algebraic_topology.dold_kan.n_reflects_iso
⟷
Mathlib.AlgebraicTopology.DoldKan.NReflectsIso
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>
@@ -21,6 +21,8 @@ In this file, it is shown that the functors
`N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
reflect isomorphisms for any preadditive category `C`.
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
-/
open category_theory
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -45,7 +45,9 @@ variable {C : Type _} [Category C] [Preadditive C]
open MorphComponents
-instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)) :=
+instance :
+ CategoryTheory.Functor.ReflectsIsomorphisms
+ (N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)) :=
⟨fun X Y f => by
intro
-- restating the result in a way that allows induction on the degree n
@@ -115,7 +117,9 @@ theorem compatibility_N₂_N₁_karoubi :
/-- We deduce that `N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
reflects isomorphisms from the fact that
`N₁ : simplicial_object (karoubi C) ⥤ karoubi (chain_complex (karoubi C) ℕ)` does. -/
-instance : ReflectsIsomorphisms (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)) :=
+instance :
+ CategoryTheory.Functor.ReflectsIsomorphisms
+ (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)) :=
⟨fun X Y f => by
intro
-- The following functor `F` reflects isomorphism because it is
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -59,7 +59,7 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
have h₃ := fun n =>
karoubi.homological_complex.p_comm_f_assoc (inv (N₁.map f)) n (f.app (op [n]))
simp only [N₁_map_f, karoubi.comp_f, HomologicalComplex.comp_f,
- alternating_face_map_complex.map_f, N₁_obj_p, karoubi.id_eq, assoc] at h₁ h₂ h₃
+ alternating_face_map_complex.map_f, N₁_obj_p, karoubi.id_eq, assoc] at h₁ h₂ h₃
-- we have to construct an inverse to f in degree n, by induction on n
intro n
induction' n with n hn
@@ -67,8 +67,8 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
· use(inv (N₁.map f)).f.f 0
have h₁₀ := h₁ 0
have h₂₀ := h₂ 0
- dsimp at h₁₀ h₂₀
- simp only [id_comp, comp_id] at h₁₀ h₂₀
+ dsimp at h₁₀ h₂₀
+ simp only [id_comp, comp_id] at h₁₀ h₂₀
tauto
-- induction step
· haveI := hn
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,10 +3,10 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
-import Mathbin.AlgebraicTopology.DoldKan.FunctorN
-import Mathbin.AlgebraicTopology.DoldKan.Decomposition
-import Mathbin.CategoryTheory.Idempotents.HomologicalComplex
-import Mathbin.CategoryTheory.Idempotents.KaroubiKaroubi
+import AlgebraicTopology.DoldKan.FunctorN
+import AlgebraicTopology.DoldKan.Decomposition
+import CategoryTheory.Idempotents.HomologicalComplex
+import CategoryTheory.Idempotents.KaroubiKaroubi
#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -8,7 +8,7 @@ import Mathbin.AlgebraicTopology.DoldKan.Decomposition
import Mathbin.CategoryTheory.Idempotents.HomologicalComplex
import Mathbin.CategoryTheory.Idempotents.KaroubiKaroubi
-#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"4f81bc21e32048db7344b7867946e992cf5f68cc"
+#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
/-!
@@ -22,6 +22,8 @@ In this file, it is shown that the functors
`N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
reflect isomorphisms for any preadditive category `C`.
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/63721b2c3eba6c325ecf8ae8cca27155a4f6306f
@@ -62,7 +62,7 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
intro n
induction' n with n hn
-- degree 0
- · use (inv (N₁.map f)).f.f 0
+ · use(inv (N₁.map f)).f.f 0
have h₁₀ := h₁ 0
have h₂₀ := h₂ 0
dsimp at h₁₀ h₂₀
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,17 +2,14 @@
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.n_reflects_iso
-! leanprover-community/mathlib commit 4f81bc21e32048db7344b7867946e992cf5f68cc
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.AlgebraicTopology.DoldKan.FunctorN
import Mathbin.AlgebraicTopology.DoldKan.Decomposition
import Mathbin.CategoryTheory.Idempotents.HomologicalComplex
import Mathbin.CategoryTheory.Idempotents.KaroubiKaroubi
+#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"4f81bc21e32048db7344b7867946e992cf5f68cc"
+
/-!
# N₁ and N₂ reflects isomorphisms
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -81,6 +81,7 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
simplicial_object.σ_naturality, h₁, h₂, h₃]
tauto⟩
+#print AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi /-
theorem compatibility_N₂_N₁_karoubi :
N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).Functor =
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
@@ -110,6 +111,7 @@ theorem compatibility_N₂_N₁_karoubi :
karoubi_chain_complex_equivalence_functor_obj_X_p, N₂_obj_p_f, eq_to_hom_refl,
P_infty_f_naturality_assoc, app_comp_p, P_infty_f_idem_assoc]
#align algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi
+-/
/-- We deduce that `N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
reflects isomorphisms from the fact that
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -60,7 +60,7 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
have h₃ := fun n =>
karoubi.homological_complex.p_comm_f_assoc (inv (N₁.map f)) n (f.app (op [n]))
simp only [N₁_map_f, karoubi.comp_f, HomologicalComplex.comp_f,
- alternating_face_map_complex.map_f, N₁_obj_p, karoubi.id_eq, assoc] at h₁ h₂ h₃
+ alternating_face_map_complex.map_f, N₁_obj_p, karoubi.id_eq, assoc] at h₁ h₂ h₃
-- we have to construct an inverse to f in degree n, by induction on n
intro n
induction' n with n hn
@@ -68,8 +68,8 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
· use (inv (N₁.map f)).f.f 0
have h₁₀ := h₁ 0
have h₂₀ := h₂ 0
- dsimp at h₁₀ h₂₀
- simp only [id_comp, comp_id] at h₁₀ h₂₀
+ dsimp at h₁₀ h₂₀
+ simp only [id_comp, comp_id] at h₁₀ h₂₀
tauto
-- induction step
· haveI := hn
@@ -98,7 +98,7 @@ theorem compatibility_N₂_N₁_karoubi :
ext
have h := (alternating_face_map_complex.map P.p).comm (n + 1) n
dsimp [N₂, karoubi_chain_complex_equivalence, karoubi_karoubi.inverse,
- karoubi_homological_complex_equivalence.functor.obj] at h⊢
+ karoubi_homological_complex_equivalence.functor.obj] at h ⊢
simp only [karoubi.comp_f, assoc, karoubi.eq_to_hom_f, eq_to_hom_refl, id_comp, comp_id,
karoubi_alternating_face_map_complex_d, karoubi_P_infty_f, ←
HomologicalComplex.Hom.comm_assoc, ← h, app_idem_assoc]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -36,7 +36,7 @@ open CategoryTheory.Idempotents
open Opposite
-open Simplicial
+open scoped Simplicial
namespace AlgebraicTopology
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -81,9 +81,6 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
simplicial_object.σ_naturality, h₁, h₂, h₃]
tauto⟩
-/- warning: algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi -> AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubiₓ'. -/
theorem compatibility_N₂_N₁_karoubi :
N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).Functor =
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -82,10 +82,7 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
tauto⟩
/- warning: algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi -> AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1], Eq.{succ (max u2 (max u2 u1) u1 u2)} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{u1, u2, 0} C _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.DoldKan.N₁.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{max u1 u2, u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Functor.mapHomologicalComplex.{u2, max u1 u2, 0, max u1 u2, u2} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Equivalence.inverse.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1], Eq.{max (succ u2) (succ u1)} (CategoryTheory.Functor.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Equivalence.functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{u2, u1, 0} C _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (HomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (HomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.DoldKan.N₁.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Equivalence.functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{max u1 u2, u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Functor.mapHomologicalComplex.{u1, max u2 u1, 0, max u2 u1, u1} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Equivalence.inverse.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubiₓ'. -/
theorem compatibility_N₂_N₁_karoubi :
N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).Functor =
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e281deff072232a3c5b3e90034bd65dde396312
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
! This file was ported from Lean 3 source module algebraic_topology.dold_kan.n_reflects_iso
-! leanprover-community/mathlib commit 88bca0ce5d22ebfd9e73e682e51d60ea13b48347
+! leanprover-community/mathlib commit 4f81bc21e32048db7344b7867946e992cf5f68cc
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -17,6 +17,9 @@ import Mathbin.CategoryTheory.Idempotents.KaroubiKaroubi
# N₁ and N₂ reflects isomorphisms
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
In this file, it is shown that the functors
`N₁ : simplicial_object C ⥤ karoubi (chain_complex C ℕ)` and
`N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
mathlib commit https://github.com/leanprover-community/mathlib/commit/246f6f7989ff86bd07e1b014846f11304f33cf9e
@@ -78,7 +78,13 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
simplicial_object.σ_naturality, h₁, h₂, h₃]
tauto⟩
-theorem compatibility_n₂_n₁_karoubi :
+/- warning: algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi -> AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1], Eq.{succ (max u2 (max u2 u1) u1 u2)} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.DoldKan.N₂.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{u1, u2, 0} C _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.DoldKan.N₁.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u1 u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Equivalence.functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (ChainComplex.{u2, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{max u1 u2, u2, 0} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Functor.mapHomologicalComplex.{u2, max u1 u2, 0, max u1 u2, u2} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Equivalence.inverse.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1], Eq.{max (succ u2) (succ u1)} (CategoryTheory.Functor.{u1, u1, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u1 u2, max u1 u2, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.DoldKan.N₂.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Equivalence.functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, u2, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{u2, u1, 0} C _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (HomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (HomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.DoldKan.N₁.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u1, u1, u1, max u2 u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (ChainComplex.{u1, max u2 u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Equivalence.functor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (ChainComplex.{u1, max u1 u2, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (HomologicalComplex.instCategoryHomologicalComplex.{u1, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2))) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.karoubiChainComplexEquivalence.{max u1 u2, u1, 0} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Functor.mapHomologicalComplex.{u1, max u2 u1, 0, max u2 u1, u1} Nat (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (CategoryTheory.Equivalence.inverse.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubiₓ'. -/
+theorem compatibility_N₂_N₁_karoubi :
N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).Functor =
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
@@ -106,7 +112,7 @@ theorem compatibility_n₂_n₁_karoubi :
assoc, comp_id, P_infty_f_naturality, app_p_comp,
karoubi_chain_complex_equivalence_functor_obj_X_p, N₂_obj_p_f, eq_to_hom_refl,
P_infty_f_naturality_assoc, app_comp_p, P_infty_f_idem_assoc]
-#align algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi AlgebraicTopology.DoldKan.compatibility_n₂_n₁_karoubi
+#align algebraic_topology.dold_kan.compatibility_N₂_N₁_karoubi AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi
/-- We deduce that `N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
reflects isomorphisms from the fact that
mathlib commit https://github.com/leanprover-community/mathlib/commit/730c6d4cab72b9d84fcfb9e95e8796e9cd8f40ba
@@ -43,7 +43,7 @@ variable {C : Type _} [Category C] [Preadditive C]
open MorphComponents
-instance : ReflectsIsomorphisms (n₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)) :=
+instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)) :=
⟨fun X Y f => by
intro
-- restating the result in a way that allows induction on the degree n
@@ -79,9 +79,9 @@ instance : ReflectsIsomorphisms (n₁ : SimplicialObject C ⥤ Karoubi (ChainCom
tauto⟩
theorem compatibility_n₂_n₁_karoubi :
- n₂ ⋙ (karoubiChainComplexEquivalence C ℕ).Functor =
+ N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).Functor =
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
- n₁ ⋙
+ N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).Functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse _ :=
by
@@ -111,7 +111,7 @@ theorem compatibility_n₂_n₁_karoubi :
/-- We deduce that `N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ))`
reflects isomorphisms from the fact that
`N₁ : simplicial_object (karoubi C) ⥤ karoubi (chain_complex (karoubi C) ℕ)` does. -/
-instance : ReflectsIsomorphisms (n₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)) :=
+instance : ReflectsIsomorphisms (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)) :=
⟨fun X Y f => by
intro
-- The following functor `F` reflects isomorphism because it is
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
These notions on functors are now Functor.Full
, Functor.Faithful
, Functor.EssSurj
, Functor.IsEquivalence
, Functor.ReflectsIsomorphisms
. Deprecated aliases are introduced for the previous names.
@@ -34,7 +34,7 @@ variable {C : Type*} [Category C] [Preadditive C]
open MorphComponents
-instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)) :=
+instance : (N₁ : SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ)).ReflectsIsomorphisms :=
⟨fun {X Y} f => by
intro
-- restating the result in a way that allows induction on the degree n
@@ -96,7 +96,7 @@ set_option linter.uppercaseLean3 false in
/-- We deduce that `N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ))`
reflects isomorphisms from the fact that
`N₁ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ)` does. -/
-instance : ReflectsIsomorphisms (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)) :=
+instance : (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ)).ReflectsIsomorphisms :=
⟨fun f => by
intro
-- The following functor `F` reflects isomorphism because it is
@@ -110,10 +110,10 @@ instance : ReflectsIsomorphisms (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi
let F := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
-- Porting note: we have to help Lean4 find the `ReflectsIsomorphisms` instances
-- could this be fixed by setting better instance priorities?
- haveI : ReflectsIsomorphisms F₁ := reflectsIsomorphisms_of_full_and_faithful _
- haveI : ReflectsIsomorphisms F₂ := by infer_instance
- haveI : ReflectsIsomorphisms F₃ := reflectsIsomorphisms_of_full_and_faithful _
- haveI : ReflectsIsomorphisms ((KaroubiKaroubi.equivalence C).inverse) :=
+ haveI : F₁.ReflectsIsomorphisms := reflectsIsomorphisms_of_full_and_faithful _
+ haveI : F₂.ReflectsIsomorphisms := by infer_instance
+ haveI : F₃.ReflectsIsomorphisms := reflectsIsomorphisms_of_full_and_faithful _
+ haveI : ((KaroubiKaroubi.equivalence C).inverse).ReflectsIsomorphisms :=
reflectsIsomorphisms_of_full_and_faithful _
have : IsIso (F.map f) := by
simp only [F]
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -108,7 +108,7 @@ instance : ReflectsIsomorphisms (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi
let F₄ := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)
let F := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
- -- porting note: we have to help Lean4 find the `ReflectsIsomorphisms` instances
+ -- Porting note: we have to help Lean4 find the `ReflectsIsomorphisms` instances
-- could this be fixed by setting better instance priorities?
haveI : ReflectsIsomorphisms F₁ := reflectsIsomorphisms_of_full_and_faithful _
haveI : ReflectsIsomorphisms F₂ := by infer_instance
@@ -116,7 +116,7 @@ instance : ReflectsIsomorphisms (N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi
haveI : ReflectsIsomorphisms ((KaroubiKaroubi.equivalence C).inverse) :=
reflectsIsomorphisms_of_full_and_faithful _
have : IsIso (F.map f) := by
- simp only
+ simp only [F]
rw [← compatibility_N₂_N₁_karoubi, Functor.comp_map]
apply Functor.map_isIso
exact isIso_of_reflects_iso f F⟩
This is the supremum of
along with some minor fixes from failures on nightly-testing as Mathlib master
is merged into it.
Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.
I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0
branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.
In particular this includes adjustments for the Lean PRs
We can get rid of all the
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)
macros across Mathlib (and in any projects that want to write natural number powers of reals).
Changes the default behaviour of simp
to (config := {decide := false})
. This makes simp
(and consequentially norm_num
) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp
or norm_num
to decide
or rfl
, or adding (config := {decide := true})
.
This changed the behaviour of simp
so that simp [f]
will only unfold "fully applied" occurrences of f
. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true })
. We may in future add a syntax for this, e.g. simp [!f]
; please provide feedback! In the meantime, we have made the following changes:
(config := { unfoldPartialApp := true })
in some places, to recover the old behaviour@[eqns]
to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp
and Function.flip
.This change in Lean may require further changes down the line (e.g. adding the !f
syntax, and/or upstreaming the special treatment for Function.comp
and Function.flip
, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!
Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>
@@ -63,7 +63,7 @@ instance : ReflectsIsomorphisms (N₁ : SimplicialObject C ⥤ Karoubi (ChainCom
b := fun i => inv (f.app (op [n])) ≫ X.σ i }
simp only [MorphComponents.id, ← id_φ, ← preComp_φ, preComp, ← postComp_φ, postComp,
PInfty_f_naturality_assoc, IsIso.hom_inv_id_assoc, assoc, IsIso.inv_hom_id_assoc,
- SimplicialObject.σ_naturality, h₁, h₂, h₃]⟩
+ SimplicialObject.σ_naturality, h₁, h₂, h₃, and_self]⟩
theorem compatibility_N₂_N₁_karoubi :
N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor =
@@ -8,7 +8,7 @@ import Mathlib.AlgebraicTopology.DoldKan.Decomposition
import Mathlib.CategoryTheory.Idempotents.HomologicalComplex
import Mathlib.CategoryTheory.Idempotents.KaroubiKaroubi
-#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"88bca0ce5d22ebfd9e73e682e51d60ea13b48347"
+#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
/-!
In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.
Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>
@@ -19,6 +19,8 @@ In this file, it is shown that the functors
`N₂ : Karoubi (SimplicialObject C) ⥤ Karoubi (ChainComplex C ℕ))`
reflect isomorphisms for any preadditive category `C`.
+(See `Equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
-/
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -28,7 +28,7 @@ namespace AlgebraicTopology
namespace DoldKan
-variable {C : Type _} [Category C] [Preadditive C]
+variable {C : Type*} [Category C] [Preadditive C]
open MorphComponents
@@ -2,17 +2,14 @@
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.n_reflects_iso
-! leanprover-community/mathlib commit 88bca0ce5d22ebfd9e73e682e51d60ea13b48347
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.AlgebraicTopology.DoldKan.FunctorN
import Mathlib.AlgebraicTopology.DoldKan.Decomposition
import Mathlib.CategoryTheory.Idempotents.HomologicalComplex
import Mathlib.CategoryTheory.Idempotents.KaroubiKaroubi
+#align_import algebraic_topology.dold_kan.n_reflects_iso from "leanprover-community/mathlib"@"88bca0ce5d22ebfd9e73e682e51d60ea13b48347"
+
/-!
# N₁ and N₂ reflects isomorphisms
Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>
@@ -74,9 +74,9 @@ theorem compatibility_N₂_N₁_karoubi :
refine' CategoryTheory.Functor.ext (fun P => _) fun P Q f => _
· refine' HomologicalComplex.ext _ _
· ext n
+ · rfl
· dsimp
simp only [karoubi_PInfty_f, comp_id, PInfty_f_naturality, id_comp, eqToHom_refl]
- · rfl
· rintro _ n (rfl : n + 1 = _)
ext
have h := (AlternatingFaceMapComplex.map P.p).comm (n + 1) n
This PR is the result of running
find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;
which firstly replaces .
focusing dots with ·
and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.
@@ -76,7 +76,7 @@ theorem compatibility_N₂_N₁_karoubi :
· ext n
· dsimp
simp only [karoubi_PInfty_f, comp_id, PInfty_f_naturality, id_comp, eqToHom_refl]
- . rfl
+ · rfl
· rintro _ n (rfl : n + 1 = _)
ext
have h := (AlternatingFaceMapComplex.map P.p).comm (n + 1) n
The unported dependencies are