+! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.AlgebraicTopology.DoldKan.GammaCompN
import Mathbin.AlgebraicTopology.DoldKan.NReflectsIso
-/-! The unit isomorphism of the Dold-Kan equivalence
+/-!
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+ The unit isomorphism of the Dold-Kan equivalence
In order to construct the unit isomorphism of the Dold-Kan equivalence,
we first construct natural transformations
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e281deff072232a3c5b3e90034bd65dde396312
@@ -38,7 +38,13 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C]
-theorem pInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
+/- warning: algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero -> AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {n : Nat} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n)) [hi : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' (SimplexCategory.mk n) i], (Ne.{1} Nat (SimplexCategory.len Δ') n) -> (Not (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk n) Δ' i hi)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ')) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n) i))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory Δ')))))))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {n : Nat} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n)) [hi : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ' (SimplexCategory.mk n) i], (Ne.{1} Nat (SimplexCategory.len Δ') n) -> (Not (AlgebraicTopology.DoldKan.Isδ₀ (SimplexCategory.mk n) Δ' i hi)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ')) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n)) (Opposite.op.{1} SimplexCategory Δ') (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ' (SimplexCategory.mk n) i))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u1} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ'))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zeroₓ'. -/
+theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
(i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) : PInfty.f n ≫ X.map i.op = 0 :=
by
induction' Δ' using SimplexCategory.rec with m
@@ -87,10 +93,16 @@ theorem pInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
(by
simp only [Fin.ext_iff, Fin.val_zero]
linarith)
-#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.pInfty_comp_map_mono_eq_zero
-
+#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
+
+/- warning: algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty -> AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) Δ Δ' i _inst_3) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (CategoryTheory.Functor.map.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ'))) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ))) (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' i)))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) {Δ : SimplexCategory} {Δ' : SimplexCategory} (i : Quiver.Hom.{1, 0} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ') [_inst_3 : CategoryTheory.Mono.{0, 0} SimplexCategory SimplexCategory.smallCategory Δ Δ' i], Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ)) (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono.{u1, u2} C _inst_1 _inst_2 (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) Δ Δ' i _inst_3) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ))) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory Δ)) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (SimplexCategory.len Δ')) (Prefunctor.map.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk (SimplexCategory.len Δ'))) (Opposite.op.{1} SimplexCategory Δ) (Quiver.Hom.op.{0, 1} SimplexCategory (CategoryTheory.CategoryStruct.toQuiver.{0, 0} SimplexCategory (CategoryTheory.Category.toCategoryStruct.{0, 0} SimplexCategory SimplexCategory.smallCategory)) Δ Δ' i)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInftyₓ'. -/
@[reassoc.1]
-theorem Γ₀_obj_termwise_mapMono_comp_pInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
+theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
(i : Δ ⟶ Δ') [Mono i] :
Γ₀.Obj.Termwise.mapMono (AlternatingFaceMapComplex.obj X) i ≫ PInfty.f Δ.len =
PInfty.f Δ'.len ≫ X.map i.op :=
@@ -132,12 +144,18 @@ theorem Γ₀_obj_termwise_mapMono_comp_pInfty (X : SimplicialObject C) {Δ Δ'
· exact h
· by_contra h'
exact hi h'
-#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_pInfty
+#align algebraic_topology.dold_kan.Γ₀_obj_termwise_map_mono_comp_P_infty AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty
variable [HasFiniteCoproducts C]
namespace Γ₂N₁
+/- warning: algebraic_topology.dold_kan.Γ₂N₁.nat_trans -> AlgebraicTopology.DoldKan.Γ₂N₁.natTrans is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{succ (max u2 u1), max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{max (succ u1) (succ u2), max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₁.nat_trans AlgebraicTopology.DoldKan.Γ₂N₁.natTransₓ'. -/
/-- The natural transformation `N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)`. -/
@[simps]
def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
@@ -177,31 +195,55 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
end Γ₂N₁
+/- warning: algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ -> AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂ₓ'. -/
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
@[simps]
-def compatibilityΓ₂N₁Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
+def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
eqToIso (Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi _ _) (N₁ ⋙ Γ₂))
-#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibilityΓ₂N₁Γ₂N₂
+#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂
namespace Γ₂N₂
+/- warning: algebraic_topology.dold_kan.Γ₂N₂.nat_trans -> AlgebraicTopology.DoldKan.Γ₂N₂.natTrans is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{succ (max u2 u1), max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Quiver.Hom.{max (succ u1) (succ u2), max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTransₓ'. -/
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)`. -/
def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
- ((whiskeringLeft _ _ _).obj _).Preimage (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans)
+ ((whiskeringLeft _ _ _).obj _).Preimage (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans)
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
+/- warning: algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app -> AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)), Eq.{succ u2} (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) P) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) P) (CategoryTheory.CategoryStruct.comp.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) P) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) ((fun (a : Type.{max u2 u1}) (b : Sort.{max (succ (max u2 u1)) (succ u2)}) [self : HasLiftT.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} a b] => self.0) (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (HasLiftT.mk.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CoeTCₓ.coe.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.coe.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P) (CategoryTheory.Functor.map.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) P ((fun (a : Type.{max u2 u1}) (b : Sort.{max (succ (max u2 u1)) (succ u2)}) [self : HasLiftT.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} a b] => self.0) (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (HasLiftT.mk.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CoeTCₓ.coe.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.coe.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.decompId_i.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.CategoryStruct.comp.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) ((fun (a : Type.{max u2 u1}) (b : Sort.{max (succ (max u2 u1)) (succ u2)}) [self : HasLiftT.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} a b] => self.0) (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (HasLiftT.mk.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CoeTCₓ.coe.{succ (max u2 u1), max (succ (max u2 u1)) (succ u2)} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.coe.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Iso.hom.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.decompId_p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) P)))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)), Eq.{succ u1} (Quiver.Hom.{succ u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) P) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P)) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3) P) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) P) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.Karoubi.mk.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.coe.proof_1.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P) (Prefunctor.map.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) P (CategoryTheory.Idempotents.Karoubi.mk.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.coe.proof_1.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P))) (CategoryTheory.Idempotents.Karoubi.decompId_i.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.Karoubi.mk.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.coe.proof_1.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.comp.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Functor.category.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Iso.hom.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)) (CategoryTheory.Idempotents.Karoubi.decompId_p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) P)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_appₓ'. -/
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
(N₂ ⋙ Γ₂).map P.decompId_i ≫
- (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
- whiskeringLeft_obj_preimage_app (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
+ (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
+ whiskeringLeft_obj_preimage_app (compatibility_Γ₂N₁_Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
end Γ₂N₂
-theorem compatibilityΓ₂N₁Γ₂N₂_natTrans (X : SimplicialObject C) :
+/- warning: algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans -> AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) X) (CategoryTheory.CategoryStruct.comp.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) X) (CategoryTheory.Iso.inv.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) X) (CategoryTheory.Iso.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u1, u2} C _inst_1 _inst_2 _inst_3) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) X)))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂N₁.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) X) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X)) (CategoryTheory.Iso.inv.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)))) X) (Prefunctor.obj.{succ u2, succ u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) X) (CategoryTheory.Iso.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂.{u1, u2} C _inst_1 _inst_2 _inst_3) X)) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X)))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTransₓ'. -/
+theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
Γ₂N₁.natTrans.app X =
- (compatibilityΓ₂N₁Γ₂N₂.app X).inv ≫ Γ₂N₂.natTrans.app ((toKaroubi _).obj X) :=
+ (compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ Γ₂N₂.natTrans.app ((toKaroubi _).obj X) :=
by
rw [← cancel_epi (compatibility_Γ₂N₁_Γ₂N₂.app X).Hom, iso.hom_inv_id_assoc]
exact
@@ -209,9 +251,15 @@ theorem compatibilityΓ₂N₁Γ₂N₂_natTrans (X : SimplicialObject C) :
(((whiskering_left _ _ _).obj _).image_preimage
(compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.nat_trans : _ ⟶ to_karoubi _ ⋙ 𝟭 _)).symm
X
-#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibilityΓ₂N₁Γ₂N₂_natTrans
-
-theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
+#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans
+
+/- warning: algebraic_topology.dold_kan.identity_N₂_objectwise -> AlgebraicTopology.DoldKan.identity_N₂_objectwise is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P))) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P)) (CategoryTheory.NatTrans.app.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.map.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) P) (CategoryTheory.NatTrans.app.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) P))) (CategoryTheory.CategoryStruct.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) P))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u1, u2} C _inst_1] (P : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)), Eq.{succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P))) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P)) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.map.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P)) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) P) (CategoryTheory.NatTrans.app.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3) P))) (CategoryTheory.CategoryStruct.id.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) P))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwiseₓ'. -/
+theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
N₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
by
ext n
@@ -239,16 +287,22 @@ theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
erw [P.X.map_id, comp_id]
simp only [karoubi.comp_f, HomologicalComplex.comp_f, karoubi.id_eq, N₂_obj_p_f, assoc, eq₁, eq₂,
P_infty_f_naturality_assoc, app_idem, P_infty_f_idem_assoc]
-#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_n₂_objectwise
-
-theorem identity_n₂ :
+#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwise
+
+/- warning: algebraic_topology.dold_kan.identity_N₂ -> AlgebraicTopology.DoldKan.identity_N₂ is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], Eq.{succ (max u2 u1)} (Quiver.Hom.{succ (max u2 u1), max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.NatTrans.hcomp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.NatTrans.hcomp.{u2, u2, u2, max u2 u1, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u1, u2} C _inst_1 _inst_2 _inst_3) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2)))) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u1, u2} C _inst_1], Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{succ (max u2 u1), max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.NatTrans.hcomp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.DoldKan.N₂Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3))) (CategoryTheory.CategoryStruct.comp.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Iso.inv.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.Functor.associator.{max u2 u1, u1, max u2 u1, u1, max u2 u1, u1, max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))) (CategoryTheory.NatTrans.hcomp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u2, u1} C _inst_1 _inst_2 _inst_3)) (CategoryTheory.Functor.id.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂N₂.natTrans.{u2, u1} C _inst_1 _inst_2 _inst_3) (CategoryTheory.CategoryStruct.id.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))))) (CategoryTheory.CategoryStruct.id.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Category.toCategoryStruct.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_N₂ₓ'. -/
+theorem identity_N₂ :
((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
𝟙 N₂ :=
by
ext P : 2
dsimp
rw [Γ₂.map_id, N₂.map_id, comp_id, id_comp, identity_N₂_objectwise P]
-#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_n₂
+#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_N₂
instance : IsIso (Γ₂N₂.natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ _ ⟶ _) :=
by
@@ -273,12 +327,24 @@ instance : IsIso (Γ₂N₁.natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ _
infer_instance
apply nat_iso.is_iso_of_is_iso_app
+/- warning: algebraic_topology.dold_kan.Γ₂N₂ -> AlgebraicTopology.DoldKan.Γ₂N₂ is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.id.{u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.id.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂ₓ'. -/
/-- The unit isomorphism of the Dold-Kan equivalence. -/
@[simp]
def Γ₂N₂ : 𝟭 _ ≅ (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ :=
(asIso Γ₂N₂.natTrans).symm
#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂
+/- warning: algebraic_topology.dold_kan.Γ₂N₁ -> AlgebraicTopology.DoldKan.Γ₂N₁ is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.toKaroubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] [_inst_3 : CategoryTheory.Limits.HasFiniteCoproducts.{u2, u1} C _inst_1], CategoryTheory.Iso.{max u1 u2, max u1 u2} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1)) (AlgebraicTopology.DoldKan.N₁.{u1, u2} C _inst_1 _inst_2) (AlgebraicTopology.DoldKan.Γ₂.{u1, u2} C _inst_1 _inst_2 _inst_3))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Γ₂N₁ AlgebraicTopology.DoldKan.Γ₂N₁ₓ'. -/
/-- The natural isomorphism `to_karoubi (simplicial_object C) ≅ N₁ ⋙ Γ₂`. -/
@[simps]
def Γ₂N₁ : toKaroubi _ ≅ (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/52932b3a083d4142e78a15dc928084a22fea9ba0
@@ -212,7 +212,7 @@ theorem compatibilityΓ₂N₁Γ₂N₂_natTrans (X : SimplicialObject C) :
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibilityΓ₂N₁Γ₂N₂_natTrans
theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
- n₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
+ N₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
by
ext n
have eq₁ :
@@ -242,7 +242,7 @@ theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_n₂_objectwise
theorem identity_n₂ :
- ((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ n₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
+ ((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
𝟙 N₂ :=
by
ext P : 2
mathlib commit https://github.com/leanprover-community/mathlib/commit/730c6d4cab72b9d84fcfb9e95e8796e9cd8f40ba
@@ -39,7 +39,7 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C]
theorem pInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
- (i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) : pInfty.f n ≫ X.map i.op = 0 :=
+ (i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) : PInfty.f n ≫ X.map i.op = 0 :=
by
induction' Δ' using SimplexCategory.rec with m
obtain ⟨k, hk⟩ :=
@@ -92,8 +92,8 @@ theorem pInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
@[reassoc.1]
theorem Γ₀_obj_termwise_mapMono_comp_pInfty (X : SimplicialObject C) {Δ Δ' : SimplexCategory}
(i : Δ ⟶ Δ') [Mono i] :
- Γ₀.Obj.Termwise.mapMono (AlternatingFaceMapComplex.obj X) i ≫ pInfty.f Δ.len =
- pInfty.f Δ'.len ≫ X.map i.op :=
+ Γ₀.Obj.Termwise.mapMono (AlternatingFaceMapComplex.obj X) i ≫ PInfty.f Δ.len =
+ PInfty.f Δ'.len ≫ X.map i.op :=
by
induction' Δ using SimplexCategory.rec with n
induction' Δ' using SimplexCategory.rec with n'
@@ -140,11 +140,11 @@ namespace Γ₂N₁
/-- The natural transformation `N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)`. -/
@[simps]
-def natTrans : (n₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
+def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _
where
app X :=
{ f :=
- { app := fun Δ => (Γ₀.splitting K[X]).desc Δ fun A => pInfty.f A.1.unop.len ≫ X.map A.e.op
+ { app := fun Δ => (Γ₀.splitting K[X]).desc Δ fun A => PInfty.f A.1.unop.len ≫ X.map A.e.op
naturality' := fun Δ Δ' θ =>
by
apply (Γ₀.splitting K[X]).hom_ext'
@@ -179,20 +179,20 @@ end Γ₂N₁
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
@[simps]
-def compatibilityΓ₂N₁Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ n₂ ⋙ Γ₂ ≅ n₁ ⋙ Γ₂ :=
- eqToIso (Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi _ _) (n₁ ⋙ Γ₂))
+def compatibilityΓ₂N₁Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
+ eqToIso (Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi _ _) (N₁ ⋙ Γ₂))
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibilityΓ₂N₁Γ₂N₂
namespace Γ₂N₂
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)`. -/
-def natTrans : (n₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
+def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
((whiskeringLeft _ _ _).obj _).Preimage (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans)
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
- (n₂ ⋙ Γ₂).map P.decompId_i ≫
+ (N₂ ⋙ Γ₂).map P.decompId_i ≫
(compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
whiskeringLeft_obj_preimage_app (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
@@ -212,7 +212,7 @@ theorem compatibilityΓ₂N₁Γ₂N₂_natTrans (X : SimplicialObject C) :
#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂_nat_trans AlgebraicTopology.DoldKan.compatibilityΓ₂N₁Γ₂N₂_natTrans
theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
- n₂Γ₂.inv.app (n₂.obj P) ≫ n₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (n₂.obj P) :=
+ n₂Γ₂.inv.app (N₂.obj P) ≫ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) :=
by
ext n
have eq₁ :
@@ -242,15 +242,15 @@ theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_n₂_objectwise
theorem identity_n₂ :
- ((𝟙 (n₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ n₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 n₂ : n₂ ⟶ n₂) =
- 𝟙 n₂ :=
+ ((𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ n₂Γ₂.inv) ≫ Γ₂N₂.natTrans ◫ 𝟙 N₂ : N₂ ⟶ N₂) =
+ 𝟙 N₂ :=
by
ext P : 2
dsimp
rw [Γ₂.map_id, N₂.map_id, comp_id, id_comp, identity_N₂_objectwise P]
#align algebraic_topology.dold_kan.identity_N₂ AlgebraicTopology.DoldKan.identity_n₂
-instance : IsIso (Γ₂N₂.natTrans : (n₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ _ ⟶ _) :=
+instance : IsIso (Γ₂N₂.natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ _ ⟶ _) :=
by
have : ∀ P : karoubi (simplicial_object C), is_iso (Γ₂N₂.nat_trans.app P) :=
by
@@ -264,7 +264,7 @@ instance : IsIso (Γ₂N₂.natTrans : (n₂ : Karoubi (SimplicialObject C) ⥤
exact is_iso_of_reflects_iso _ N₂
apply nat_iso.is_iso_of_is_iso_app
-instance : IsIso (Γ₂N₁.natTrans : (n₁ : SimplicialObject C ⥤ _) ⋙ _ ⟶ _) :=
+instance : IsIso (Γ₂N₁.natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ _ ⟶ _) :=
by
have : ∀ X : simplicial_object C, is_iso (Γ₂N₁.nat_trans.app X) :=
by
@@ -275,13 +275,13 @@ instance : IsIso (Γ₂N₁.natTrans : (n₁ : SimplicialObject C ⥤ _) ⋙ _
/-- The unit isomorphism of the Dold-Kan equivalence. -/
@[simp]
-def Γ₂N₂ : 𝟭 _ ≅ (n₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ :=
+def Γ₂N₂ : 𝟭 _ ≅ (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ :=
(asIso Γ₂N₂.natTrans).symm
#align algebraic_topology.dold_kan.Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂
/-- The natural isomorphism `to_karoubi (simplicial_object C) ≅ N₁ ⋙ Γ₂`. -/
@[simps]
-def Γ₂N₁ : toKaroubi _ ≅ (n₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ :=
+def Γ₂N₁ : toKaroubi _ ≅ (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ :=
(asIso Γ₂N₁.natTrans).symm
#align algebraic_topology.dold_kan.Γ₂N₁ AlgebraicTopology.DoldKan.Γ₂N₁
mathlib commit https://github.com/leanprover-community/mathlib/commit/06a655b5fcfbda03502f9158bbf6c0f1400886f9
@@ -192,8 +192,8 @@ def natTrans : (n₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
- (n₂ ⋙ Γ₂).map P.decompIdI ≫
- (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompIdP :=
+ (n₂ ⋙ Γ₂).map P.decompId_i ≫
+ (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompId_p :=
whiskeringLeft_obj_preimage_app (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -193,7 +193,7 @@ def natTrans : (n₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
Γ₂N₂.natTrans.app P =
(n₂ ⋙ Γ₂).map P.decompIdI ≫
- (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.x ≫ P.decompIdP :=
+ (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans).app P.pt ≫ P.decompIdP :=
whiskeringLeft_obj_preimage_app (compatibilityΓ₂N₁Γ₂N₂.Hom ≫ Γ₂N₁.natTrans) P
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
@@ -218,10 +218,11 @@ theorem identity_n₂_objectwise (P : Karoubi (SimplicialObject C)) :
have eq₁ :
(N₂Γ₂.inv.app (N₂.obj P)).f.f n =
P_infty.f n ≫
- P.p.app (op [n]) ≫ (Γ₀.splitting (N₂.obj P).x).ιSummand (splitting.index_set.id (op [n])) :=
+ P.p.app (op [n]) ≫
+ (Γ₀.splitting (N₂.obj P).pt).ιSummand (splitting.index_set.id (op [n])) :=
by simp only [N₂Γ₂_inv_app_f_f, N₂_obj_p_f, assoc]
have eq₂ :
- (Γ₀.splitting (N₂.obj P).x).ιSummand (splitting.index_set.id (op [n])) ≫
+ (Γ₀.splitting (N₂.obj P).pt).ιSummand (splitting.index_set.id (op [n])) ≫
(N₂.map (Γ₂N₂.nat_trans.app P)).f.f n =
P_infty.f n ≫ P.p.app (op [n]) :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0
branch as we update to intermediate nightlies.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>
@@ -75,7 +75,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
· simp only [op_comp, X.map_comp, assoc, PInfty_f]
erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ hj₁, zero_comp]
by_contra
- exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; omega)
+ exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith)
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -170,7 +170,7 @@ attribute [irreducible] natTrans
end Γ₂N₁
--- porting note: removed @[simps] attribute because it was creating timeouts
+-- Porting note: removed @[simps] attribute because it was creating timeouts
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
def Γ₂N₂ToKaroubiIso : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
(Functor.associator _ _ _).symm ≪≫ isoWhiskerRight toKaroubiCompN₂IsoN₁ Γ₂
@@ -250,7 +250,7 @@ theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.identity_N₂_objectwise AlgebraicTopology.DoldKan.identity_N₂_objectwise
--- porting note: `Functor.associator` was added to the statement in order to prevent a timeout
+-- Porting note: `Functor.associator` was added to the statement in order to prevent a timeout
theorem identity_N₂ :
(𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫
(Functor.associator _ _ _).inv ≫ Γ₂N₂.natTrans ◫ 𝟙 (@N₂ C _ _) = 𝟙 N₂ := by
I ran tryAtEachStep on all files under Mathlib
to find all locations where omega
succeeds. For each that was a linarith
without an only
, I tried replacing it with omega
, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesop
s along the way.
@@ -51,7 +51,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
have h₃ : 1 ≤ (j : ℕ) := by
by_contra h
exact h₂ (by simpa only [Fin.ext_iff, not_le, Nat.lt_one_iff] using h)
- exact (HigherFacesVanish.of_P (m + 1) m).comp_δ_eq_zero j h₂ (by linarith)
+ exact (HigherFacesVanish.of_P (m + 1) m).comp_δ_eq_zero j h₂ (by omega)
· simp only [Nat.succ_eq_add_one, ← add_assoc] at hk
clear h₂ hi
subst hk
@@ -59,23 +59,23 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
eq_comp_δ_of_not_surjective i fun h => by
have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h)
dsimp at h'
- linarith
+ omega
obtain ⟨j₂, i, rfl⟩ :=
eq_comp_δ_of_not_surjective i fun h => by
have h' := len_le_of_epi (SimplexCategory.epi_iff_surjective.2 h)
dsimp at h'
- linarith
+ omega
by_cases hj₁ : j₁ = 0
· subst hj₁
rw [assoc, ← SimplexCategory.δ_comp_δ'' (Fin.zero_le _)]
simp only [op_comp, X.map_comp, assoc, PInfty_f]
erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ j₂.succ_ne_zero, zero_comp]
simp only [Nat.succ_eq_add_one, Nat.add, Fin.succ]
- linarith
+ omega
· simp only [op_comp, X.map_comp, assoc, PInfty_f]
erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ hj₁, zero_comp]
by_contra
- exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith)
+ exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; omega)
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
@@ -165,7 +165,7 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _ where
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.Γ₂N₁.nat_trans AlgebraicTopology.DoldKan.Γ₂N₁.natTrans
--- Porting note: added to speed up elaboration
+-- Porting note (#10694): added to speed up elaboration
attribute [irreducible] natTrans
end Γ₂N₁
@@ -187,7 +187,7 @@ lemma Γ₂N₂ToKaroubiIso_inv_app (X : SimplicialObject C) :
Γ₂N₂ToKaroubiIso.inv.app X = Γ₂.map (toKaroubiCompN₂IsoN₁.inv.app X) := by
simp [Γ₂N₂ToKaroubiIso]
--- Porting note: added to speed up elaboration
+-- Porting note (#10694): added to speed up elaboration
attribute [irreducible] Γ₂N₂ToKaroubiIso
namespace Γ₂N₂
@@ -208,7 +208,7 @@ theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
--- Porting note: added to speed up elaboration
+-- Porting note (#10694): added to speed up elaboration
attribute [irreducible] natTrans
end Γ₂N₂
This PR changes the definition of a splitting of simplicial objects. The new definition makes a better use of the cofan API. As a result, it is no longer necessary to assume that the category has finite coproducts.
@@ -12,7 +12,7 @@ import Mathlib.AlgebraicTopology.DoldKan.NReflectsIso
In order to construct the unit isomorphism of the Dold-Kan equivalence,
we first construct natural transformations
-`Γ₂N₁.natTrans : N₁ ⋙ Γ₂ ⟶ toKaroubi (simplicial_object C)` and
+`Γ₂N₁.natTrans : N₁ ⋙ Γ₂ ⟶ toKaroubi (SimplicialObject C)` and
`Γ₂N₂.natTrans : N₂ ⋙ Γ₂ ⟶ 𝟭 (SimplicialObject C)`.
It is then shown that `Γ₂N₂.natTrans` is an isomorphism by using
that it becomes an isomorphism after the application of the functor
@@ -151,14 +151,14 @@ def natTrans : (N₁ : SimplicialObject C ⥤ _) ⋙ Γ₂ ⟶ toKaroubi _ where
apply (Γ₀.splitting K[X]).hom_ext
intro n
dsimp [N₁]
- simp only [← Splitting.ιSummand_id, Splitting.ι_desc, comp_id, Splitting.ι_desc_assoc,
+ simp only [← Splitting.cofan_inj_id, Splitting.ι_desc, comp_id, Splitting.ι_desc_assoc,
assoc, PInfty_f_idem_assoc] }
naturality {X Y} f := by
ext1
apply (Γ₀.splitting K[X]).hom_ext
intro n
dsimp [N₁, toKaroubi]
- simp only [← Splitting.ιSummand_id, Splitting.ι_desc, Splitting.ι_desc_assoc, assoc,
+ simp only [← Splitting.cofan_inj_id, Splitting.ι_desc, Splitting.ι_desc_assoc, assoc,
PInfty_f_idem_assoc, Karoubi.comp_f, NatTrans.comp_app, Γ₂_map_f_app,
HomologicalComplex.comp_f, AlternatingFaceMapComplex.map_f, PInfty_f_naturality_assoc,
NatTrans.naturality, Splitting.IndexSet.id_fst, unop_op, len_mk]
@@ -230,9 +230,9 @@ theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) := by
ext n
have eq₁ : (N₂Γ₂.inv.app (N₂.obj P)).f.f n = PInfty.f n ≫ P.p.app (op [n]) ≫
- (Γ₀.splitting (N₂.obj P).X).ιSummand (Splitting.IndexSet.id (op [n])) := by
+ ((Γ₀.splitting (N₂.obj P).X).cofan _).inj (Splitting.IndexSet.id (op [n])) := by
simp only [N₂Γ₂_inv_app_f_f, N₂_obj_p_f, assoc]
- have eq₂ : (Γ₀.splitting (N₂.obj P).X).ιSummand (Splitting.IndexSet.id (op [n])) ≫
+ have eq₂ : ((Γ₀.splitting (N₂.obj P).X).cofan _).inj (Splitting.IndexSet.id (op [n])) ≫
(N₂.map (Γ₂N₂.natTrans.app P)).f.f n = PInfty.f n ≫ P.p.app (op [n]) := by
dsimp
rw [PInfty_on_Γ₀_splitting_summand_eq_self_assoc, Γ₂N₂.natTrans_app_f_app]
In the context of idempotent completion of categories and the Dold-Kan equivalence, constructing some isomorphisms was very slow in Lean 3 but has been much faster in Lean 4, while using equalities of functors in Lean 3 was fast, but in Lean 4 it became very slow. In this PR, we switch to using mostly isomorphisms of functors: this also became necessary in order to make the refactor #8531 possible.
@@ -172,43 +172,39 @@ end Γ₂N₁
-- porting note: removed @[simps] attribute because it was creating timeouts
/-- The compatibility isomorphism relating `N₂ ⋙ Γ₂` and `N₁ ⋙ Γ₂`. -/
-def compatibility_Γ₂N₁_Γ₂N₂ : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
- eqToIso (by rw [← Functor.assoc, compatibility_N₁_N₂])
+def Γ₂N₂ToKaroubiIso : toKaroubi (SimplicialObject C) ⋙ N₂ ⋙ Γ₂ ≅ N₁ ⋙ Γ₂ :=
+ (Functor.associator _ _ _).symm ≪≫ isoWhiskerRight toKaroubiCompN₂IsoN₁ Γ₂
set_option linter.uppercaseLean3 false in
-#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂
+#align algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso
--- porting note: no @[simp] attribute because this would trigger a timeout
-lemma compatibility_Γ₂N₁_Γ₂N₂_hom_app (X : SimplicialObject C) :
- compatibility_Γ₂N₁_Γ₂N₂.hom.app X =
- eqToHom (by rw [← Functor.assoc, compatibility_N₁_N₂]) := by
- dsimp only [compatibility_Γ₂N₁_Γ₂N₂, CategoryTheory.eqToIso]
- apply eqToHom_app
+@[simp]
+lemma Γ₂N₂ToKaroubiIso_hom_app (X : SimplicialObject C) :
+ Γ₂N₂ToKaroubiIso.hom.app X = Γ₂.map (toKaroubiCompN₂IsoN₁.hom.app X) := by
+ simp [Γ₂N₂ToKaroubiIso]
--- Porting note: added to speed up elaboration
-attribute [irreducible] compatibility_Γ₂N₁_Γ₂N₂
+@[simp]
+lemma Γ₂N₂ToKaroubiIso_inv_app (X : SimplicialObject C) :
+ Γ₂N₂ToKaroubiIso.inv.app X = Γ₂.map (toKaroubiCompN₂IsoN₁.inv.app X) := by
+ simp [Γ₂N₂ToKaroubiIso]
-lemma compatibility_Γ₂N₁_Γ₂N₂_inv_app (X : SimplicialObject C) :
- compatibility_Γ₂N₁_Γ₂N₂.inv.app X =
- eqToHom (by rw [← Functor.assoc, compatibility_N₁_N₂]) := by
- rw [← cancel_mono (compatibility_Γ₂N₁_Γ₂N₂.hom.app X), Iso.inv_hom_id_app,
- compatibility_Γ₂N₁_Γ₂N₂_hom_app, eqToHom_trans, eqToHom_refl]
+-- Porting note: added to speed up elaboration
+attribute [irreducible] Γ₂N₂ToKaroubiIso
namespace Γ₂N₂
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (SimplicialObject C)`. -/
def natTrans : (N₂ : Karoubi (SimplicialObject C) ⥤ _) ⋙ Γ₂ ⟶ 𝟭 _ :=
((whiskeringLeft _ _ _).obj (toKaroubi (SimplicialObject C))).preimage
- (by exact compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans)
+ (Γ₂N₂ToKaroubiIso.hom ≫ Γ₂N₁.natTrans)
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans AlgebraicTopology.DoldKan.Γ₂N₂.natTrans
theorem natTrans_app_f_app (P : Karoubi (SimplicialObject C)) :
- Γ₂N₂.natTrans.app P = by
- exact (N₂ ⋙ Γ₂).map P.decompId_i ≫
- (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans).app P.X ≫ P.decompId_p := by
+ Γ₂N₂.natTrans.app P =
+ (N₂ ⋙ Γ₂).map P.decompId_i ≫
+ (Γ₂N₂ToKaroubiIso.hom ≫ Γ₂N₁.natTrans).app P.X ≫ P.decompId_p := by
dsimp only [natTrans]
- rw [whiskeringLeft_obj_preimage_app
- (compatibility_Γ₂N₁_Γ₂N₂.hom ≫ Γ₂N₁.natTrans : _ ⟶ toKaroubi _ ⋙ 𝟭 _) P, Functor.id_map]
+ simp only [whiskeringLeft_obj_preimage_app, Functor.id_map, assoc]
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.Γ₂N₂.nat_trans_app_f_app AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app
@@ -219,7 +215,7 @@ end Γ₂N₂
theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
Γ₂N₁.natTrans.app X =
- (compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫
+ (Γ₂N₂ToKaroubiIso.app X).inv ≫
Γ₂N₂.natTrans.app ((toKaroubi (SimplicialObject C)).obj X) := by
rw [Γ₂N₂.natTrans_app_f_app]
dsimp only [Karoubi.decompId_i_toKaroubi, Karoubi.decompId_p_toKaroubi, Functor.comp_map,
@@ -239,14 +235,16 @@ theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
have eq₂ : (Γ₀.splitting (N₂.obj P).X).ιSummand (Splitting.IndexSet.id (op [n])) ≫
(N₂.map (Γ₂N₂.natTrans.app P)).f.f n = PInfty.f n ≫ P.p.app (op [n]) := by
dsimp
- simp only [assoc, Γ₂N₂.natTrans_app_f_app, Functor.comp_map, NatTrans.comp_app,
- Karoubi.comp_f, compatibility_Γ₂N₁_Γ₂N₂_hom_app, eqToHom_refl, Karoubi.eqToHom_f,
- PInfty_on_Γ₀_splitting_summand_eq_self_assoc, Functor.comp_obj]
- dsimp [N₂]
- simp only [Splitting.ι_desc_assoc, assoc, id_comp, unop_op,
- Splitting.IndexSet.id_fst, len_mk, Splitting.IndexSet.e,
- Splitting.IndexSet.id_snd_coe, op_id, P.X.map_id, id_comp,
- PInfty_f_naturality_assoc, PInfty_f_idem_assoc, app_idem]
+ rw [PInfty_on_Γ₀_splitting_summand_eq_self_assoc, Γ₂N₂.natTrans_app_f_app]
+ dsimp
+ rw [Γ₂N₂ToKaroubiIso_hom_app, assoc, Splitting.ι_desc_assoc, assoc, assoc]
+ dsimp [toKaroubi]
+ rw [Splitting.ι_desc_assoc]
+ dsimp
+ simp only [assoc, Splitting.ι_desc_assoc, unop_op, Splitting.IndexSet.id_fst,
+ len_mk, NatTrans.naturality, PInfty_f_idem_assoc,
+ PInfty_f_naturality_assoc, app_idem_assoc]
+ erw [P.X.map_id, comp_id]
simp only [Karoubi.comp_f, HomologicalComplex.comp_f, Karoubi.id_eq, N₂_obj_p_f, assoc,
eq₁, eq₂, PInfty_f_naturality_assoc, app_idem, PInfty_f_idem_assoc]
set_option linter.uppercaseLean3 false in
I've also got a change to make this required, but I'd like to land this first.
@@ -88,7 +88,7 @@ theorem Γ₀_obj_termwise_mapMono_comp_PInfty (X : SimplicialObject C) {Δ Δ'
induction' Δ' using SimplexCategory.rec with n'
dsimp
-- We start with the case `i` is an identity
- by_cases n = n'
+ by_cases h : n = n'
· subst h
simp only [SimplexCategory.eq_id_of_mono i, Γ₀.Obj.Termwise.mapMono_id, op_id, X.map_id]
dsimp
@@ -230,8 +230,8 @@ theorem compatibility_Γ₂N₁_Γ₂N₂_natTrans (X : SimplicialObject C) :
rw [comp_id, Iso.inv_hom_id_app_assoc]
theorem identity_N₂_objectwise (P : Karoubi (SimplicialObject C)) :
- (N₂Γ₂.inv.app (N₂.obj P) : N₂.obj P ⟶ N₂.obj (Γ₂.obj (N₂.obj P))) ≫ N₂.map (Γ₂N₂.natTrans.app P) =
- 𝟙 (N₂.obj P) := by
+ (N₂Γ₂.inv.app (N₂.obj P) : N₂.obj P ⟶ N₂.obj (Γ₂.obj (N₂.obj P))) ≫
+ N₂.map (Γ₂N₂.natTrans.app P) = 𝟙 (N₂.obj P) := by
ext n
have eq₁ : (N₂Γ₂.inv.app (N₂.obj P)).f.f n = PInfty.f n ≫ P.p.app (op [n]) ≫
(Γ₀.splitting (N₂.obj P).X).ιSummand (Splitting.IndexSet.id (op [n])) := by
@@ -254,7 +254,7 @@ set_option linter.uppercaseLean3 false in
-- porting note: `Functor.associator` was added to the statement in order to prevent a timeout
theorem identity_N₂ :
- (𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫
+ (𝟙 (N₂ : Karoubi (SimplicialObject C) ⥤ _) ◫ N₂Γ₂.inv) ≫
(Functor.associator _ _ _).inv ≫ Γ₂N₂.natTrans ◫ 𝟙 (@N₂ C _ _) = 𝟙 N₂ := by
ext P : 2
dsimp only [NatTrans.comp_app, NatTrans.hcomp_app, Functor.comp_map, Functor.associator,
@@ -6,7 +6,7 @@ Authors: Joël Riou
import Mathlib.AlgebraicTopology.DoldKan.GammaCompN
import Mathlib.AlgebraicTopology.DoldKan.NReflectsIso
-#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"19d6240dcc5e5c8bd6e1e3c588b92e837af76f9e"
+#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
/-! The unit isomorphism of the Dold-Kan equivalence
In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.
Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>
@@ -19,6 +19,8 @@ that it becomes an isomorphism after the application of the functor
`N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)`
which reflects isomorphisms.
+(See `Equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
-/
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -31,7 +31,7 @@ namespace AlgebraicTopology
namespace DoldKan
-variable {C : Type _} [Category C] [Preadditive C]
+variable {C : Type*} [Category C] [Preadditive C]
theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : SimplexCategory}
(i : Δ' ⟶ [n]) [hi : Mono i] (h₁ : Δ'.len ≠ n) (h₂ : ¬Isδ₀ i) :
@@ -185,6 +185,12 @@ lemma compatibility_Γ₂N₁_Γ₂N₂_hom_app (X : SimplicialObject C) :
-- Porting note: added to speed up elaboration
attribute [irreducible] compatibility_Γ₂N₁_Γ₂N₂
+lemma compatibility_Γ₂N₁_Γ₂N₂_inv_app (X : SimplicialObject C) :
+ compatibility_Γ₂N₁_Γ₂N₂.inv.app X =
+ eqToHom (by rw [← Functor.assoc, compatibility_N₁_N₂]) := by
+ rw [← cancel_mono (compatibility_Γ₂N₁_Γ₂N₂.hom.app X), Iso.inv_hom_id_app,
+ compatibility_Γ₂N₁_Γ₂N₂_hom_app, eqToHom_trans, eqToHom_refl]
+
namespace Γ₂N₂
/-- The natural transformation `N₂ ⋙ Γ₂ ⟶ 𝟭 (SimplicialObject C)`. -/
@@ -2,15 +2,12 @@
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.n_comp_gamma
-! leanprover-community/mathlib commit 19d6240dcc5e5c8bd6e1e3c588b92e837af76f9e
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.AlgebraicTopology.DoldKan.GammaCompN
import Mathlib.AlgebraicTopology.DoldKan.NReflectsIso
+#align_import algebraic_topology.dold_kan.n_comp_gamma from "leanprover-community/mathlib"@"19d6240dcc5e5c8bd6e1e3c588b92e837af76f9e"
+
/-! The unit isomorphism of the Dold-Kan equivalence
In order to construct the unit isomorphism of the Dold-Kan equivalence,
This is the second half of the changes originally in #5699, removing all occurrences of ;
after a space and implementing a linter rule to enforce it.
In most cases this 2-character substring has a space after it, so the following command was run first:
find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;
The remaining cases were few enough in number that they were done manually.
@@ -76,7 +76,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
· simp only [op_comp, X.map_comp, assoc, PInfty_f]
erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ hj₁, zero_comp]
by_contra
- exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero] ; linarith)
+ exact hj₁ (by simp only [Fin.ext_iff, Fin.val_zero]; linarith)
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.P_infty_comp_map_mono_eq_zero AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero
This PR is the result of running
find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;
which firstly replaces .
focusing dots with ·
and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.
@@ -67,7 +67,7 @@ theorem PInfty_comp_map_mono_eq_zero (X : SimplicialObject C) {n : ℕ} {Δ' : S
dsimp at h'
linarith
by_cases hj₁ : j₁ = 0
- . subst hj₁
+ · subst hj₁
rw [assoc, ← SimplexCategory.δ_comp_δ'' (Fin.zero_le _)]
simp only [op_comp, X.map_comp, assoc, PInfty_f]
erw [(HigherFacesVanish.of_P _ _).comp_δ_eq_zero_assoc _ j₂.succ_ne_zero, zero_comp]
The unported dependencies are