algebraic_topology.dold_kan.p_infty
⟷
Mathlib.AlgebraicTopology.DoldKan.PInfty
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr>
@@ -22,7 +22,8 @@ to the limit the projections `P q` defined in `projections.lean`. This
projection is a critical tool in this formalisation of the Dold-Kan correspondence,
because in the case of abelian categories, `P_infty` corresponds to the
projection on the normalized Moore subcomplex, with kernel the degenerate subcomplex.
-(See `equivalence.lean` for the general strategy of proof.)
+
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
-/
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -191,7 +191,7 @@ theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 := by ext n;
#print AlgebraicTopology.DoldKan.PInfty_add_QInfty /-
@[simp]
theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ := by dsimp only [Q_infty];
- simp only [add_sub_cancel'_right]
+ simp only [add_sub_cancel]
#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -264,16 +264,16 @@ theorem karoubi_PInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
let τ₂ := nat_trans_P_infty_f (karoubi C) n
let τ := τ₁ ◫ τ₂
have h₁₄ := idempotents.nat_trans_eq τ Y
- dsimp [τ, τ₁, τ₂, nat_trans_P_infty_f] at h₁₄
- rw [id_comp, id_comp, comp_id, comp_id] at h₁₄
+ dsimp [τ, τ₁, τ₂, nat_trans_P_infty_f] at h₁₄
+ rw [id_comp, id_comp, comp_id, comp_id] at h₁₄
-- We use the three equalities h₃₂, h₄₃, h₁₄.
rw [← h₃₂, ← h₄₃, h₁₄]
simp only [karoubi_functor_category_embedding.map_app_f, karoubi.decomp_id_p_f,
karoubi.decomp_id_i_f, karoubi.comp_f]
let π : Y₄ ⟶ Y₄ := (to_karoubi _ ⋙ karoubi_functor_category_embedding _ _).map Y.p
have eq := karoubi.hom_ext.mp (P_infty_f_naturality n π)
- simp only [karoubi.comp_f] at eq
- dsimp [π] at eq
+ simp only [karoubi.comp_f] at eq
+ dsimp [π] at eq
rw [← Eq, reassoc_of (app_idem Y (op [n]))]
#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_f
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
-import Mathbin.AlgebraicTopology.DoldKan.Projections
-import Mathbin.CategoryTheory.Idempotents.FunctorCategories
-import Mathbin.CategoryTheory.Idempotents.FunctorExtension
+import AlgebraicTopology.DoldKan.Projections
+import CategoryTheory.Idempotents.FunctorCategories
+import CategoryTheory.Idempotents.FunctorExtension
#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -7,7 +7,7 @@ import Mathbin.AlgebraicTopology.DoldKan.Projections
import Mathbin.CategoryTheory.Idempotents.FunctorCategories
import Mathbin.CategoryTheory.Idempotents.FunctorExtension
-#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
+#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
/-!
@@ -23,7 +23,8 @@ to the limit the projections `P q` defined in `projections.lean`. This
projection is a critical tool in this formalisation of the Dold-Kan correspondence,
because in the case of abelian categories, `P_infty` corresponds to the
projection on the normalized Moore subcomplex, with kernel the degenerate subcomplex.
-(See `equivalence.lean` for the general strategy of proof.)
+
+(See `equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.p_infty
-! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.AlgebraicTopology.DoldKan.Projections
import Mathbin.CategoryTheory.Idempotents.FunctorCategories
import Mathbin.CategoryTheory.Idempotents.FunctorExtension
+#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"86d1873c01a723aba6788f0b9051ae3d23b4c1c3"
+
/-!
# Construction of the projection `P_infty` for the Dold-Kan correspondence
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -114,17 +114,21 @@ theorem QInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.QInfty_f
-/
+#print AlgebraicTopology.DoldKan.PInfty_f_naturality /-
@[simp, reassoc]
theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ PInfty.f n = PInfty.f n ≫ f.app (op [n]) :=
P_f_naturality n n f
#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturality
+-/
+#print AlgebraicTopology.DoldKan.QInfty_f_naturality /-
@[simp, reassoc]
theorem QInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ QInfty.f n = QInfty.f n ≫ f.app (op [n]) :=
Q_f_naturality n n f
#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturality
+-/
#print AlgebraicTopology.DoldKan.PInfty_f_idem /-
@[simp, reassoc]
@@ -186,14 +190,18 @@ theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 := by ext n;
#align algebraic_topology.dold_kan.Q_infty_comp_P_infty AlgebraicTopology.DoldKan.QInfty_comp_PInfty
-/
+#print AlgebraicTopology.DoldKan.PInfty_add_QInfty /-
@[simp]
theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ := by dsimp only [Q_infty];
simp only [add_sub_cancel'_right]
#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
+-/
+#print AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f /-
theorem PInfty_f_add_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) + QInfty.f n = 𝟙 _ :=
HomologicalComplex.congr_hom PInfty_add_QInfty n
#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f
+-/
variable (C)
@@ -218,6 +226,7 @@ def natTransPInfty_f (n : ℕ) :=
variable {C}
+#print AlgebraicTopology.DoldKan.map_PInfty_f /-
@[simp]
theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
(X : SimplicialObject C) (n : ℕ) :
@@ -225,7 +234,9 @@ theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.
G.map ((PInfty : AlternatingFaceMapComplex.obj X ⟶ _).f n) :=
by simp only [P_infty_f, map_P]
#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_f
+-/
+#print AlgebraicTopology.DoldKan.karoubi_PInfty_f /-
/-- Given an object `Y : karoubi (simplicial_object C)`, this lemma
computes `P_infty` for the associated object in `simplicial_object (karoubi C)`
in terms of `P_infty` for `Y.X : simplicial_object C` and `Y.p`. -/
@@ -267,6 +278,7 @@ theorem karoubi_PInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
dsimp [π] at eq
rw [← Eq, reassoc_of (app_idem Y (op [n]))]
#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_f
+-/
end DoldKan
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -255,16 +255,16 @@ theorem karoubi_PInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
let τ₂ := nat_trans_P_infty_f (karoubi C) n
let τ := τ₁ ◫ τ₂
have h₁₄ := idempotents.nat_trans_eq τ Y
- dsimp [τ, τ₁, τ₂, nat_trans_P_infty_f] at h₁₄
- rw [id_comp, id_comp, comp_id, comp_id] at h₁₄
+ dsimp [τ, τ₁, τ₂, nat_trans_P_infty_f] at h₁₄
+ rw [id_comp, id_comp, comp_id, comp_id] at h₁₄
-- We use the three equalities h₃₂, h₄₃, h₁₄.
rw [← h₃₂, ← h₄₃, h₁₄]
simp only [karoubi_functor_category_embedding.map_app_f, karoubi.decomp_id_p_f,
karoubi.decomp_id_i_f, karoubi.comp_f]
let π : Y₄ ⟶ Y₄ := (to_karoubi _ ⋙ karoubi_functor_category_embedding _ _).map Y.p
have eq := karoubi.hom_ext.mp (P_infty_f_naturality n π)
- simp only [karoubi.comp_f] at eq
- dsimp [π] at eq
+ simp only [karoubi.comp_f] at eq
+ dsimp [π] at eq
rw [← Eq, reassoc_of (app_idem Y (op [n]))]
#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_f
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -43,7 +43,7 @@ open CategoryTheory.Idempotents
open Opposite
-open Simplicial DoldKan
+open scoped Simplicial DoldKan
noncomputable section
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -114,18 +114,12 @@ theorem QInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.QInfty_f
-/
-/- warning: algebraic_topology.dold_kan.P_infty_f_naturality -> AlgebraicTopology.DoldKan.PInfty_f_naturality is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturalityₓ'. -/
@[simp, reassoc]
theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ PInfty.f n = PInfty.f n ≫ f.app (op [n]) :=
P_f_naturality n n f
#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturality
-/- warning: algebraic_topology.dold_kan.Q_infty_f_naturality -> AlgebraicTopology.DoldKan.QInfty_f_naturality is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturalityₓ'. -/
@[simp, reassoc]
theorem QInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ QInfty.f n = QInfty.f n ≫ f.app (op [n]) :=
@@ -192,17 +186,11 @@ theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 := by ext n;
#align algebraic_topology.dold_kan.Q_infty_comp_P_infty AlgebraicTopology.DoldKan.QInfty_comp_PInfty
-/
-/- warning: algebraic_topology.dold_kan.P_infty_add_Q_infty -> AlgebraicTopology.DoldKan.PInfty_add_QInfty is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInftyₓ'. -/
@[simp]
theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ := by dsimp only [Q_infty];
simp only [add_sub_cancel'_right]
#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
-/- warning: algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f -> AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_fₓ'. -/
theorem PInfty_f_add_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) + QInfty.f n = 𝟙 _ :=
HomologicalComplex.congr_hom PInfty_add_QInfty n
#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f
@@ -230,9 +218,6 @@ def natTransPInfty_f (n : ℕ) :=
variable {C}
-/- warning: algebraic_topology.dold_kan.map_P_infty_f -> AlgebraicTopology.DoldKan.map_PInfty_f is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_fₓ'. -/
@[simp]
theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
(X : SimplicialObject C) (n : ℕ) :
@@ -241,9 +226,6 @@ theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.
by simp only [P_infty_f, map_P]
#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_f
-/- warning: algebraic_topology.dold_kan.karoubi_P_infty_f -> AlgebraicTopology.DoldKan.karoubi_PInfty_f is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_fₓ'. -/
/-- Given an object `Y : karoubi (simplicial_object C)`, this lemma
computes `P_infty` for the associated object in `simplicial_object (karoubi C)`
in terms of `P_infty` for `Y.X : simplicial_object C` and `Y.p`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -104,10 +104,7 @@ theorem PInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ X _[n]) = (P n).f n :=
#print AlgebraicTopology.DoldKan.QInfty_f_0 /-
@[simp]
-theorem QInfty_f_0 : (QInfty.f 0 : X _[0] ⟶ X _[0]) = 0 :=
- by
- dsimp [Q_infty]
- simp only [sub_self]
+theorem QInfty_f_0 : (QInfty.f 0 : X _[0] ⟶ X _[0]) = 0 := by dsimp [Q_infty]; simp only [sub_self]
#align algebraic_topology.dold_kan.Q_infty_f_0 AlgebraicTopology.DoldKan.QInfty_f_0
-/
@@ -144,10 +141,7 @@ theorem PInfty_f_idem (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ PInfty.f n = P
#print AlgebraicTopology.DoldKan.PInfty_idem /-
@[simp, reassoc]
-theorem PInfty_idem : (PInfty : K[X] ⟶ _) ≫ PInfty = PInfty :=
- by
- ext n
- exact P_infty_f_idem n
+theorem PInfty_idem : (PInfty : K[X] ⟶ _) ≫ PInfty = PInfty := by ext n; exact P_infty_f_idem n
#align algebraic_topology.dold_kan.P_infty_idem AlgebraicTopology.DoldKan.PInfty_idem
-/
@@ -160,10 +154,7 @@ theorem QInfty_f_idem (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ QInfty.f n = Q
#print AlgebraicTopology.DoldKan.QInfty_idem /-
@[simp, reassoc]
-theorem QInfty_idem : (QInfty : K[X] ⟶ _) ≫ QInfty = QInfty :=
- by
- ext n
- exact Q_infty_f_idem n
+theorem QInfty_idem : (QInfty : K[X] ⟶ _) ≫ QInfty = QInfty := by ext n; exact Q_infty_f_idem n
#align algebraic_topology.dold_kan.Q_infty_idem AlgebraicTopology.DoldKan.QInfty_idem
-/
@@ -179,9 +170,7 @@ theorem PInfty_f_comp_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ QInft
#print AlgebraicTopology.DoldKan.PInfty_comp_QInfty /-
@[simp, reassoc]
-theorem PInfty_comp_QInfty : (PInfty : K[X] ⟶ _) ≫ QInfty = 0 :=
- by
- ext n
+theorem PInfty_comp_QInfty : (PInfty : K[X] ⟶ _) ≫ QInfty = 0 := by ext n;
apply P_infty_f_comp_Q_infty_f
#align algebraic_topology.dold_kan.P_infty_comp_Q_infty AlgebraicTopology.DoldKan.PInfty_comp_QInfty
-/
@@ -198,9 +187,7 @@ theorem QInfty_f_comp_PInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ PInft
#print AlgebraicTopology.DoldKan.QInfty_comp_PInfty /-
@[simp, reassoc]
-theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 :=
- by
- ext n
+theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 := by ext n;
apply Q_infty_f_comp_P_infty_f
#align algebraic_topology.dold_kan.Q_infty_comp_P_infty AlgebraicTopology.DoldKan.QInfty_comp_PInfty
-/
@@ -209,9 +196,7 @@ theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 :=
<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInftyₓ'. -/
@[simp]
-theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ :=
- by
- dsimp only [Q_infty]
+theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ := by dsimp only [Q_infty];
simp only [add_sub_cancel'_right]
#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
@@ -231,9 +216,7 @@ the functor `alternating_face_map_complex C`. -/
def natTransPInfty : alternatingFaceMapComplex C ⟶ alternatingFaceMapComplex C
where
app _ := PInfty
- naturality' X Y f := by
- ext n
- exact P_infty_f_naturality n f
+ naturality' X Y f := by ext n; exact P_infty_f_naturality n f
#align algebraic_topology.dold_kan.nat_trans_P_infty AlgebraicTopology.DoldKan.natTransPInfty
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -118,10 +118,7 @@ theorem QInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
-/
/- warning: algebraic_topology.dold_kan.P_infty_f_naturality -> AlgebraicTopology.DoldKan.PInfty_f_naturality is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturalityₓ'. -/
@[simp, reassoc]
theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
@@ -130,10 +127,7 @@ theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturality
/- warning: algebraic_topology.dold_kan.Q_infty_f_naturality -> AlgebraicTopology.DoldKan.QInfty_f_naturality is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturalityₓ'. -/
@[simp, reassoc]
theorem QInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
@@ -212,10 +206,7 @@ theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 :=
-/
/- warning: algebraic_topology.dold_kan.P_infty_add_Q_infty -> AlgebraicTopology.DoldKan.PInfty_add_QInfty is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (instHAdd.{u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.Quiver.Hom.hasAdd.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X)) (CategoryTheory.CategoryStruct.id.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (instHAdd.{u2} (Quiver.Hom.{succ u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.instAddHomHomologicalComplexPreadditiveHasZeroMorphismsToQuiverToCategoryStructInstCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X)) (CategoryTheory.CategoryStruct.id.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInftyₓ'. -/
@[simp]
theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ :=
@@ -225,10 +216,7 @@ theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ :=
#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
/- warning: algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f -> AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (instHAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddZeroClass.toHasAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddMonoid.toAddZeroClass.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (SubNegMonoid.toAddMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)))))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (instHAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddZeroClass.toAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddMonoid.toAddZeroClass.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (SubNegMonoid.toAddMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)))))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_fₓ'. -/
theorem PInfty_f_add_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) + QInfty.f n = 𝟙 _ :=
HomologicalComplex.congr_hom PInfty_add_QInfty n
@@ -260,10 +248,7 @@ def natTransPInfty_f (n : ℕ) :=
variable {C}
/- warning: algebraic_topology.dold_kan.map_P_infty_f -> AlgebraicTopology.DoldKan.map_PInfty_f is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (G : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u4} (Quiver.Hom.{succ u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u4, u3} D (CategoryTheory.Category.toCategoryStruct.{u4, u3} D _inst_3)) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n)) (HomologicalComplex.Hom.f.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.DoldKan.PInfty.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (CategoryTheory.Functor.map.{u2, u4, u1, u3} C _inst_1 D _inst_3 G (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n))
-but is expected to have type
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (G : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n)) (HomologicalComplex.Hom.f.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.DoldKan.PInfty.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (Prefunctor.map.{succ u2, succ u3, u1, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u1, u4} C _inst_1 D _inst_3 G) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_fₓ'. -/
@[simp]
theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
@@ -274,10 +259,7 @@ theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.
#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_f
/- warning: algebraic_topology.dold_kan.karoubi_P_infty_f -> AlgebraicTopology.DoldKan.karoubi_PInfty_f is a dubious translation:
-lean 3 declaration is
- forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {Y : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)} (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n) (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n) (HomologicalComplex.Hom.f.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) (AlgebraicTopology.DoldKan.PInfty.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y)) n))
-but is expected to have type
- forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] {Y : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)} (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n) (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n) (HomologicalComplex.Hom.f.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) (AlgebraicTopology.DoldKan.PInfty.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) n) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (AlgebraicTopology.DoldKan.PInfty.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) n))
+<too large>
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_fₓ'. -/
/-- Given an object `Y : karoubi (simplicial_object C)`, this lemma
computes `P_infty` for the associated object in `simplicial_object (karoubi C)`
mathlib commit https://github.com/leanprover-community/mathlib/commit/75e7fca56381d056096ce5d05e938f63a6567828
@@ -123,7 +123,7 @@ lean 3 declaration is
but is expected to have type
forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturalityₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ PInfty.f n = PInfty.f n ≫ f.app (op [n]) :=
P_f_naturality n n f
@@ -135,21 +135,21 @@ lean 3 declaration is
but is expected to have type
forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturalityₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem QInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ QInfty.f n = QInfty.f n ≫ f.app (op [n]) :=
Q_f_naturality n n f
#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturality
#print AlgebraicTopology.DoldKan.PInfty_f_idem /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem PInfty_f_idem (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ PInfty.f n = PInfty.f n := by
simp only [P_infty_f, P_f_idem]
#align algebraic_topology.dold_kan.P_infty_f_idem AlgebraicTopology.DoldKan.PInfty_f_idem
-/
#print AlgebraicTopology.DoldKan.PInfty_idem /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem PInfty_idem : (PInfty : K[X] ⟶ _) ≫ PInfty = PInfty :=
by
ext n
@@ -158,14 +158,14 @@ theorem PInfty_idem : (PInfty : K[X] ⟶ _) ≫ PInfty = PInfty :=
-/
#print AlgebraicTopology.DoldKan.QInfty_f_idem /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem QInfty_f_idem (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ QInfty.f n = QInfty.f n :=
Q_f_idem _ _
#align algebraic_topology.dold_kan.Q_infty_f_idem AlgebraicTopology.DoldKan.QInfty_f_idem
-/
#print AlgebraicTopology.DoldKan.QInfty_idem /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem QInfty_idem : (QInfty : K[X] ⟶ _) ≫ QInfty = QInfty :=
by
ext n
@@ -174,7 +174,7 @@ theorem QInfty_idem : (QInfty : K[X] ⟶ _) ≫ QInfty = QInfty :=
-/
#print AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem PInfty_f_comp_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ QInfty.f n = 0 :=
by
dsimp only [Q_infty]
@@ -184,7 +184,7 @@ theorem PInfty_f_comp_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ QInft
-/
#print AlgebraicTopology.DoldKan.PInfty_comp_QInfty /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem PInfty_comp_QInfty : (PInfty : K[X] ⟶ _) ≫ QInfty = 0 :=
by
ext n
@@ -193,7 +193,7 @@ theorem PInfty_comp_QInfty : (PInfty : K[X] ⟶ _) ≫ QInfty = 0 :=
-/
#print AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem QInfty_f_comp_PInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ PInfty.f n = 0 :=
by
dsimp only [Q_infty]
@@ -203,7 +203,7 @@ theorem QInfty_f_comp_PInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ PInft
-/
#print AlgebraicTopology.DoldKan.QInfty_comp_PInfty /-
-@[simp, reassoc.1]
+@[simp, reassoc]
theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 :=
by
ext n
mathlib commit https://github.com/leanprover-community/mathlib/commit/52932b3a083d4142e78a15dc928084a22fea9ba0
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
! This file was ported from Lean 3 source module algebraic_topology.dold_kan.p_infty
-! leanprover-community/mathlib commit 31019c2504b17f85af7e0577585fad996935a317
+! leanprover-community/mathlib commit 86d1873c01a723aba6788f0b9051ae3d23b4c1c3
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -16,6 +16,9 @@ import Mathbin.CategoryTheory.Idempotents.FunctorExtension
# Construction of the projection `P_infty` for the Dold-Kan correspondence
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
TODO (@joelriou) continue adding the various files referenced below
In this file, we construct the projection `P_infty : K[X] ⟶ K[X]` by passing
mathlib commit https://github.com/leanprover-community/mathlib/commit/246f6f7989ff86bd07e1b014846f11304f33cf9e
@@ -108,10 +108,10 @@ theorem QInfty_f_0 : (QInfty.f 0 : X _[0] ⟶ X _[0]) = 0 :=
#align algebraic_topology.dold_kan.Q_infty_f_0 AlgebraicTopology.DoldKan.QInfty_f_0
-/
-#print AlgebraicTopology.DoldKan.qInfty_f /-
-theorem qInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
+#print AlgebraicTopology.DoldKan.QInfty_f /-
+theorem QInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
rfl
-#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.qInfty_f
+#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.QInfty_f
-/
/- warning: algebraic_topology.dold_kan.P_infty_f_naturality -> AlgebraicTopology.DoldKan.PInfty_f_naturality is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/730c6d4cab72b9d84fcfb9e95e8796e9cd8f40ba
@@ -50,7 +50,8 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C] {X : SimplicialObject C}
-theorem p_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
+#print AlgebraicTopology.DoldKan.P_is_eventually_constant /-
+theorem P_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
((P (q + 1)).f n : X _[n] ⟶ _) = (P q).f n :=
by
cases n
@@ -59,157 +60,228 @@ theorem p_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
simp only [add_right_eq_self, comp_add, HomologicalComplex.comp_f,
HomologicalComplex.add_f_apply, comp_id]
exact (higher_faces_vanish.of_P q n).comp_Hσ_eq_zero (nat.succ_le_iff.mp hqn)
-#align algebraic_topology.dold_kan.P_is_eventually_constant AlgebraicTopology.DoldKan.p_is_eventually_constant
+#align algebraic_topology.dold_kan.P_is_eventually_constant AlgebraicTopology.DoldKan.P_is_eventually_constant
+-/
-theorem q_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
+#print AlgebraicTopology.DoldKan.Q_is_eventually_constant /-
+theorem Q_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
((Q (q + 1)).f n : X _[n] ⟶ _) = (Q q).f n := by
simp only [Q, HomologicalComplex.sub_f_apply, P_is_eventually_constant hqn]
-#align algebraic_topology.dold_kan.Q_is_eventually_constant AlgebraicTopology.DoldKan.q_is_eventually_constant
+#align algebraic_topology.dold_kan.Q_is_eventually_constant AlgebraicTopology.DoldKan.Q_is_eventually_constant
+-/
+#print AlgebraicTopology.DoldKan.PInfty /-
/-- The endomorphism `P_infty : K[X] ⟶ K[X]` obtained from the `P q` by passing to the limit. -/
-def pInfty : K[X] ⟶ K[X] :=
+def PInfty : K[X] ⟶ K[X] :=
ChainComplex.ofHom _ _ _ _ _ _ (fun n => ((P n).f n : X _[n] ⟶ _)) fun n => by
simpa only [← P_is_eventually_constant (show n ≤ n by rfl),
alternating_face_map_complex.obj_d_eq] using (P (n + 1)).comm (n + 1) n
-#align algebraic_topology.dold_kan.P_infty AlgebraicTopology.DoldKan.pInfty
+#align algebraic_topology.dold_kan.P_infty AlgebraicTopology.DoldKan.PInfty
+-/
+#print AlgebraicTopology.DoldKan.QInfty /-
/-- The endomorphism `Q_infty : K[X] ⟶ K[X]` obtained from the `Q q` by passing to the limit. -/
-def qInfty : K[X] ⟶ K[X] :=
- 𝟙 _ - pInfty
-#align algebraic_topology.dold_kan.Q_infty AlgebraicTopology.DoldKan.qInfty
+def QInfty : K[X] ⟶ K[X] :=
+ 𝟙 _ - PInfty
+#align algebraic_topology.dold_kan.Q_infty AlgebraicTopology.DoldKan.QInfty
+-/
+#print AlgebraicTopology.DoldKan.PInfty_f_0 /-
@[simp]
-theorem pInfty_f_0 : (pInfty.f 0 : X _[0] ⟶ X _[0]) = 𝟙 _ :=
+theorem PInfty_f_0 : (PInfty.f 0 : X _[0] ⟶ X _[0]) = 𝟙 _ :=
rfl
-#align algebraic_topology.dold_kan.P_infty_f_0 AlgebraicTopology.DoldKan.pInfty_f_0
+#align algebraic_topology.dold_kan.P_infty_f_0 AlgebraicTopology.DoldKan.PInfty_f_0
+-/
-theorem pInfty_f (n : ℕ) : (pInfty.f n : X _[n] ⟶ X _[n]) = (P n).f n :=
+#print AlgebraicTopology.DoldKan.PInfty_f /-
+theorem PInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ X _[n]) = (P n).f n :=
rfl
-#align algebraic_topology.dold_kan.P_infty_f AlgebraicTopology.DoldKan.pInfty_f
+#align algebraic_topology.dold_kan.P_infty_f AlgebraicTopology.DoldKan.PInfty_f
+-/
+#print AlgebraicTopology.DoldKan.QInfty_f_0 /-
@[simp]
-theorem qInfty_f_0 : (qInfty.f 0 : X _[0] ⟶ X _[0]) = 0 :=
+theorem QInfty_f_0 : (QInfty.f 0 : X _[0] ⟶ X _[0]) = 0 :=
by
dsimp [Q_infty]
simp only [sub_self]
-#align algebraic_topology.dold_kan.Q_infty_f_0 AlgebraicTopology.DoldKan.qInfty_f_0
+#align algebraic_topology.dold_kan.Q_infty_f_0 AlgebraicTopology.DoldKan.QInfty_f_0
+-/
-theorem qInfty_f (n : ℕ) : (qInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
+#print AlgebraicTopology.DoldKan.qInfty_f /-
+theorem qInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
rfl
#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.qInfty_f
+-/
+/- warning: algebraic_topology.dold_kan.P_infty_f_naturality -> AlgebraicTopology.DoldKan.PInfty_f_naturality is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturalityₓ'. -/
@[simp, reassoc.1]
-theorem pInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
- f.app (op [n]) ≫ pInfty.f n = pInfty.f n ≫ f.app (op [n]) :=
+theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
+ f.app (op [n]) ≫ PInfty.f n = PInfty.f n ≫ f.app (op [n]) :=
P_f_naturality n n f
-#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.pInfty_f_naturality
-
+#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.PInfty_f_naturality
+
+/- warning: algebraic_topology.dold_kan.Q_infty_f_naturality -> AlgebraicTopology.DoldKan.QInfty_f_naturality is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u2 u1} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] (n : Nat) {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} {Y : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (f : Quiver.Hom.{succ u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) X Y), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 Y) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 Y) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (Prefunctor.obj.{1, succ u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X Y f (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturalityₓ'. -/
@[simp, reassoc.1]
-theorem qInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
- f.app (op [n]) ≫ qInfty.f n = qInfty.f n ≫ f.app (op [n]) :=
+theorem QInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
+ f.app (op [n]) ≫ QInfty.f n = QInfty.f n ≫ f.app (op [n]) :=
Q_f_naturality n n f
-#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.qInfty_f_naturality
+#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.QInfty_f_naturality
+#print AlgebraicTopology.DoldKan.PInfty_f_idem /-
@[simp, reassoc.1]
-theorem pInfty_f_idem (n : ℕ) : (pInfty.f n : X _[n] ⟶ _) ≫ pInfty.f n = pInfty.f n := by
+theorem PInfty_f_idem (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ PInfty.f n = PInfty.f n := by
simp only [P_infty_f, P_f_idem]
-#align algebraic_topology.dold_kan.P_infty_f_idem AlgebraicTopology.DoldKan.pInfty_f_idem
+#align algebraic_topology.dold_kan.P_infty_f_idem AlgebraicTopology.DoldKan.PInfty_f_idem
+-/
+#print AlgebraicTopology.DoldKan.PInfty_idem /-
@[simp, reassoc.1]
-theorem pInfty_idem : (pInfty : K[X] ⟶ _) ≫ pInfty = pInfty :=
+theorem PInfty_idem : (PInfty : K[X] ⟶ _) ≫ PInfty = PInfty :=
by
ext n
exact P_infty_f_idem n
-#align algebraic_topology.dold_kan.P_infty_idem AlgebraicTopology.DoldKan.pInfty_idem
+#align algebraic_topology.dold_kan.P_infty_idem AlgebraicTopology.DoldKan.PInfty_idem
+-/
+#print AlgebraicTopology.DoldKan.QInfty_f_idem /-
@[simp, reassoc.1]
-theorem qInfty_f_idem (n : ℕ) : (qInfty.f n : X _[n] ⟶ _) ≫ qInfty.f n = qInfty.f n :=
+theorem QInfty_f_idem (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ QInfty.f n = QInfty.f n :=
Q_f_idem _ _
-#align algebraic_topology.dold_kan.Q_infty_f_idem AlgebraicTopology.DoldKan.qInfty_f_idem
+#align algebraic_topology.dold_kan.Q_infty_f_idem AlgebraicTopology.DoldKan.QInfty_f_idem
+-/
+#print AlgebraicTopology.DoldKan.QInfty_idem /-
@[simp, reassoc.1]
-theorem qInfty_idem : (qInfty : K[X] ⟶ _) ≫ qInfty = qInfty :=
+theorem QInfty_idem : (QInfty : K[X] ⟶ _) ≫ QInfty = QInfty :=
by
ext n
exact Q_infty_f_idem n
-#align algebraic_topology.dold_kan.Q_infty_idem AlgebraicTopology.DoldKan.qInfty_idem
+#align algebraic_topology.dold_kan.Q_infty_idem AlgebraicTopology.DoldKan.QInfty_idem
+-/
+#print AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f /-
@[simp, reassoc.1]
-theorem pInfty_f_comp_qInfty_f (n : ℕ) : (pInfty.f n : X _[n] ⟶ _) ≫ qInfty.f n = 0 :=
+theorem PInfty_f_comp_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) ≫ QInfty.f n = 0 :=
by
dsimp only [Q_infty]
simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, comp_sub, comp_id,
P_infty_f_idem, sub_self]
-#align algebraic_topology.dold_kan.P_infty_f_comp_Q_infty_f AlgebraicTopology.DoldKan.pInfty_f_comp_qInfty_f
+#align algebraic_topology.dold_kan.P_infty_f_comp_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f
+-/
+#print AlgebraicTopology.DoldKan.PInfty_comp_QInfty /-
@[simp, reassoc.1]
-theorem pInfty_comp_qInfty : (pInfty : K[X] ⟶ _) ≫ qInfty = 0 :=
+theorem PInfty_comp_QInfty : (PInfty : K[X] ⟶ _) ≫ QInfty = 0 :=
by
ext n
apply P_infty_f_comp_Q_infty_f
-#align algebraic_topology.dold_kan.P_infty_comp_Q_infty AlgebraicTopology.DoldKan.pInfty_comp_qInfty
+#align algebraic_topology.dold_kan.P_infty_comp_Q_infty AlgebraicTopology.DoldKan.PInfty_comp_QInfty
+-/
+#print AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f /-
@[simp, reassoc.1]
-theorem qInfty_f_comp_pInfty_f (n : ℕ) : (qInfty.f n : X _[n] ⟶ _) ≫ pInfty.f n = 0 :=
+theorem QInfty_f_comp_PInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ _) ≫ PInfty.f n = 0 :=
by
dsimp only [Q_infty]
simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, sub_comp, id_comp,
P_infty_f_idem, sub_self]
-#align algebraic_topology.dold_kan.Q_infty_f_comp_P_infty_f AlgebraicTopology.DoldKan.qInfty_f_comp_pInfty_f
+#align algebraic_topology.dold_kan.Q_infty_f_comp_P_infty_f AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f
+-/
+#print AlgebraicTopology.DoldKan.QInfty_comp_PInfty /-
@[simp, reassoc.1]
-theorem qInfty_comp_pInfty : (qInfty : K[X] ⟶ _) ≫ pInfty = 0 :=
+theorem QInfty_comp_PInfty : (QInfty : K[X] ⟶ _) ≫ PInfty = 0 :=
by
ext n
apply Q_infty_f_comp_P_infty_f
-#align algebraic_topology.dold_kan.Q_infty_comp_P_infty AlgebraicTopology.DoldKan.qInfty_comp_pInfty
+#align algebraic_topology.dold_kan.Q_infty_comp_P_infty AlgebraicTopology.DoldKan.QInfty_comp_PInfty
+-/
+/- warning: algebraic_topology.dold_kan.P_infty_add_Q_infty -> AlgebraicTopology.DoldKan.PInfty_add_QInfty is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (instHAdd.{u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.Quiver.Hom.hasAdd.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X)) (CategoryTheory.CategoryStruct.id.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (HomologicalComplex.CategoryTheory.category.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1}, Eq.{succ u2} (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (Quiver.Hom.{succ u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (instHAdd.{u2} (Quiver.Hom.{succ u2, max u2 u1} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring))))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X)) (HomologicalComplex.instAddHomHomologicalComplexPreadditiveHasZeroMorphismsToQuiverToCategoryStructInstCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X)) (CategoryTheory.CategoryStruct.id.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (ChainComplex.{u2, u1, 0} C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)))) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInftyₓ'. -/
@[simp]
-theorem pInfty_add_qInfty : (pInfty : K[X] ⟶ _) + qInfty = 𝟙 _ :=
+theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ :=
by
dsimp only [Q_infty]
simp only [add_sub_cancel'_right]
-#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.pInfty_add_qInfty
-
-theorem pInfty_f_add_qInfty_f (n : ℕ) : (pInfty.f n : X _[n] ⟶ _) + qInfty.f n = 𝟙 _ :=
- HomologicalComplex.congr_hom pInfty_add_qInfty n
-#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.pInfty_f_add_qInfty_f
+#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
+
+/- warning: algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f -> AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (instHAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddZeroClass.toHasAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddMonoid.toAddZeroClass.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (SubNegMonoid.toAddMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)))))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1} (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (HAdd.hAdd.{u2, u2, u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (instHAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddZeroClass.toAdd.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddMonoid.toAddZeroClass.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (SubNegMonoid.toAddMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddGroup.toSubNegMonoid.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (AddCommGroup.toAddGroup.{u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.Preadditive.homGroup.{u2, u1} C _inst_1 _inst_2 (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n)))))))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.QInfty.{u1, u2} C _inst_1 _inst_2 X) n)) (CategoryTheory.CategoryStruct.id.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_fₓ'. -/
+theorem PInfty_f_add_QInfty_f (n : ℕ) : (PInfty.f n : X _[n] ⟶ _) + QInfty.f n = 𝟙 _ :=
+ HomologicalComplex.congr_hom PInfty_add_QInfty n
+#align algebraic_topology.dold_kan.P_infty_f_add_Q_infty_f AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f
variable (C)
+#print AlgebraicTopology.DoldKan.natTransPInfty /-
/-- `P_infty` induces a natural transformation, i.e. an endomorphism of
the functor `alternating_face_map_complex C`. -/
@[simps]
def natTransPInfty : alternatingFaceMapComplex C ⟶ alternatingFaceMapComplex C
where
- app _ := pInfty
+ app _ := PInfty
naturality' X Y f := by
ext n
exact P_infty_f_naturality n f
#align algebraic_topology.dold_kan.nat_trans_P_infty AlgebraicTopology.DoldKan.natTransPInfty
+-/
+#print AlgebraicTopology.DoldKan.natTransPInfty_f /-
/-- The natural transformation in each degree that is induced by `nat_trans_P_infty`. -/
@[simps]
-def natTransPInftyF (n : ℕ) :=
+def natTransPInfty_f (n : ℕ) :=
natTransPInfty C ◫ 𝟙 (HomologicalComplex.eval _ _ n)
-#align algebraic_topology.dold_kan.nat_trans_P_infty_f AlgebraicTopology.DoldKan.natTransPInftyF
+#align algebraic_topology.dold_kan.nat_trans_P_infty_f AlgebraicTopology.DoldKan.natTransPInfty_f
+-/
variable {C}
+/- warning: algebraic_topology.dold_kan.map_P_infty_f -> AlgebraicTopology.DoldKan.map_PInfty_f is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u3}} [_inst_3 : CategoryTheory.Category.{u4, u3} D] [_inst_4 : CategoryTheory.Preadditive.{u4, u3} D _inst_3] (G : CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u3, u2, u4} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u4} (Quiver.Hom.{succ u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u4, u3} D (CategoryTheory.Category.toCategoryStruct.{u4, u3} D _inst_3)) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (HomologicalComplex.x.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n)) (HomologicalComplex.Hom.f.{u4, u3, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u4, u3} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) (AlgebraicTopology.DoldKan.PInfty.{u3, u4} D _inst_3 _inst_4 (CategoryTheory.Functor.obj.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3) (CategoryTheory.Functor.obj.{max u1 u4, max (max u2 u1) u4, max u2 u4 u1 u3, max u2 u4 (max u2 u1) u4 u3} (CategoryTheory.Functor.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u4, u1, u3} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.Functor.category.{u2, u4, max u2 u1, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u4, u3} D _inst_3) (CategoryTheory.SimplicialObject.category.{u4, u3} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u3, u4} C _inst_1 D _inst_3) G) X)) n) (CategoryTheory.Functor.map.{u2, u4, u1, u3} C _inst_1 D _inst_3 G (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 X (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n))
+but is expected to have type
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {D : Type.{u4}} [_inst_3 : CategoryTheory.Category.{u3, u4} D] [_inst_4 : CategoryTheory.Preadditive.{u3, u4} D _inst_3] (G : CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) [_inst_5 : CategoryTheory.Functor.Additive.{u1, u4, u2, u3} C D _inst_1 _inst_3 _inst_2 _inst_4 G] (X : CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (n : Nat), Eq.{succ u3} (Quiver.Hom.{succ u3, u4} D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (HomologicalComplex.X.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n)) (HomologicalComplex.Hom.f.{u3, u4, 0} Nat D _inst_3 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u3, u4} D _inst_3 _inst_4) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) (AlgebraicTopology.DoldKan.PInfty.{u4, u3} D _inst_3 _inst_4 (Prefunctor.obj.{succ u2, succ u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u1 u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1))) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.Category.toCategoryStruct.{u3, max u4 u3} (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3))) (CategoryTheory.Functor.toPrefunctor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3) (Prefunctor.obj.{max (succ u1) (succ u3), max (max (succ u1) (succ u2)) (succ u3), max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3))) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.CategoryStruct.toQuiver.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Category.toCategoryStruct.{max (max u1 u2) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)))) (CategoryTheory.Functor.toPrefunctor.{max u1 u3, max (max u1 u2) u3, max (max (max u1 u2) u4) u3, max (max (max u1 u2) u4) u3} (CategoryTheory.Functor.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.category.{u2, u3, u1, u4} C _inst_1 D _inst_3) (CategoryTheory.Functor.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.Functor.category.{u2, u3, max u1 u2, max u4 u3} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.{u3, u4} D _inst_3) (CategoryTheory.instCategorySimplicialObject.{u3, u4} D _inst_3)) (CategoryTheory.SimplicialObject.whiskering.{u2, u1, u4, u3} C _inst_1 D _inst_3)) G)) X)) n) (Prefunctor.map.{succ u2, succ u3, u1, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u3, u4} D (CategoryTheory.Category.toCategoryStruct.{u3, u4} D _inst_3)) (CategoryTheory.Functor.toPrefunctor.{u2, u3, u1, u4} C _inst_1 D _inst_3 G) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.X.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) n) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 X) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 X) n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_fₓ'. -/
@[simp]
-theorem map_pInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
+theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
(X : SimplicialObject C) (n : ℕ) :
- (pInfty : K[((whiskering C D).obj G).obj X] ⟶ _).f n =
- G.map ((pInfty : AlternatingFaceMapComplex.obj X ⟶ _).f n) :=
+ (PInfty : K[((whiskering C D).obj G).obj X] ⟶ _).f n =
+ G.map ((PInfty : AlternatingFaceMapComplex.obj X ⟶ _).f n) :=
by simp only [P_infty_f, map_P]
-#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_pInfty_f
-
+#align algebraic_topology.dold_kan.map_P_infty_f AlgebraicTopology.DoldKan.map_PInfty_f
+
+/- warning: algebraic_topology.dold_kan.karoubi_P_infty_f -> AlgebraicTopology.DoldKan.karoubi_PInfty_f is a dubious translation:
+lean 3 declaration is
+ forall {C : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} C] [_inst_2 : CategoryTheory.Preadditive.{u2, u1} C _inst_1] {Y : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1)} (n : Nat), Eq.{succ u2} (Quiver.Hom.{succ u2, u1} C (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n) (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n) (HomologicalComplex.Hom.f.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) (AlgebraicTopology.DoldKan.PInfty.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} C (CategoryTheory.Category.toCategoryStruct.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.Functor.obj.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (CategoryTheory.Idempotents.Karoubi.x.{u1, u2} C _inst_1 (HomologicalComplex.x.{u2, max u1 u2, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u1 u2, u2} (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.preadditive.{u1, u2} C _inst_1 _inst_2) (CategoryTheory.Functor.obj.{u2, u2, max u2 u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{max u2 u1, u2} (CategoryTheory.Functor.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Functor.category.{0, u2, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u1, u2} C _inst_1) (CategoryTheory.Idempotents.Karoubi.CategoryTheory.category.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1) Y)) n)) (CategoryTheory.NatTrans.app.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u2, u1, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u2, u1} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y)) (AlgebraicTopology.DoldKan.PInfty.{u1, u2} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.x.{max u2 u1, u2} (CategoryTheory.SimplicialObject.{u2, u1} C _inst_1) (CategoryTheory.SimplicialObject.category.{u2, u1} C _inst_1) Y)) n))
+but is expected to have type
+ forall {C : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} C] [_inst_2 : CategoryTheory.Preadditive.{u1, u2} C _inst_1] {Y : CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1)} (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n)) (CategoryTheory.Idempotents.Karoubi.X.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n))) (CategoryTheory.Idempotents.Karoubi.Hom.f.{u2, u1} C _inst_1 (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n) (HomologicalComplex.X.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n) (HomologicalComplex.Hom.f.{u1, max u2 u1, 0} Nat (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, max u2 u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2)) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) (AlgebraicTopology.DoldKan.PInfty.{max u2 u1, u1} (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.instPreadditiveKaroubiInstCategoryKaroubi.{u2, u1} C _inst_1 _inst_2) (Prefunctor.obj.{succ u1, succ u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)))) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Category.toCategoryStruct.{u1, max u1 u2} (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)))) (CategoryTheory.Functor.toPrefunctor.{u1, u1, max u1 u2, max u1 u2} (CategoryTheory.Idempotents.Karoubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{max u2 u1, u1} (CategoryTheory.Functor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1) (CategoryTheory.Functor.category.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1)) (CategoryTheory.Functor.{0, u1, 0, max u1 u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Functor.category.{0, u1, 0, max u2 u1} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) (CategoryTheory.Idempotents.Karoubi.{u2, u1} C _inst_1) (CategoryTheory.Idempotents.Karoubi.instCategoryKaroubi.{u2, u1} C _inst_1)) (CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding.{0, u2, 0, u1} (Opposite.{1} SimplexCategory) C (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) _inst_1)) Y)) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (Prefunctor.obj.{1, succ u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.CategoryStruct.toQuiver.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.toCategoryStruct.{0, 0} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory))) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} C (CategoryTheory.Category.toCategoryStruct.{u1, u2} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.X.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) n) (CategoryTheory.NatTrans.app.{0, u1, 0, u2} (Opposite.{1} SimplexCategory) (CategoryTheory.Category.opposite.{0, 0} SimplexCategory SimplexCategory.smallCategory) C _inst_1 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y) (CategoryTheory.Idempotents.Karoubi.p.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y) (Opposite.op.{1} SimplexCategory (SimplexCategory.mk n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat C _inst_1 (CategoryTheory.Preadditive.preadditiveHasZeroMorphisms.{u1, u2} C _inst_1 _inst_2) (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (AlgebraicTopology.AlternatingFaceMapComplex.obj.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) (AlgebraicTopology.DoldKan.PInfty.{u2, u1} C _inst_1 _inst_2 (CategoryTheory.Idempotents.Karoubi.X.{max u2 u1, u1} (CategoryTheory.SimplicialObject.{u1, u2} C _inst_1) (CategoryTheory.instCategorySimplicialObject.{u1, u2} C _inst_1) Y)) n))
+Case conversion may be inaccurate. Consider using '#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_fₓ'. -/
/-- Given an object `Y : karoubi (simplicial_object C)`, this lemma
computes `P_infty` for the associated object in `simplicial_object (karoubi C)`
in terms of `P_infty` for `Y.X : simplicial_object C` and `Y.p`. -/
-theorem karoubi_pInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
- ((pInfty : K[(karoubiFunctorCategoryEmbedding _ _).obj Y] ⟶ _).f n).f =
- Y.p.app (op [n]) ≫ (pInfty : K[Y.pt] ⟶ _).f n :=
+theorem karoubi_PInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
+ ((PInfty : K[(karoubiFunctorCategoryEmbedding _ _).obj Y] ⟶ _).f n).f =
+ Y.p.app (op [n]) ≫ (PInfty : K[Y.pt] ⟶ _).f n :=
by
-- We introduce P_infty endomorphisms P₁, P₂, P₃, P₄ on various objects Y₁, Y₂, Y₃, Y₄.
let Y₁ := (karoubi_functor_category_embedding _ _).obj Y
@@ -244,7 +316,7 @@ theorem karoubi_pInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
simp only [karoubi.comp_f] at eq
dsimp [π] at eq
rw [← Eq, reassoc_of (app_idem Y (op [n]))]
-#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_pInfty_f
+#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_f
end DoldKan
mathlib commit https://github.com/leanprover-community/mathlib/commit/730c6d4cab72b9d84fcfb9e95e8796e9cd8f40ba
@@ -51,7 +51,7 @@ namespace DoldKan
variable {C : Type _} [Category C] [Preadditive C] {X : SimplicialObject C}
theorem p_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
- ((p (q + 1)).f n : X _[n] ⟶ _) = (p q).f n :=
+ ((P (q + 1)).f n : X _[n] ⟶ _) = (P q).f n :=
by
cases n
· simp only [P_f_0_eq]
@@ -62,13 +62,13 @@ theorem p_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
#align algebraic_topology.dold_kan.P_is_eventually_constant AlgebraicTopology.DoldKan.p_is_eventually_constant
theorem q_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
- ((q (q + 1)).f n : X _[n] ⟶ _) = (q q).f n := by
+ ((Q (q + 1)).f n : X _[n] ⟶ _) = (Q q).f n := by
simp only [Q, HomologicalComplex.sub_f_apply, P_is_eventually_constant hqn]
#align algebraic_topology.dold_kan.Q_is_eventually_constant AlgebraicTopology.DoldKan.q_is_eventually_constant
/-- The endomorphism `P_infty : K[X] ⟶ K[X]` obtained from the `P q` by passing to the limit. -/
def pInfty : K[X] ⟶ K[X] :=
- ChainComplex.ofHom _ _ _ _ _ _ (fun n => ((p n).f n : X _[n] ⟶ _)) fun n => by
+ ChainComplex.ofHom _ _ _ _ _ _ (fun n => ((P n).f n : X _[n] ⟶ _)) fun n => by
simpa only [← P_is_eventually_constant (show n ≤ n by rfl),
alternating_face_map_complex.obj_d_eq] using (P (n + 1)).comm (n + 1) n
#align algebraic_topology.dold_kan.P_infty AlgebraicTopology.DoldKan.pInfty
@@ -83,7 +83,7 @@ theorem pInfty_f_0 : (pInfty.f 0 : X _[0] ⟶ X _[0]) = 𝟙 _ :=
rfl
#align algebraic_topology.dold_kan.P_infty_f_0 AlgebraicTopology.DoldKan.pInfty_f_0
-theorem pInfty_f (n : ℕ) : (pInfty.f n : X _[n] ⟶ X _[n]) = (p n).f n :=
+theorem pInfty_f (n : ℕ) : (pInfty.f n : X _[n] ⟶ X _[n]) = (P n).f n :=
rfl
#align algebraic_topology.dold_kan.P_infty_f AlgebraicTopology.DoldKan.pInfty_f
@@ -94,20 +94,20 @@ theorem qInfty_f_0 : (qInfty.f 0 : X _[0] ⟶ X _[0]) = 0 :=
simp only [sub_self]
#align algebraic_topology.dold_kan.Q_infty_f_0 AlgebraicTopology.DoldKan.qInfty_f_0
-theorem qInfty_f (n : ℕ) : (qInfty.f n : X _[n] ⟶ X _[n]) = (q n).f n :=
+theorem qInfty_f (n : ℕ) : (qInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
rfl
#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.qInfty_f
@[simp, reassoc.1]
theorem pInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ pInfty.f n = pInfty.f n ≫ f.app (op [n]) :=
- p_f_naturality n n f
+ P_f_naturality n n f
#align algebraic_topology.dold_kan.P_infty_f_naturality AlgebraicTopology.DoldKan.pInfty_f_naturality
@[simp, reassoc.1]
theorem qInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
f.app (op [n]) ≫ qInfty.f n = qInfty.f n ≫ f.app (op [n]) :=
- q_f_naturality n n f
+ Q_f_naturality n n f
#align algebraic_topology.dold_kan.Q_infty_f_naturality AlgebraicTopology.DoldKan.qInfty_f_naturality
@[simp, reassoc.1]
@@ -124,7 +124,7 @@ theorem pInfty_idem : (pInfty : K[X] ⟶ _) ≫ pInfty = pInfty :=
@[simp, reassoc.1]
theorem qInfty_f_idem (n : ℕ) : (qInfty.f n : X _[n] ⟶ _) ≫ qInfty.f n = qInfty.f n :=
- q_f_idem _ _
+ Q_f_idem _ _
#align algebraic_topology.dold_kan.Q_infty_f_idem AlgebraicTopology.DoldKan.qInfty_f_idem
@[simp, reassoc.1]
mathlib commit https://github.com/leanprover-community/mathlib/commit/730c6d4cab72b9d84fcfb9e95e8796e9cd8f40ba
@@ -58,7 +58,7 @@ theorem p_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
· unfold P
simp only [add_right_eq_self, comp_add, HomologicalComplex.comp_f,
HomologicalComplex.add_f_apply, comp_id]
- exact (higher_faces_vanish.of_P q n).comp_hσ_eq_zero (nat.succ_le_iff.mp hqn)
+ exact (higher_faces_vanish.of_P q n).comp_Hσ_eq_zero (nat.succ_le_iff.mp hqn)
#align algebraic_topology.dold_kan.P_is_eventually_constant AlgebraicTopology.DoldKan.p_is_eventually_constant
theorem q_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -209,7 +209,7 @@ computes `P_infty` for the associated object in `simplicial_object (karoubi C)`
in terms of `P_infty` for `Y.X : simplicial_object C` and `Y.p`. -/
theorem karoubi_pInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
((pInfty : K[(karoubiFunctorCategoryEmbedding _ _).obj Y] ⟶ _).f n).f =
- Y.p.app (op [n]) ≫ (pInfty : K[Y.x] ⟶ _).f n :=
+ Y.p.app (op [n]) ≫ (pInfty : K[Y.pt] ⟶ _).f n :=
by
-- We introduce P_infty endomorphisms P₁, P₂, P₃, P₄ on various objects Y₁, Y₂, Y₃, Y₄.
let Y₁ := (karoubi_functor_category_embedding _ _).obj Y
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -159,7 +159,7 @@ set_option linter.uppercaseLean3 false in
@[simp]
theorem PInfty_add_QInfty : (PInfty : K[X] ⟶ _) + QInfty = 𝟙 _ := by
dsimp only [QInfty]
- simp only [add_sub_cancel'_right]
+ simp only [add_sub_cancel]
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.P_infty_add_Q_infty AlgebraicTopology.DoldKan.PInfty_add_QInfty
@@ -220,7 +220,7 @@ theorem karoubi_PInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
have h₃₂ : (P₃.f n).f = P₂.f n := Karoubi.hom_ext_iff.mp (map_PInfty_f (toKaroubi C) Y₂ n)
have h₄₃ : P₄.f n = P₃.f n := by
have h := Functor.congr_obj (toKaroubi_comp_karoubiFunctorCategoryEmbedding _ _) Y₂
- simp only [← natTransPInfty_f_app]
+ simp only [P₃, P₄, ← natTransPInfty_f_app]
congr 1
have h₁₄ := Idempotents.natTrans_eq
((𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C)) ◫
@@ -234,7 +234,7 @@ theorem karoubi_PInfty_f {Y : Karoubi (SimplicialObject C)} (n : ℕ) :
let π : Y₄ ⟶ Y₄ := (toKaroubi _ ⋙ karoubiFunctorCategoryEmbedding _ _).map Y.p
have eq := Karoubi.hom_ext_iff.mp (PInfty_f_naturality n π)
simp only [Karoubi.comp_f] at eq
- dsimp at eq
+ dsimp [π] at eq
rw [← eq, app_idem_assoc Y (op [n])]
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.karoubi_P_infty_f AlgebraicTopology.DoldKan.karoubi_PInfty_f
@@ -7,7 +7,7 @@ import Mathlib.AlgebraicTopology.DoldKan.Projections
import Mathlib.CategoryTheory.Idempotents.FunctorCategories
import Mathlib.CategoryTheory.Idempotents.FunctorExtension
-#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"31019c2504b17f85af7e0577585fad996935a317"
+#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"32a7e535287f9c73f2e4d2aef306a39190f0b504"
/-!
In this PR (which is a forward port of https://github.com/leanprover-community/mathlib/pull/17926), the Dold-Kan equivalence between simplicial objects and chain complexes in abelian categories is constructed.
Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>
@@ -18,7 +18,8 @@ to the limit the projections `P q` defined in `Projections.lean`. This
projection is a critical tool in this formalisation of the Dold-Kan correspondence,
because in the case of abelian categories, `PInfty` corresponds to the
projection on the normalized Moore subcomplex, with kernel the degenerate subcomplex.
-(See `Equivalence.lean` for the general strategy of proof.)
+
+(See `Equivalence.lean` for the general strategy of proof of the Dold-Kan equivalence.)
-/
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -30,7 +30,7 @@ namespace AlgebraicTopology
namespace DoldKan
-variable {C : Type _} [Category C] [Preadditive C] {X : SimplicialObject C}
+variable {C : Type*} [Category C] [Preadditive C] {X : SimplicialObject C}
theorem P_is_eventually_constant {q n : ℕ} (hqn : n ≤ q) :
((P (q + 1)).f n : X _[n] ⟶ _) = (P q).f n := by
@@ -190,7 +190,7 @@ set_option linter.uppercaseLean3 false in
variable {C}
@[simp]
-theorem map_PInfty_f {D : Type _} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
+theorem map_PInfty_f {D : Type*} [Category D] [Preadditive D] (G : C ⥤ D) [G.Additive]
(X : SimplicialObject C) (n : ℕ) :
(PInfty : K[((whiskering C D).obj G).obj X] ⟶ _).f n =
G.map ((PInfty : AlternatingFaceMapComplex.obj X ⟶ _).f n) :=
@@ -2,16 +2,13 @@
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-
-! This file was ported from Lean 3 source module algebraic_topology.dold_kan.p_infty
-! leanprover-community/mathlib commit 31019c2504b17f85af7e0577585fad996935a317
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.AlgebraicTopology.DoldKan.Projections
import Mathlib.CategoryTheory.Idempotents.FunctorCategories
import Mathlib.CategoryTheory.Idempotents.FunctorExtension
+#align_import algebraic_topology.dold_kan.p_infty from "leanprover-community/mathlib"@"31019c2504b17f85af7e0577585fad996935a317"
+
/-!
# Construction of the projection `PInfty` for the Dold-Kan correspondence
@@ -83,10 +83,10 @@ theorem QInfty_f_0 : (QInfty.f 0 : X _[0] ⟶ X _[0]) = 0 := by
set_option linter.uppercaseLean3 false in
#align algebraic_topology.dold_kan.Q_infty_f_0 AlgebraicTopology.DoldKan.QInfty_f_0
-theorem qInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
+theorem QInfty_f (n : ℕ) : (QInfty.f n : X _[n] ⟶ X _[n]) = (Q n).f n :=
rfl
set_option linter.uppercaseLean3 false in
-#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.qInfty_f
+#align algebraic_topology.dold_kan.Q_infty_f AlgebraicTopology.DoldKan.QInfty_f
@[reassoc (attr := simp)]
theorem PInfty_f_naturality (n : ℕ) {X Y : SimplicialObject C} (f : X ⟶ Y) :
The unported dependencies are