algebraic_topology.dold_kan.normalizedMathlib.AlgebraicTopology.DoldKan.Normalized

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(algebraic_topology/dold_kan): The Dold-Kan equivalence for abelian categories (#17926)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>

Diff
@@ -27,6 +27,8 @@ the Dold-Kan equivalence
 `category_theory.abelian.dold_kan.equivalence : simplicial_object A ≌ chain_complex A ℕ`
 with a functor (definitionally) equal to `normalized_Moore_complex A`.
 
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 open category_theory category_theory.category category_theory.limits

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 -/
-import Mathbin.AlgebraicTopology.DoldKan.FunctorN
+import AlgebraicTopology.DoldKan.FunctorN
 
 #align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
Diff
@@ -5,7 +5,7 @@ Authors: Joël Riou
 -/
 import Mathbin.AlgebraicTopology.DoldKan.FunctorN
 
-#align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+#align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
 /-!
 
@@ -28,6 +28,8 @@ the Dold-Kan equivalence
 `category_theory.abelian.dold_kan.equivalence : simplicial_object A ≌ chain_complex A ℕ`
 with a functor (definitionally) equal to `normalized_Moore_complex A`.
 
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.normalized
-! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.AlgebraicTopology.DoldKan.FunctorN
 
+#align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+
 /-!
 
 # Comparison with the normalized Moore complex functor
Diff
@@ -49,6 +49,7 @@ universe v
 
 variable {A : Type _} [Category A] [Abelian A] {X : SimplicialObject A}
 
+#print AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap /-
 theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     HigherFacesVanish (n + 1) ((inclusionOfMooreComplexMap X).f (n + 1)) := fun j hj =>
   by
@@ -58,7 +59,9 @@ theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
       (finset_inf_arrow_factors Finset.univ _ j (by simp only [Finset.mem_univ])),
     assoc, kernel_subobject_arrow_comp, comp_zero]
 #align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap
+-/
 
+#print AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty /-
 theorem factors_normalizedMooreComplex_PInfty (n : ℕ) :
     Subobject.Factors (NormalizedMooreComplex.objX X n) (PInfty.f n) :=
   by
@@ -69,6 +72,7 @@ theorem factors_normalizedMooreComplex_PInfty (n : ℕ) :
     apply kernel_subobject_factors
     exact (higher_faces_vanish.of_P (n + 1) n) i le_add_self
 #align algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty
+-/
 
 #print AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex /-
 /-- P_infty factors through the normalized Moore complex -/
@@ -85,10 +89,12 @@ def PInftyToNormalizedMooreComplex (X : SimplicialObject A) : K[X] ⟶ N[X] :=
 #align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex
 -/
 
+#print AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap /-
 @[simp, reassoc]
 theorem PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
     PInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty := by tidy
 #align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap
+-/
 
 #print AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality /-
 @[simp, reassoc]
@@ -106,6 +112,7 @@ theorem PInfty_comp_PInftyToNormalizedMooreComplex (X : SimplicialObject A) :
 #align algebraic_topology.dold_kan.P_infty_comp_P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex
 -/
 
+#print AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty /-
 @[simp, reassoc]
 theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
     inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X :=
@@ -115,10 +122,12 @@ theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
   · dsimp; simp only [comp_id]
   · exact (higher_faces_vanish.inclusion_of_Moore_complex_map n).comp_P_eq_self
 #align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty
+-/
 
 instance : Mono (inclusionOfMooreComplexMap X) :=
   ⟨fun Y f₁ f₂ hf => by ext n; exact HomologicalComplex.congr_hom hf n⟩
 
+#print AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMap /-
 /-- `inclusion_of_Moore_complex_map X` is a split mono. -/
 def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
     SplitMono (inclusionOfMooreComplexMap X)
@@ -129,9 +138,11 @@ def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
       P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map,
       inclusion_of_Moore_complex_map_comp_P_infty]
 #align algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMap
+-/
 
 variable (A)
 
+#print AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi /-
 /-- When the category `A` is abelian,
 the functor `N₁ : simplicial_object A ⥤ karoubi (chain_complex A ℕ)` defined
 using `P_infty` identifies to the composition of the normalized Moore complex functor
@@ -168,6 +179,7 @@ def N₁_iso_normalizedMooreComplex_comp_toKaroubi : N₁ ≅ normalizedMooreCom
     dsimp only [functor.comp_obj, to_karoubi]
     rw [id_comp]
 #align algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi
+-/
 
 end DoldKan
 
Diff
@@ -34,8 +34,8 @@ with a functor (definitionally) equal to `normalized_Moore_complex A`.
 -/
 
 
-open
-  CategoryTheory CategoryTheory.Category CategoryTheory.Limits CategoryTheory.Subobject CategoryTheory.Idempotents
+open CategoryTheory CategoryTheory.Category CategoryTheory.Limits CategoryTheory.Subobject
+  CategoryTheory.Idempotents
 
 open scoped DoldKan
 
Diff
@@ -37,7 +37,7 @@ with a functor (definitionally) equal to `normalized_Moore_complex A`.
 open
   CategoryTheory CategoryTheory.Category CategoryTheory.Limits CategoryTheory.Subobject CategoryTheory.Idempotents
 
-open DoldKan
+open scoped DoldKan
 
 noncomputable section
 
Diff
@@ -49,9 +49,6 @@ universe v
 
 variable {A : Type _} [Category A] [Abelian A] {X : SimplicialObject A}
 
-/- warning: algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMapₓ'. -/
 theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     HigherFacesVanish (n + 1) ((inclusionOfMooreComplexMap X).f (n + 1)) := fun j hj =>
   by
@@ -62,12 +59,6 @@ theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     assoc, kernel_subobject_arrow_comp, comp_zero]
 #align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap
 
-/- warning: algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty -> AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1} (n : Nat), CategoryTheory.Subobject.Factors.{u2, u1} A _inst_1 (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_1 _inst_2 X n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n)
-but is expected to have type
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1} (n : Nat), CategoryTheory.Subobject.Factors.{u2, u1} A _inst_1 (HomologicalComplex.X.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_1 _inst_2 X n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n)
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInftyₓ'. -/
 theorem factors_normalizedMooreComplex_PInfty (n : ℕ) :
     Subobject.Factors (NormalizedMooreComplex.objX X n) (PInfty.f n) :=
   by
@@ -94,9 +85,6 @@ def PInftyToNormalizedMooreComplex (X : SimplicialObject A) : K[X] ⟶ N[X] :=
 #align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex
 -/
 
-/- warning: algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMapₓ'. -/
 @[simp, reassoc]
 theorem PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
     PInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty := by tidy
@@ -118,9 +106,6 @@ theorem PInfty_comp_PInftyToNormalizedMooreComplex (X : SimplicialObject A) :
 #align algebraic_topology.dold_kan.P_infty_comp_P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex
 -/
 
-/- warning: algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty -> AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInftyₓ'. -/
 @[simp, reassoc]
 theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
     inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X :=
@@ -134,9 +119,6 @@ theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
 instance : Mono (inclusionOfMooreComplexMap X) :=
   ⟨fun Y f₁ f₂ hf => by ext n; exact HomologicalComplex.congr_hom hf n⟩
 
-/- warning: algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMapₓ'. -/
 /-- `inclusion_of_Moore_complex_map X` is a split mono. -/
 def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
     SplitMono (inclusionOfMooreComplexMap X)
@@ -150,9 +132,6 @@ def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
 
 variable (A)
 
-/- warning: algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi -> AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubiₓ'. -/
 /-- When the category `A` is abelian,
 the functor `N₁ : simplicial_object A ⥤ karoubi (chain_complex A ℕ)` defined
 using `P_infty` identifies to the composition of the normalized Moore complex functor
Diff
@@ -127,15 +127,12 @@ theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
   by
   ext n
   cases n
-  · dsimp
-    simp only [comp_id]
+  · dsimp; simp only [comp_id]
   · exact (higher_faces_vanish.inclusion_of_Moore_complex_map n).comp_P_eq_self
 #align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty
 
 instance : Mono (inclusionOfMooreComplexMap X) :=
-  ⟨fun Y f₁ f₂ hf => by
-    ext n
-    exact HomologicalComplex.congr_hom hf n⟩
+  ⟨fun Y f₁ f₂ hf => by ext n; exact HomologicalComplex.congr_hom hf n⟩
 
 /- warning: algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMap is a dubious translation:
 <too large>
@@ -174,8 +171,7 @@ def N₁_iso_normalizedMooreComplex_comp_toKaroubi : N₁ ≅ normalizedMooreCom
     { app := fun X =>
         { f := inclusionOfMooreComplexMap X
           comm := by erw [inclusion_of_Moore_complex_map_comp_P_infty, id_comp] }
-      naturality' := fun X Y f => by
-        ext
+      naturality' := fun X Y f => by ext;
         simp only [functor.comp_map, normalized_Moore_complex_map, karoubi.comp_f, to_karoubi_map_f,
           HomologicalComplex.comp_f, normalized_Moore_complex.map_f,
           inclusion_of_Moore_complex_map_f, factor_thru_arrow, N₁_map_f,
Diff
@@ -50,10 +50,7 @@ universe v
 variable {A : Type _} [Category A] [Abelian A] {X : SimplicialObject A}
 
 /- warning: algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1} (n : Nat), AlgebraicTopology.DoldKan.HigherFacesVanish.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))
-but is expected to have type
-  forall {A : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} A] [_inst_2 : CategoryTheory.Abelian.{u1, u2} A _inst_1] {X : CategoryTheory.SimplicialObject.{u1, u2} A _inst_1} (n : Nat), AlgebraicTopology.DoldKan.HigherFacesVanish.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2) X (HomologicalComplex.X.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1))) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u2, u1} A _inst_1 _inst_2)) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1))) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u2, u1} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1))) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2))) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u2, u1} A _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMapₓ'. -/
 theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     HigherFacesVanish (n + 1) ((inclusionOfMooreComplexMap X).f (n + 1)) := fun j hj =>
@@ -98,10 +95,7 @@ def PInftyToNormalizedMooreComplex (X : SimplicialObject A) : K[X] ⟶ N[X] :=
 -/
 
 /- warning: algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.NormalizedMooreComplex.obj.{u1, u2} A _inst_1 _inst_2 X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)
-but is expected to have type
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.NormalizedMooreComplex.obj.{u1, u2} A _inst_1 _inst_2 X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMapₓ'. -/
 @[simp, reassoc]
 theorem PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
@@ -125,10 +119,7 @@ theorem PInfty_comp_PInftyToNormalizedMooreComplex (X : SimplicialObject A) :
 -/
 
 /- warning: algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty -> AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
-but is expected to have type
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInftyₓ'. -/
 @[simp, reassoc]
 theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
@@ -147,10 +138,7 @@ instance : Mono (inclusionOfMooreComplexMap X) :=
     exact HomologicalComplex.congr_hom hf n⟩
 
 /- warning: algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMap is a dubious translation:
-lean 3 declaration is
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), CategoryTheory.SplitMono.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
-but is expected to have type
-  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), CategoryTheory.SplitMono.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMapₓ'. -/
 /-- `inclusion_of_Moore_complex_map X` is a split mono. -/
 def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
@@ -166,10 +154,7 @@ def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
 variable (A)
 
 /- warning: algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi -> AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi is a dubious translation:
-lean 3 declaration is
-  forall (A : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.DoldKan.N₁.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))
-but is expected to have type
-  forall (A : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1], CategoryTheory.Iso.{max u1 u2, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.DoldKan.N₁.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubiₓ'. -/
 /-- When the category `A` is abelian,
 the functor `N₁ : simplicial_object A ⥤ karoubi (chain_complex A ℕ)` defined
Diff
@@ -103,13 +103,13 @@ lean 3 declaration is
 but is expected to have type
   forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.NormalizedMooreComplex.obj.{u1, u2} A _inst_1 _inst_2 X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMapₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
     PInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty := by tidy
 #align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap
 
 #print AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem PInftyToNormalizedMooreComplex_naturality {X Y : SimplicialObject A} (f : X ⟶ Y) :
     AlternatingFaceMapComplex.map f ≫ PInftyToNormalizedMooreComplex Y =
       PInftyToNormalizedMooreComplex X ≫ NormalizedMooreComplex.map f :=
@@ -118,7 +118,7 @@ theorem PInftyToNormalizedMooreComplex_naturality {X Y : SimplicialObject A} (f
 -/
 
 #print AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex /-
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem PInfty_comp_PInftyToNormalizedMooreComplex (X : SimplicialObject A) :
     PInfty ≫ PInftyToNormalizedMooreComplex X = PInftyToNormalizedMooreComplex X := by tidy
 #align algebraic_topology.dold_kan.P_infty_comp_P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex
@@ -130,7 +130,7 @@ lean 3 declaration is
 but is expected to have type
   forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
 Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInftyₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
     inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X :=
   by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
 
 ! This file was ported from Lean 3 source module algebraic_topology.dold_kan.normalized
-! leanprover-community/mathlib commit d1d69e99ed34c95266668af4e288fc1c598b9a7f
+! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.AlgebraicTopology.DoldKan.FunctorN
 
 # Comparison with the normalized Moore complex functor
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 TODO (@joelriou) continue adding the various files referenced below
 
 In this file, we show that when the category `A` is abelian,
Diff
@@ -46,6 +46,12 @@ universe v
 
 variable {A : Type _} [Category A] [Abelian A] {X : SimplicialObject A}
 
+/- warning: algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1} (n : Nat), AlgebraicTopology.DoldKan.HigherFacesVanish.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))
+but is expected to have type
+  forall {A : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} A] [_inst_2 : CategoryTheory.Abelian.{u1, u2} A _inst_1] {X : CategoryTheory.SimplicialObject.{u1, u2} A _inst_1} (n : Nat), AlgebraicTopology.DoldKan.HigherFacesVanish.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2) X (HomologicalComplex.X.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1))) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u2, u1} A _inst_1 _inst_2)) X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1))) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u2, u1} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u1, succ u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1))) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u2 u1, max u2 u1} (CategoryTheory.SimplicialObject.{u1, u2} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} A _inst_1) (ChainComplex.{u1, u2, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u1, u2} A _inst_1 _inst_2))) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u2, u1} A _inst_1 _inst_2 X) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMapₓ'. -/
 theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     HigherFacesVanish (n + 1) ((inclusionOfMooreComplexMap X).f (n + 1)) := fun j hj =>
   by
@@ -56,7 +62,13 @@ theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     assoc, kernel_subobject_arrow_comp, comp_zero]
 #align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap
 
-theorem factors_normalized_Moore_complex_pInfty (n : ℕ) :
+/- warning: algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty -> AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1} (n : Nat), CategoryTheory.Subobject.Factors.{u2, u1} A _inst_1 (HomologicalComplex.x.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_1 _inst_2 X n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n)
+but is expected to have type
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1} (n : Nat), CategoryTheory.Subobject.Factors.{u2, u1} A _inst_1 (HomologicalComplex.X.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) A (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} A (CategoryTheory.Category.toCategoryStruct.{u2, u1} A _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) A _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (AlgebraicTopology.NormalizedMooreComplex.objX.{u1, u2} A _inst_1 _inst_2 X n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) n)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInftyₓ'. -/
+theorem factors_normalizedMooreComplex_PInfty (n : ℕ) :
     Subobject.Factors (NormalizedMooreComplex.objX X n) (PInfty.f n) :=
   by
   cases n
@@ -65,40 +77,58 @@ theorem factors_normalized_Moore_complex_pInfty (n : ℕ) :
     intro i hi
     apply kernel_subobject_factors
     exact (higher_faces_vanish.of_P (n + 1) n) i le_add_self
-#align algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty AlgebraicTopology.DoldKan.factors_normalized_Moore_complex_pInfty
+#align algebraic_topology.dold_kan.factors_normalized_Moore_complex_P_infty AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty
 
+#print AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex /-
 /-- P_infty factors through the normalized Moore complex -/
 @[simps]
-def pInftyToNormalizedMooreComplex (X : SimplicialObject A) : K[X] ⟶ N[X] :=
-  ChainComplex.ofHom _ _ _ _ _ _
-    (fun n => factorThru _ _ (factors_normalized_Moore_complex_pInfty n)) fun n =>
+def PInftyToNormalizedMooreComplex (X : SimplicialObject A) : K[X] ⟶ N[X] :=
+  ChainComplex.ofHom _ _ _ _ _ _ (fun n => factorThru _ _ (factors_normalizedMooreComplex_PInfty n))
+    fun n =>
     by
     rw [← cancel_mono (normalized_Moore_complex.obj_X X n).arrow, assoc, assoc, factor_thru_arrow, ←
       inclusion_of_Moore_complex_map_f, ← normalized_Moore_complex_obj_d, ←
       (inclusion_of_Moore_complex_map X).comm' (n + 1) n rfl, inclusion_of_Moore_complex_map_f,
       factor_thru_arrow_assoc, ← alternating_face_map_complex_obj_d]
     exact P_infty.comm' (n + 1) n rfl
-#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.pInftyToNormalizedMooreComplex
+#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex
+-/
 
+/- warning: algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.NormalizedMooreComplex.obj.{u1, u2} A _inst_1 _inst_2 X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)
+but is expected to have type
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.NormalizedMooreComplex.obj.{u1, u2} A _inst_1 _inst_2 X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMapₓ'. -/
 @[simp, reassoc.1]
-theorem pInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
-    pInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty := by tidy
-#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.pInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap
+theorem PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
+    PInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty := by tidy
+#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap
 
+#print AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality /-
 @[simp, reassoc.1]
-theorem pInftyToNormalizedMooreComplex_naturality {X Y : SimplicialObject A} (f : X ⟶ Y) :
-    AlternatingFaceMapComplex.map f ≫ pInftyToNormalizedMooreComplex Y =
-      pInftyToNormalizedMooreComplex X ≫ NormalizedMooreComplex.map f :=
+theorem PInftyToNormalizedMooreComplex_naturality {X Y : SimplicialObject A} (f : X ⟶ Y) :
+    AlternatingFaceMapComplex.map f ≫ PInftyToNormalizedMooreComplex Y =
+      PInftyToNormalizedMooreComplex X ≫ NormalizedMooreComplex.map f :=
   by tidy
-#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_naturality AlgebraicTopology.DoldKan.pInftyToNormalizedMooreComplex_naturality
+#align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_naturality AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality
+-/
 
+#print AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex /-
 @[simp, reassoc.1]
-theorem pInfty_comp_pInftyToNormalizedMooreComplex (X : SimplicialObject A) :
-    PInfty ≫ pInftyToNormalizedMooreComplex X = pInftyToNormalizedMooreComplex X := by tidy
-#align algebraic_topology.dold_kan.P_infty_comp_P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.pInfty_comp_pInftyToNormalizedMooreComplex
+theorem PInfty_comp_PInftyToNormalizedMooreComplex (X : SimplicialObject A) :
+    PInfty ≫ PInftyToNormalizedMooreComplex X = PInftyToNormalizedMooreComplex X := by tidy
+#align algebraic_topology.dold_kan.P_infty_comp_P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex
+-/
 
+/- warning: algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty -> AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
+but is expected to have type
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (CategoryTheory.CategoryStruct.comp.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2) X)) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInftyₓ'. -/
 @[simp, reassoc.1]
-theorem inclusionOfMooreComplexMap_comp_pInfty (X : SimplicialObject A) :
+theorem inclusionOfMooreComplexMap_comp_PInfty (X : SimplicialObject A) :
     inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X :=
   by
   ext n
@@ -106,18 +136,24 @@ theorem inclusionOfMooreComplexMap_comp_pInfty (X : SimplicialObject A) :
   · dsimp
     simp only [comp_id]
   · exact (higher_faces_vanish.inclusion_of_Moore_complex_map n).comp_P_eq_self
-#align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_pInfty
+#align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty
 
 instance : Mono (inclusionOfMooreComplexMap X) :=
   ⟨fun Y f₁ f₂ hf => by
     ext n
     exact HomologicalComplex.congr_hom hf n⟩
 
+/- warning: algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map -> AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMap is a dubious translation:
+lean 3 declaration is
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), CategoryTheory.SplitMono.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) X) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
+but is expected to have type
+  forall {A : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1] (X : CategoryTheory.SimplicialObject.{u2, u1} A _inst_1), CategoryTheory.SplitMono.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2)) X) (Prefunctor.obj.{succ u2, succ u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1))) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.toPrefunctor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (AlgebraicTopology.alternatingFaceMapComplex.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2))) X) (AlgebraicTopology.inclusionOfMooreComplexMap.{u1, u2} A _inst_1 _inst_2 X)
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.split_mono_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.splitMonoInclusionOfMooreComplexMapₓ'. -/
 /-- `inclusion_of_Moore_complex_map X` is a split mono. -/
 def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
     SplitMono (inclusionOfMooreComplexMap X)
     where
-  retraction := pInftyToNormalizedMooreComplex X
+  retraction := PInftyToNormalizedMooreComplex X
   id' := by
     simp only [← cancel_mono (inclusion_of_Moore_complex_map X), assoc, id_comp,
       P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map,
@@ -126,15 +162,21 @@ def splitMonoInclusionOfMooreComplexMap (X : SimplicialObject A) :
 
 variable (A)
 
+/- warning: algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi -> AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi is a dubious translation:
+lean 3 declaration is
+  forall (A : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1], CategoryTheory.Iso.{max u2 u1, max u2 (max u2 u1) u1 u2} (CategoryTheory.Functor.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (CategoryTheory.Functor.category.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.DoldKan.N₁.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))))
+but is expected to have type
+  forall (A : Type.{u1}) [_inst_1 : CategoryTheory.Category.{u2, u1} A] [_inst_2 : CategoryTheory.Abelian.{u2, u1} A _inst_1], CategoryTheory.Iso.{max u1 u2, max u2 u1} (CategoryTheory.Functor.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (CategoryTheory.Functor.category.{u2, u2, max u1 u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.DoldKan.N₁.{u1, u2} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (CategoryTheory.Functor.comp.{u2, u2, u2, max u2 u1, max u1 u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} A _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} A _inst_1) (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))) (CategoryTheory.Idempotents.Karoubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.normalizedMooreComplex.{u1, u2} A _inst_1 _inst_2) (CategoryTheory.Idempotents.toKaroubi.{max u1 u2, u2} (ChainComplex.{u2, u1, 0} A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat A _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} A _inst_1 (CategoryTheory.Abelian.toPreadditive.{u2, u1} A _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubiₓ'. -/
 /-- When the category `A` is abelian,
 the functor `N₁ : simplicial_object A ⥤ karoubi (chain_complex A ℕ)` defined
 using `P_infty` identifies to the composition of the normalized Moore complex functor
 and the inclusion in the Karoubi envelope. -/
-def n₁IsoNormalizedMooreComplexCompToKaroubi : N₁ ≅ normalizedMooreComplex A ⋙ toKaroubi _
+def N₁_iso_normalizedMooreComplex_comp_toKaroubi : N₁ ≅ normalizedMooreComplex A ⋙ toKaroubi _
     where
   Hom :=
     { app := fun X =>
-        { f := pInftyToNormalizedMooreComplex X
+        { f := PInftyToNormalizedMooreComplex X
           comm := by erw [comp_id, P_infty_comp_P_infty_to_normalized_Moore_complex] }
       naturality' := fun X Y f => by
         simp only [functor.comp_map, normalized_Moore_complex_map,
@@ -162,7 +204,7 @@ def n₁IsoNormalizedMooreComplexCompToKaroubi : N₁ ≅ normalizedMooreComplex
       inclusion_of_Moore_complex_map_comp_P_infty]
     dsimp only [functor.comp_obj, to_karoubi]
     rw [id_comp]
-#align algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi AlgebraicTopology.DoldKan.n₁IsoNormalizedMooreComplexCompToKaroubi
+#align algebraic_topology.dold_kan.N₁_iso_normalized_Moore_complex_comp_to_karoubi AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi
 
 end DoldKan
 
Diff
@@ -57,7 +57,7 @@ theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
 #align algebraic_topology.dold_kan.higher_faces_vanish.inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap
 
 theorem factors_normalized_Moore_complex_pInfty (n : ℕ) :
-    Subobject.Factors (NormalizedMooreComplex.objX X n) (pInfty.f n) :=
+    Subobject.Factors (NormalizedMooreComplex.objX X n) (PInfty.f n) :=
   by
   cases n
   · apply top_factors
@@ -82,7 +82,7 @@ def pInftyToNormalizedMooreComplex (X : SimplicialObject A) : K[X] ⟶ N[X] :=
 
 @[simp, reassoc.1]
 theorem pInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap (X : SimplicialObject A) :
-    pInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = pInfty := by tidy
+    pInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty := by tidy
 #align algebraic_topology.dold_kan.P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map AlgebraicTopology.DoldKan.pInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap
 
 @[simp, reassoc.1]
@@ -94,12 +94,12 @@ theorem pInftyToNormalizedMooreComplex_naturality {X Y : SimplicialObject A} (f
 
 @[simp, reassoc.1]
 theorem pInfty_comp_pInftyToNormalizedMooreComplex (X : SimplicialObject A) :
-    pInfty ≫ pInftyToNormalizedMooreComplex X = pInftyToNormalizedMooreComplex X := by tidy
+    PInfty ≫ pInftyToNormalizedMooreComplex X = pInftyToNormalizedMooreComplex X := by tidy
 #align algebraic_topology.dold_kan.P_infty_comp_P_infty_to_normalized_Moore_complex AlgebraicTopology.DoldKan.pInfty_comp_pInftyToNormalizedMooreComplex
 
 @[simp, reassoc.1]
 theorem inclusionOfMooreComplexMap_comp_pInfty (X : SimplicialObject A) :
-    inclusionOfMooreComplexMap X ≫ pInfty = inclusionOfMooreComplexMap X :=
+    inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X :=
   by
   ext n
   cases n
@@ -130,7 +130,7 @@ variable (A)
 the functor `N₁ : simplicial_object A ⥤ karoubi (chain_complex A ℕ)` defined
 using `P_infty` identifies to the composition of the normalized Moore complex functor
 and the inclusion in the Karoubi envelope. -/
-def n₁IsoNormalizedMooreComplexCompToKaroubi : n₁ ≅ normalizedMooreComplex A ⋙ toKaroubi _
+def n₁IsoNormalizedMooreComplexCompToKaroubi : N₁ ≅ normalizedMooreComplex A ⋙ toKaroubi _
     where
   Hom :=
     { app := fun X =>
Diff
@@ -105,7 +105,7 @@ theorem inclusionOfMooreComplexMap_comp_pInfty (X : SimplicialObject A) :
   cases n
   · dsimp
     simp only [comp_id]
-  · exact (higher_faces_vanish.inclusion_of_Moore_complex_map n).comp_p_eq_self
+  · exact (higher_faces_vanish.inclusion_of_Moore_complex_map n).comp_P_eq_self
 #align algebraic_topology.dold_kan.inclusion_of_Moore_complex_map_comp_P_infty AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_pInfty
 
 instance : Mono (inclusionOfMooreComplexMap X) :=

Changes in mathlib4

mathlib3
mathlib4
chore: fix some cases in names (#7469)

And fix some names in comments where this revealed issues

Diff
@@ -18,7 +18,7 @@ defined in `FunctorN.lean` and the composition of
 `normalizedMooreComplex A` with the inclusion
 `ChainComplex A ℕ ⥤ Karoubi (ChainComplex A ℕ)`.
 
-This isomorphism shall be used in `equivalence.lean` in order to obtain
+This isomorphism shall be used in `Equivalence.lean` in order to obtain
 the Dold-Kan equivalence
 `CategoryTheory.Abelian.DoldKan.equivalence : SimplicialObject A ≌ ChainComplex A ℕ`
 with a functor (definitionally) equal to `normalizedMooreComplex A`.
chore: fix SHA for Dold-Kan equivalence files (#6834)
Diff
@@ -5,7 +5,7 @@ Authors: Joël Riou
 -/
 import Mathlib.AlgebraicTopology.DoldKan.FunctorN
 
-#align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"d1d69e99ed34c95266668af4e288fc1c598b9a7f"
+#align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
 
 /-!
 
feat: forward port of Mathlib.AlgebraicTopology.DoldKan.Equivalence (#6444)

In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -23,6 +23,8 @@ the Dold-Kan equivalence
 `CategoryTheory.Abelian.DoldKan.equivalence : SimplicialObject A ≌ ChainComplex A ℕ`
 with a functor (definitionally) equal to `normalizedMooreComplex A`.
 
+(See `Equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
+
 -/
 
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -37,7 +37,7 @@ namespace DoldKan
 
 universe v
 
-variable {A : Type _} [Category A] [Abelian A] {X : SimplicialObject A}
+variable {A : Type*} [Category A] [Abelian A] {X : SimplicialObject A}
 
 theorem HigherFacesVanish.inclusionOfMooreComplexMap (n : ℕ) :
     HigherFacesVanish (n + 1) ((inclusionOfMooreComplexMap X).f (n + 1)) := fun j _ => by
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Joël Riou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.normalized
-! leanprover-community/mathlib commit d1d69e99ed34c95266668af4e288fc1c598b9a7f
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.AlgebraicTopology.DoldKan.FunctorN
 
+#align_import algebraic_topology.dold_kan.normalized from "leanprover-community/mathlib"@"d1d69e99ed34c95266668af4e288fc1c598b9a7f"
+
 /-!
 
 # Comparison with the normalized Moore complex functor
feat: port AlgebraicTopology.DoldKan.Normalized (#3591)

Dependencies 8 + 524

525 files ported (98.5%)
200477 lines ported (98.5%)
Show graph

The unported dependencies are