analysis.asymptotics.thetaMathlib.Analysis.Asymptotics.Theta

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -293,7 +293,7 @@ theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   by
   cases n
-  · simpa only [zpow_coe_nat] using h.pow _
+  · simpa only [zpow_natCast] using h.pow _
   · simpa only [zpow_negSucc] using (h.pow _).inv
 #align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpow
 -/
Diff
@@ -293,7 +293,7 @@ theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   by
   cases n
-  · simpa only [zpow_ofNat] using h.pow _
+  · simpa only [zpow_coe_nat] using h.pow _
   · simpa only [zpow_negSucc] using (h.pow _).inv
 #align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpow
 -/
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
 -/
-import Mathbin.Analysis.Asymptotics.Asymptotics
+import Analysis.Asymptotics.Asymptotics
 
 #align_import analysis.asymptotics.theta from "leanprover-community/mathlib"@"4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b"
 
Diff
@@ -154,11 +154,11 @@ theorem isTheta_norm_right : (f =Θ[l] fun x => ‖g' x‖) ↔ f =Θ[l] g' := b
 #align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_right
 -/
 
-alias is_Theta_norm_left ↔ is_Theta.of_norm_left is_Theta.norm_left
+alias ⟨is_Theta.of_norm_left, is_Theta.norm_left⟩ := is_Theta_norm_left
 #align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_left
 #align asymptotics.is_Theta.norm_left Asymptotics.IsTheta.norm_left
 
-alias is_Theta_norm_right ↔ is_Theta.of_norm_right is_Theta.norm_right
+alias ⟨is_Theta.of_norm_right, is_Theta.norm_right⟩ := is_Theta_norm_right
 #align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_right
 #align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_right
 
@@ -334,7 +334,7 @@ theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
 -/
 
-alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_smul_left
+alias ⟨is_Theta.of_const_smul_left, is_Theta.const_smul_left⟩ := is_Theta_const_smul_left
 #align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_left
 #align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_left
 
@@ -345,7 +345,7 @@ theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
 -/
 
-alias is_Theta_const_smul_right ↔ is_Theta.of_const_smul_right is_Theta.const_smul_right
+alias ⟨is_Theta.of_const_smul_right, is_Theta.const_smul_right⟩ := is_Theta_const_smul_right
 #align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_right
 #align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_right
 
@@ -356,7 +356,7 @@ theorem isTheta_const_mul_left {c : 𝕜} {f : α → 𝕜} (hc : c ≠ 0) :
 #align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_left
 -/
 
-alias is_Theta_const_mul_left ↔ is_Theta.of_const_mul_left is_Theta.const_mul_left
+alias ⟨is_Theta.of_const_mul_left, is_Theta.const_mul_left⟩ := is_Theta_const_mul_left
 #align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_left
 #align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_left
 
@@ -367,7 +367,7 @@ theorem isTheta_const_mul_right {c : 𝕜} {g : α → 𝕜} (hc : c ≠ 0) :
 #align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_right
 -/
 
-alias is_Theta_const_mul_right ↔ is_Theta.of_const_mul_right is_Theta.const_mul_right
+alias ⟨is_Theta.of_const_mul_right, is_Theta.const_mul_right⟩ := is_Theta_const_mul_right
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
 #align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_right
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
-
-! This file was ported from Lean 3 source module analysis.asymptotics.theta
-! leanprover-community/mathlib commit 4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.Asymptotics.Asymptotics
 
+#align_import analysis.asymptotics.theta from "leanprover-community/mathlib"@"4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b"
+
 /-!
 # Asymptotic equivalence up to a constant
 
Diff
@@ -55,80 +55,107 @@ def IsTheta (l : Filter α) (f : α → E) (g : α → F) : Prop :=
 #align asymptotics.is_Theta Asymptotics.IsTheta
 -/
 
--- mathport name: «expr =Θ[ ] »
 notation:100 f " =Θ[" l "] " g:100 => IsTheta l f g
 
+#print Asymptotics.IsBigO.antisymm /-
 theorem IsBigO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
   ⟨h₁, h₂⟩
 #align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymm
+-/
 
+#print Asymptotics.isTheta_refl /-
 @[refl]
 theorem isTheta_refl (f : α → E) (l : Filter α) : f =Θ[l] f :=
   ⟨isBigO_refl _ _, isBigO_refl _ _⟩
 #align asymptotics.is_Theta_refl Asymptotics.isTheta_refl
+-/
 
+#print Asymptotics.isTheta_rfl /-
 theorem isTheta_rfl : f =Θ[l] f :=
   isTheta_refl _ _
 #align asymptotics.is_Theta_rfl Asymptotics.isTheta_rfl
+-/
 
+#print Asymptotics.IsTheta.symm /-
 @[symm]
 theorem IsTheta.symm (h : f =Θ[l] g) : g =Θ[l] f :=
   h.symm
 #align asymptotics.is_Theta.symm Asymptotics.IsTheta.symm
+-/
 
+#print Asymptotics.isTheta_comm /-
 theorem isTheta_comm : f =Θ[l] g ↔ g =Θ[l] f :=
   ⟨fun h => h.symm, fun h => h.symm⟩
 #align asymptotics.is_Theta_comm Asymptotics.isTheta_comm
+-/
 
+#print Asymptotics.IsTheta.trans /-
 @[trans]
 theorem IsTheta.trans {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g) (h₂ : g =Θ[l] k) :
     f =Θ[l] k :=
   ⟨h₁.1.trans h₂.1, h₂.2.trans h₁.2⟩
 #align asymptotics.is_Theta.trans Asymptotics.IsTheta.trans
+-/
 
+#print Asymptotics.IsBigO.trans_isTheta /-
 @[trans]
 theorem IsBigO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =O[l] g)
     (h₂ : g =Θ[l] k) : f =O[l] k :=
   h₁.trans h₂.1
 #align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isTheta
+-/
 
+#print Asymptotics.IsTheta.trans_isBigO /-
 @[trans]
 theorem IsTheta.trans_isBigO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =O[l] k) : f =O[l] k :=
   h₁.1.trans h₂
 #align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigO
+-/
 
+#print Asymptotics.IsLittleO.trans_isTheta /-
 @[trans]
 theorem IsLittleO.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h₁ : f =o[l] g)
     (h₂ : g =Θ[l] k) : f =o[l] k :=
   h₁.trans_isBigO h₂.1
 #align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isTheta
+-/
 
+#print Asymptotics.IsTheta.trans_isLittleO /-
 @[trans]
 theorem IsTheta.trans_isLittleO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =o[l] k) : f =o[l] k :=
   h₁.1.trans_isLittleO h₂
 #align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleO
+-/
 
+#print Asymptotics.IsTheta.trans_eventuallyEq /-
 @[trans]
 theorem IsTheta.trans_eventuallyEq {f : α → E} {g₁ g₂ : α → F} (h : f =Θ[l] g₁) (hg : g₁ =ᶠ[l] g₂) :
     f =Θ[l] g₂ :=
   ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isBigO h.2⟩
 #align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEq
+-/
 
+#print Filter.EventuallyEq.trans_isTheta /-
 @[trans]
 theorem Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α → F} (hf : f₁ =ᶠ[l] f₂)
     (h : f₂ =Θ[l] g) : f₁ =Θ[l] g :=
   ⟨hf.trans_isBigO h.1, h.2.trans_eventuallyEq hf.symm⟩
 #align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isTheta
+-/
 
+#print Asymptotics.isTheta_norm_left /-
 @[simp]
 theorem isTheta_norm_left : (fun x => ‖f' x‖) =Θ[l] g ↔ f' =Θ[l] g := by simp [is_Theta]
 #align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_left
+-/
 
+#print Asymptotics.isTheta_norm_right /-
 @[simp]
 theorem isTheta_norm_right : (f =Θ[l] fun x => ‖g' x‖) ↔ f =Θ[l] g' := by simp [is_Theta]
 #align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_right
+-/
 
 alias is_Theta_norm_left ↔ is_Theta.of_norm_left is_Theta.norm_left
 #align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_left
@@ -138,94 +165,133 @@ alias is_Theta_norm_right ↔ is_Theta.of_norm_right is_Theta.norm_right
 #align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_right
 #align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_right
 
+#print Asymptotics.isTheta_of_norm_eventuallyEq /-
 theorem isTheta_of_norm_eventuallyEq (h : (fun x => ‖f x‖) =ᶠ[l] fun x => ‖g x‖) : f =Θ[l] g :=
   ⟨IsBigO.of_bound 1 <| by simpa only [one_mul] using h.le,
     IsBigO.of_bound 1 <| by simpa only [one_mul] using h.symm.le⟩
 #align asymptotics.is_Theta_of_norm_eventually_eq Asymptotics.isTheta_of_norm_eventuallyEq
+-/
 
+#print Asymptotics.isTheta_of_norm_eventuallyEq' /-
 theorem isTheta_of_norm_eventuallyEq' {g : α → ℝ} (h : (fun x => ‖f' x‖) =ᶠ[l] g) : f' =Θ[l] g :=
   isTheta_of_norm_eventuallyEq <| h.mono fun x hx => by simp only [← hx, norm_norm]
 #align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventuallyEq'
+-/
 
+#print Asymptotics.IsTheta.isLittleO_congr_left /-
 theorem IsTheta.isLittleO_congr_left (h : f' =Θ[l] g') : f' =o[l] k ↔ g' =o[l] k :=
   ⟨h.symm.trans_isLittleO, h.trans_isLittleO⟩
 #align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isLittleO_congr_left
+-/
 
+#print Asymptotics.IsTheta.isLittleO_congr_right /-
 theorem IsTheta.isLittleO_congr_right (h : g' =Θ[l] k') : f =o[l] g' ↔ f =o[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isLittleO_congr_right
+-/
 
+#print Asymptotics.IsTheta.isBigO_congr_left /-
 theorem IsTheta.isBigO_congr_left (h : f' =Θ[l] g') : f' =O[l] k ↔ g' =O[l] k :=
   ⟨h.symm.trans_isBigO, h.trans_isBigO⟩
 #align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isBigO_congr_left
+-/
 
+#print Asymptotics.IsTheta.isBigO_congr_right /-
 theorem IsTheta.isBigO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_right
+-/
 
+#print Asymptotics.IsTheta.mono /-
 theorem IsTheta.mono (h : f =Θ[l] g) (hl : l' ≤ l) : f =Θ[l'] g :=
   ⟨h.1.mono hl, h.2.mono hl⟩
 #align asymptotics.is_Theta.mono Asymptotics.IsTheta.mono
+-/
 
+#print Asymptotics.IsTheta.sup /-
 theorem IsTheta.sup (h : f' =Θ[l] g') (h' : f' =Θ[l'] g') : f' =Θ[l ⊔ l'] g' :=
   ⟨h.1.sup h'.1, h.2.sup h'.2⟩
 #align asymptotics.is_Theta.sup Asymptotics.IsTheta.sup
+-/
 
+#print Asymptotics.isTheta_sup /-
 @[simp]
 theorem isTheta_sup : f' =Θ[l ⊔ l'] g' ↔ f' =Θ[l] g' ∧ f' =Θ[l'] g' :=
   ⟨fun h => ⟨h.mono le_sup_left, h.mono le_sup_right⟩, fun h => h.1.sup h.2⟩
 #align asymptotics.is_Theta_sup Asymptotics.isTheta_sup
+-/
 
+#print Asymptotics.IsTheta.eq_zero_iff /-
 theorem IsTheta.eq_zero_iff (h : f'' =Θ[l] g'') : ∀ᶠ x in l, f'' x = 0 ↔ g'' x = 0 :=
   h.1.eq_zero_imp.mp <| h.2.eq_zero_imp.mono fun x => Iff.intro
 #align asymptotics.is_Theta.eq_zero_iff Asymptotics.IsTheta.eq_zero_iff
+-/
 
+#print Asymptotics.IsTheta.tendsto_zero_iff /-
 theorem IsTheta.tendsto_zero_iff (h : f'' =Θ[l] g'') : Tendsto f'' l (𝓝 0) ↔ Tendsto g'' l (𝓝 0) :=
   by simp only [← is_o_one_iff ℝ, h.is_o_congr_left]
 #align asymptotics.is_Theta.tendsto_zero_iff Asymptotics.IsTheta.tendsto_zero_iff
+-/
 
+#print Asymptotics.IsTheta.tendsto_norm_atTop_iff /-
 theorem IsTheta.tendsto_norm_atTop_iff (h : f' =Θ[l] g') :
     Tendsto (norm ∘ f') l atTop ↔ Tendsto (norm ∘ g') l atTop := by
   simp only [← is_o_const_left_of_ne (one_ne_zero' ℝ), h.is_o_congr_right]
 #align asymptotics.is_Theta.tendsto_norm_at_top_iff Asymptotics.IsTheta.tendsto_norm_atTop_iff
+-/
 
+#print Asymptotics.IsTheta.isBoundedUnder_le_iff /-
 theorem IsTheta.isBoundedUnder_le_iff (h : f' =Θ[l] g') :
     IsBoundedUnder (· ≤ ·) l (norm ∘ f') ↔ IsBoundedUnder (· ≤ ·) l (norm ∘ g') := by
   simp only [← is_O_const_of_ne (one_ne_zero' ℝ), h.is_O_congr_left]
 #align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iff
+-/
 
+#print Asymptotics.IsTheta.smul /-
 theorem IsTheta.smul [NormedSpace 𝕜 E'] [NormedSpace 𝕜' F'] {f₁ : α → 𝕜} {f₂ : α → 𝕜'} {g₁ : α → E'}
     {g₂ : α → F'} (hf : f₁ =Θ[l] f₂) (hg : g₁ =Θ[l] g₂) :
     (fun x => f₁ x • g₁ x) =Θ[l] fun x => f₂ x • g₂ x :=
   ⟨hf.1.smul hg.1, hf.2.smul hg.2⟩
 #align asymptotics.is_Theta.smul Asymptotics.IsTheta.smul
+-/
 
+#print Asymptotics.IsTheta.mul /-
 theorem IsTheta.mul {f₁ f₂ : α → 𝕜} {g₁ g₂ : α → 𝕜'} (h₁ : f₁ =Θ[l] g₁) (h₂ : f₂ =Θ[l] g₂) :
     (fun x => f₁ x * f₂ x) =Θ[l] fun x => g₁ x * g₂ x :=
   h₁.smul h₂
 #align asymptotics.is_Theta.mul Asymptotics.IsTheta.mul
+-/
 
+#print Asymptotics.IsTheta.inv /-
 theorem IsTheta.inv {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) :
     (fun x => (f x)⁻¹) =Θ[l] fun x => (g x)⁻¹ :=
   ⟨h.2.inv_rev h.1.eq_zero_imp, h.1.inv_rev h.2.eq_zero_imp⟩
 #align asymptotics.is_Theta.inv Asymptotics.IsTheta.inv
+-/
 
+#print Asymptotics.isTheta_inv /-
 @[simp]
 theorem isTheta_inv {f : α → 𝕜} {g : α → 𝕜'} :
     ((fun x => (f x)⁻¹) =Θ[l] fun x => (g x)⁻¹) ↔ f =Θ[l] g :=
   ⟨fun h => by simpa only [inv_inv] using h.inv, IsTheta.inv⟩
 #align asymptotics.is_Theta_inv Asymptotics.isTheta_inv
+-/
 
+#print Asymptotics.IsTheta.div /-
 theorem IsTheta.div {f₁ f₂ : α → 𝕜} {g₁ g₂ : α → 𝕜'} (h₁ : f₁ =Θ[l] g₁) (h₂ : f₂ =Θ[l] g₂) :
     (fun x => f₁ x / f₂ x) =Θ[l] fun x => g₁ x / g₂ x := by
   simpa only [div_eq_mul_inv] using h₁.mul h₂.inv
 #align asymptotics.is_Theta.div Asymptotics.IsTheta.div
+-/
 
+#print Asymptotics.IsTheta.pow /-
 theorem IsTheta.pow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℕ) :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   ⟨h.1.pow n, h.2.pow n⟩
 #align asymptotics.is_Theta.pow Asymptotics.IsTheta.pow
+-/
 
+#print Asymptotics.IsTheta.zpow /-
 theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℤ) :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   by
@@ -233,59 +299,76 @@ theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n :
   · simpa only [zpow_ofNat] using h.pow _
   · simpa only [zpow_negSucc] using (h.pow _).inv
 #align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpow
+-/
 
+#print Asymptotics.isTheta_const_const /-
 theorem isTheta_const_const {c₁ : E''} {c₂ : F''} (h₁ : c₁ ≠ 0) (h₂ : c₂ ≠ 0) :
     (fun x : α => c₁) =Θ[l] fun x => c₂ :=
   ⟨isBigO_const_const _ h₂ _, isBigO_const_const _ h₁ _⟩
 #align asymptotics.is_Theta_const_const Asymptotics.isTheta_const_const
+-/
 
+#print Asymptotics.isTheta_const_const_iff /-
 @[simp]
 theorem isTheta_const_const_iff [NeBot l] {c₁ : E''} {c₂ : F''} :
     ((fun x : α => c₁) =Θ[l] fun x => c₂) ↔ (c₁ = 0 ↔ c₂ = 0) := by
   simpa only [is_Theta, is_O_const_const_iff, ← iff_def] using Iff.comm
 #align asymptotics.is_Theta_const_const_iff Asymptotics.isTheta_const_const_iff
+-/
 
+#print Asymptotics.isTheta_zero_left /-
 @[simp]
 theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 := by
   simp only [is_Theta, is_O_zero, is_O_zero_right_iff, true_and_iff]
 #align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_left
+-/
 
+#print Asymptotics.isTheta_zero_right /-
 @[simp]
 theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
   isTheta_comm.trans isTheta_zero_left
 #align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_right
+-/
 
+#print Asymptotics.isTheta_const_smul_left /-
 theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0) :
     (fun x => c • f' x) =Θ[l] g ↔ f' =Θ[l] g :=
   and_congr (isBigO_const_smul_left hc) (isBigO_const_smul_right hc)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
+-/
 
 alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_smul_left
 #align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_left
 #align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_left
 
+#print Asymptotics.isTheta_const_smul_right /-
 theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c • g' x) ↔ f =Θ[l] g' :=
   and_congr (isBigO_const_smul_right hc) (isBigO_const_smul_left hc)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
+-/
 
 alias is_Theta_const_smul_right ↔ is_Theta.of_const_smul_right is_Theta.const_smul_right
 #align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_right
 #align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_right
 
+#print Asymptotics.isTheta_const_mul_left /-
 theorem isTheta_const_mul_left {c : 𝕜} {f : α → 𝕜} (hc : c ≠ 0) :
     (fun x => c * f x) =Θ[l] g ↔ f =Θ[l] g := by
   simpa only [← smul_eq_mul] using is_Theta_const_smul_left hc
 #align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_left
+-/
 
 alias is_Theta_const_mul_left ↔ is_Theta.of_const_mul_left is_Theta.const_mul_left
 #align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_left
 #align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_left
 
+#print Asymptotics.isTheta_const_mul_right /-
 theorem isTheta_const_mul_right {c : 𝕜} {g : α → 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c * g x) ↔ f =Θ[l] g := by
   simpa only [← smul_eq_mul] using is_Theta_const_smul_right hc
 #align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_right
+-/
 
 alias is_Theta_const_mul_right ↔ is_Theta.of_const_mul_right is_Theta.const_mul_right
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
Diff
@@ -23,7 +23,7 @@ In this file we define `asymptotics.is_Theta l f g` (notation: `f =Θ[l] g`) as
 
 open Filter
 
-open Topology
+open scoped Topology
 
 namespace Asymptotics
 
Diff
@@ -58,399 +58,174 @@ def IsTheta (l : Filter α) (f : α → E) (g : α → F) : Prop :=
 -- mathport name: «expr =Θ[ ] »
 notation:100 f " =Θ[" l "] " g:100 => IsTheta l f g
 
-/- warning: asymptotics.is_O.antisymm -> Asymptotics.IsBigO.antisymm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, (Asymptotics.IsBigO.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsBigO.{u1, u3, u2} α F E _inst_2 _inst_1 l g f) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, (Asymptotics.IsBigO.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsBigO.{u3, u1, u2} α F E _inst_2 _inst_1 l g f) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymmₓ'. -/
 theorem IsBigO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
   ⟨h₁, h₂⟩
 #align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymm
 
-/- warning: asymptotics.is_Theta_refl -> Asymptotics.isTheta_refl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} [_inst_1 : Norm.{u2} E] (f : α -> E) (l : Filter.{u1} α), Asymptotics.IsTheta.{u1, u2, u2} α E E _inst_1 _inst_1 l f f
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} [_inst_1 : Norm.{u1} E] (f : α -> E) (l : Filter.{u2} α), Asymptotics.IsTheta.{u2, u1, u1} α E E _inst_1 _inst_1 l f f
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_refl Asymptotics.isTheta_reflₓ'. -/
 @[refl]
 theorem isTheta_refl (f : α → E) (l : Filter α) : f =Θ[l] f :=
   ⟨isBigO_refl _ _, isBigO_refl _ _⟩
 #align asymptotics.is_Theta_refl Asymptotics.isTheta_refl
 
-/- warning: asymptotics.is_Theta_rfl -> Asymptotics.isTheta_rfl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} [_inst_1 : Norm.{u2} E] {f : α -> E} {l : Filter.{u1} α}, Asymptotics.IsTheta.{u1, u2, u2} α E E _inst_1 _inst_1 l f f
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} [_inst_1 : Norm.{u1} E] {f : α -> E} {l : Filter.{u2} α}, Asymptotics.IsTheta.{u2, u1, u1} α E E _inst_1 _inst_1 l f f
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_rfl Asymptotics.isTheta_rflₓ'. -/
 theorem isTheta_rfl : f =Θ[l] f :=
   isTheta_refl _ _
 #align asymptotics.is_Theta_rfl Asymptotics.isTheta_rfl
 
-/- warning: asymptotics.is_Theta.symm -> Asymptotics.IsTheta.symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u1, u3, u2} α F E _inst_2 _inst_1 l g f)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u3, u1, u2} α F E _inst_2 _inst_1 l g f)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.symm Asymptotics.IsTheta.symmₓ'. -/
 @[symm]
 theorem IsTheta.symm (h : f =Θ[l] g) : g =Θ[l] f :=
   h.symm
 #align asymptotics.is_Theta.symm Asymptotics.IsTheta.symm
 
-/- warning: asymptotics.is_Theta_comm -> Asymptotics.isTheta_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) (Asymptotics.IsTheta.{u1, u3, u2} α F E _inst_2 _inst_1 l g f)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) (Asymptotics.IsTheta.{u3, u1, u2} α F E _inst_2 _inst_1 l g f)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_comm Asymptotics.isTheta_commₓ'. -/
 theorem isTheta_comm : f =Θ[l] g ↔ g =Θ[l] f :=
   ⟨fun h => h.symm, fun h => h.symm⟩
 #align asymptotics.is_Theta_comm Asymptotics.isTheta_comm
 
-/- warning: asymptotics.is_Theta.trans -> Asymptotics.IsTheta.trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsTheta.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsTheta.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans Asymptotics.IsTheta.transₓ'. -/
 @[trans]
 theorem IsTheta.trans {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g) (h₂ : g =Θ[l] k) :
     f =Θ[l] k :=
   ⟨h₁.1.trans h₂.1, h₂.2.trans h₁.2⟩
 #align asymptotics.is_Theta.trans Asymptotics.IsTheta.trans
 
-/- warning: asymptotics.is_O.trans_is_Theta -> Asymptotics.IsBigO.trans_isTheta is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsBigO.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsBigO.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isThetaₓ'. -/
 @[trans]
 theorem IsBigO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =O[l] g)
     (h₂ : g =Θ[l] k) : f =O[l] k :=
   h₁.trans h₂.1
 #align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isTheta
 
-/- warning: asymptotics.is_Theta.trans_is_O -> Asymptotics.IsTheta.trans_isBigO is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsBigO.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsBigO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigOₓ'. -/
 @[trans]
 theorem IsTheta.trans_isBigO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =O[l] k) : f =O[l] k :=
   h₁.1.trans h₂
 #align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigO
 
-/- warning: asymptotics.is_o.trans_is_Theta -> Asymptotics.IsLittleO.trans_isTheta is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] [_inst_6 : SeminormedAddCommGroup.{u4} G'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F} {k : α -> G'}, (Asymptotics.IsLittleO.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u1, u3, u4} α F G' _inst_2 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l g k) -> (Asymptotics.IsLittleO.{u1, u2, u4} α E G' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l f k)
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u3}} {F : Type.{u2}} {G' : Type.{u1}} [_inst_1 : Norm.{u3} E] [_inst_2 : Norm.{u2} F] [_inst_6 : SeminormedAddCommGroup.{u1} G'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F} {k : α -> G'}, (Asymptotics.IsLittleO.{u4, u3, u2} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u4, u2, u1} α F G' _inst_2 (SeminormedAddCommGroup.toNorm.{u1} G' _inst_6) l g k) -> (Asymptotics.IsLittleO.{u4, u3, u1} α E G' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} G' _inst_6) l f k)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isThetaₓ'. -/
 @[trans]
 theorem IsLittleO.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h₁ : f =o[l] g)
     (h₂ : g =Θ[l] k) : f =o[l] k :=
   h₁.trans_isBigO h₂.1
 #align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isTheta
 
-/- warning: asymptotics.is_Theta.trans_is_o -> Asymptotics.IsTheta.trans_isLittleO is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsLittleO.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsLittleO.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsLittleO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsLittleO.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleOₓ'. -/
 @[trans]
 theorem IsTheta.trans_isLittleO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =o[l] k) : f =o[l] k :=
   h₁.1.trans_isLittleO h₂
 #align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleO
 
-/- warning: asymptotics.is_Theta.trans_eventually_eq -> Asymptotics.IsTheta.trans_eventuallyEq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {l : Filter.{u1} α} {f : α -> E} {g₁ : α -> F} {g₂ : α -> F}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g₁) -> (Filter.EventuallyEq.{u1, u3} α F l g₁ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g₂)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {l : Filter.{u3} α} {f : α -> E} {g₁ : α -> F} {g₂ : α -> F}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g₁) -> (Filter.EventuallyEq.{u3, u1} α F l g₁ g₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g₂)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEqₓ'. -/
 @[trans]
 theorem IsTheta.trans_eventuallyEq {f : α → E} {g₁ g₂ : α → F} (h : f =Θ[l] g₁) (hg : g₁ =ᶠ[l] g₂) :
     f =Θ[l] g₂ :=
   ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isBigO h.2⟩
 #align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEq
 
-/- warning: filter.eventually_eq.trans_is_Theta -> Filter.EventuallyEq.trans_isTheta is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {l : Filter.{u1} α} {f₁ : α -> E} {f₂ : α -> E} {g : α -> F}, (Filter.EventuallyEq.{u1, u2} α E l f₁ f₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f₂ g) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f₁ g)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {l : Filter.{u3} α} {f₁ : α -> E} {f₂ : α -> E} {g : α -> F}, (Filter.EventuallyEq.{u3, u2} α E l f₁ f₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f₂ g) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f₁ g)
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isThetaₓ'. -/
 @[trans]
 theorem Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α → F} (hf : f₁ =ᶠ[l] f₂)
     (h : f₂ =Θ[l] g) : f₁ =Θ[l] g :=
   ⟨hf.trans_isBigO h.1, h.2.trans_eventuallyEq hf.symm⟩
 #align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isTheta
 
-/- warning: asymptotics.is_Theta_norm_left -> Asymptotics.isTheta_norm_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, 0, u2} α Real F Real.hasNorm _inst_2 l (fun (x : α) => Norm.norm.{u3} E' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (f' x)) g) (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g)
-but is expected to have type
-  forall {α : Type.{u3}} {F : Type.{u2}} {E' : Type.{u1}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u1} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, 0, u2} α Real F Real.norm _inst_2 l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g) (Asymptotics.IsTheta.{u3, u1, u2} α E' F (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) _inst_2 l f' g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_leftₓ'. -/
 @[simp]
 theorem isTheta_norm_left : (fun x => ‖f' x‖) =Θ[l] g ↔ f' =Θ[l] g := by simp [is_Theta]
 #align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_left
 
-/- warning: asymptotics.is_Theta_norm_right -> Asymptotics.isTheta_norm_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, 0} α E Real _inst_1 Real.hasNorm l f (fun (x : α) => Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (g' x))) (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g')
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F' : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, 0} α E Real _inst_1 Real.norm l f (fun (x : α) => Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (g' x))) (Asymptotics.IsTheta.{u3, u2, u1} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f g')
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_rightₓ'. -/
 @[simp]
 theorem isTheta_norm_right : (f =Θ[l] fun x => ‖g' x‖) ↔ f =Θ[l] g' := by simp [is_Theta]
 #align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_right
 
-/- warning: asymptotics.is_Theta.of_norm_left -> Asymptotics.IsTheta.of_norm_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, 0, u2} α Real F Real.hasNorm _inst_2 l (fun (x : α) => Norm.norm.{u3} E' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g)
-but is expected to have type
-  forall {α : Type.{u3}} {F : Type.{u2}} {E' : Type.{u1}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u1} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, 0, u2} α Real F Real.norm _inst_2 l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u3, u1, u2} α E' F (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) _inst_2 l f' g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_leftₓ'. -/
-/- warning: asymptotics.is_Theta.norm_left -> Asymptotics.IsTheta.norm_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u1, 0, u2} α Real F Real.hasNorm _inst_2 l (fun (x : α) => Norm.norm.{u3} E' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (f' x)) g)
-but is expected to have type
-  forall {α : Type.{u3}} {F : Type.{u2}} {E' : Type.{u1}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u1} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u1, u2} α E' F (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u3, 0, u2} α Real F Real.norm _inst_2 l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.norm_left Asymptotics.IsTheta.norm_leftₓ'. -/
 alias is_Theta_norm_left ↔ is_Theta.of_norm_left is_Theta.norm_left
 #align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_left
 #align asymptotics.is_Theta.norm_left Asymptotics.IsTheta.norm_left
 
-/- warning: asymptotics.is_Theta.of_norm_right -> Asymptotics.IsTheta.of_norm_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, 0} α E Real _inst_1 Real.hasNorm l f (fun (x : α) => Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (g' x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g')
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F' : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, 0} α E Real _inst_1 Real.norm l f (fun (x : α) => Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (g' x))) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f g')
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_rightₓ'. -/
-/- warning: asymptotics.is_Theta.norm_right -> Asymptotics.IsTheta.norm_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u1, u2, 0} α E Real _inst_1 Real.hasNorm l f (fun (x : α) => Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (g' x)))
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F' : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u3, u2, 0} α E Real _inst_1 Real.norm l f (fun (x : α) => Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (g' x)))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_rightₓ'. -/
 alias is_Theta_norm_right ↔ is_Theta.of_norm_right is_Theta.norm_right
 #align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_right
 #align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_right
 
-/- warning: asymptotics.is_Theta_of_norm_eventually_eq -> Asymptotics.isTheta_of_norm_eventuallyEq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => Norm.norm.{u2} E _inst_1 (f x)) (fun (x : α) => Norm.norm.{u3} F _inst_2 (g x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, (Filter.EventuallyEq.{u3, 0} α Real l (fun (x : α) => Norm.norm.{u2} E _inst_1 (f x)) (fun (x : α) => Norm.norm.{u1} F _inst_2 (g x))) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_of_norm_eventually_eq Asymptotics.isTheta_of_norm_eventuallyEqₓ'. -/
 theorem isTheta_of_norm_eventuallyEq (h : (fun x => ‖f x‖) =ᶠ[l] fun x => ‖g x‖) : f =Θ[l] g :=
   ⟨IsBigO.of_bound 1 <| by simpa only [one_mul] using h.le,
     IsBigO.of_bound 1 <| by simpa only [one_mul] using h.symm.le⟩
 #align asymptotics.is_Theta_of_norm_eventually_eq Asymptotics.isTheta_of_norm_eventuallyEq
 
-/- warning: asymptotics.is_Theta_of_norm_eventually_eq' -> Asymptotics.isTheta_of_norm_eventuallyEq' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] {f' : α -> E'} {l : Filter.{u1} α} {g : α -> Real}, (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u1, u2, 0} α E' Real (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) Real.hasNorm l f' g)
-but is expected to have type
-  forall {α : Type.{u2}} {E' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u1} E'] {f' : α -> E'} {l : Filter.{u2} α} {g : α -> Real}, (Filter.EventuallyEq.{u2, 0} α Real l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u2, u1, 0} α E' Real (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) Real.norm l f' g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventuallyEq'ₓ'. -/
 theorem isTheta_of_norm_eventuallyEq' {g : α → ℝ} (h : (fun x => ‖f' x‖) =ᶠ[l] g) : f' =Θ[l] g :=
   isTheta_of_norm_eventuallyEq <| h.mono fun x hx => by simp only [← hx, norm_norm]
 #align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventuallyEq'
 
-/- warning: asymptotics.is_Theta.is_o_congr_left -> Asymptotics.IsTheta.isLittleO_congr_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {G : Type.{u2}} {E' : Type.{u3}} {F' : Type.{u4}} [_inst_3 : Norm.{u2} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α E' F' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsLittleO.{u1, u3, u2} α E' G (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsLittleO.{u1, u4, u2} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g' k))
-but is expected to have type
-  forall {α : Type.{u4}} {G : Type.{u1}} {E' : Type.{u3}} {F' : Type.{u2}} [_inst_3 : Norm.{u1} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsLittleO.{u4, u3, u1} α E' G (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsLittleO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g' k))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isLittleO_congr_leftₓ'. -/
 theorem IsTheta.isLittleO_congr_left (h : f' =Θ[l] g') : f' =o[l] k ↔ g' =o[l] k :=
   ⟨h.symm.trans_isLittleO, h.trans_isLittleO⟩
 #align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isLittleO_congr_left
 
-/- warning: asymptotics.is_Theta.is_o_congr_right -> Asymptotics.IsTheta.isLittleO_congr_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {G' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u4} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α F' G' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsLittleO.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsLittleO.{u1, u2, u4} α E G' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l f k'))
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u1}} {F' : Type.{u3}} {G' : Type.{u2}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u2} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α F' G' (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsLittleO.{u4, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsLittleO.{u4, u1, u2} α E G' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l f k'))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isLittleO_congr_rightₓ'. -/
 theorem IsTheta.isLittleO_congr_right (h : g' =Θ[l] k') : f =o[l] g' ↔ f =o[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isLittleO_congr_right
 
-/- warning: asymptotics.is_Theta.is_O_congr_left -> Asymptotics.IsTheta.isBigO_congr_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {G : Type.{u2}} {E' : Type.{u3}} {F' : Type.{u4}} [_inst_3 : Norm.{u2} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α E' F' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsBigO.{u1, u3, u2} α E' G (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsBigO.{u1, u4, u2} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g' k))
-but is expected to have type
-  forall {α : Type.{u4}} {G : Type.{u1}} {E' : Type.{u3}} {F' : Type.{u2}} [_inst_3 : Norm.{u1} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsBigO.{u4, u3, u1} α E' G (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsBigO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g' k))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isBigO_congr_leftₓ'. -/
 theorem IsTheta.isBigO_congr_left (h : f' =Θ[l] g') : f' =O[l] k ↔ g' =O[l] k :=
   ⟨h.symm.trans_isBigO, h.trans_isBigO⟩
 #align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isBigO_congr_left
 
-/- warning: asymptotics.is_Theta.is_O_congr_right -> Asymptotics.IsTheta.isBigO_congr_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {G' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u4} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α F' G' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsBigO.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsBigO.{u1, u2, u4} α E G' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l f k'))
-but is expected to have type
-  forall {α : Type.{u4}} {E : Type.{u1}} {F' : Type.{u3}} {G' : Type.{u2}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u2} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α F' G' (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsBigO.{u4, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsBigO.{u4, u1, u2} α E G' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l f k'))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_rightₓ'. -/
 theorem IsTheta.isBigO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_right
 
-/- warning: asymptotics.is_Theta.mono -> Asymptotics.IsTheta.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α} {l' : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) l' l) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l' f g)
-but is expected to have type
-  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α} {l' : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u3} (Filter.{u3} α) (Preorder.toLE.{u3} (Filter.{u3} α) (PartialOrder.toPreorder.{u3} (Filter.{u3} α) (Filter.instPartialOrderFilter.{u3} α))) l' l) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l' f g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.mono Asymptotics.IsTheta.monoₓ'. -/
 theorem IsTheta.mono (h : f =Θ[l] g) (hl : l' ≤ l) : f =Θ[l'] g :=
   ⟨h.1.mono hl, h.2.mono hl⟩
 #align asymptotics.is_Theta.mono Asymptotics.IsTheta.mono
 
-/- warning: asymptotics.is_Theta.sup -> Asymptotics.IsTheta.sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α} {l' : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l' f' g') -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) l l') f' g')
-but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α} {l' : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l' f' g') -> (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (Sup.sup.{u3} (Filter.{u3} α) (SemilatticeSup.toSup.{u3} (Filter.{u3} α) (Lattice.toSemilatticeSup.{u3} (Filter.{u3} α) (ConditionallyCompleteLattice.toLattice.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))))) l l') f' g')
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.sup Asymptotics.IsTheta.supₓ'. -/
 theorem IsTheta.sup (h : f' =Θ[l] g') (h' : f' =Θ[l'] g') : f' =Θ[l ⊔ l'] g' :=
   ⟨h.1.sup h'.1, h.2.sup h'.2⟩
 #align asymptotics.is_Theta.sup Asymptotics.IsTheta.sup
 
-/- warning: asymptotics.is_Theta_sup -> Asymptotics.isTheta_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α} {l' : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) l l') f' g') (And (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l' f' g'))
-but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α} {l' : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (Sup.sup.{u3} (Filter.{u3} α) (SemilatticeSup.toSup.{u3} (Filter.{u3} α) (Lattice.toSemilatticeSup.{u3} (Filter.{u3} α) (ConditionallyCompleteLattice.toLattice.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))))) l l') f' g') (And (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l' f' g'))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_sup Asymptotics.isTheta_supₓ'. -/
 @[simp]
 theorem isTheta_sup : f' =Θ[l ⊔ l'] g' ↔ f' =Θ[l] g' ∧ f' =Θ[l'] g' :=
   ⟨fun h => ⟨h.mono le_sup_left, h.mono le_sup_right⟩, fun h => h.1.sup h.2⟩
 #align asymptotics.is_Theta_sup Asymptotics.isTheta_sup
 
-/- warning: asymptotics.is_Theta.eq_zero_iff -> Asymptotics.IsTheta.eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l f'' g'') -> (Filter.Eventually.{u1} α (fun (x : α) => Iff (Eq.{succ u2} E'' (f'' x) (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7)))))))))) (Eq.{succ u3} F'' (g'' x) (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8))))))))))) l)
-but is expected to have type
-  forall {α : Type.{u3}} {E'' : Type.{u2}} {F'' : Type.{u1}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u1} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E'' F'' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l f'' g'') -> (Filter.Eventually.{u3} α (fun (x : α) => Iff (Eq.{succ u2} E'' (f'' x) (OfNat.ofNat.{u2} E'' 0 (Zero.toOfNat0.{u2} E'' (NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))) (Eq.{succ u1} F'' (g'' x) (OfNat.ofNat.{u1} F'' 0 (Zero.toOfNat0.{u1} F'' (NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8)))))))))) l)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.eq_zero_iff Asymptotics.IsTheta.eq_zero_iffₓ'. -/
 theorem IsTheta.eq_zero_iff (h : f'' =Θ[l] g'') : ∀ᶠ x in l, f'' x = 0 ↔ g'' x = 0 :=
   h.1.eq_zero_imp.mp <| h.2.eq_zero_imp.mono fun x => Iff.intro
 #align asymptotics.is_Theta.eq_zero_iff Asymptotics.IsTheta.eq_zero_iff
 
-/- warning: asymptotics.is_Theta.tendsto_zero_iff -> Asymptotics.IsTheta.tendsto_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l f'' g'') -> (Iff (Filter.Tendsto.{u1, u2} α E'' f'' l (nhds.{u2} E'' (UniformSpace.toTopologicalSpace.{u2} E'' (PseudoMetricSpace.toUniformSpace.{u2} E'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E'' _inst_7)))) (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7))))))))))) (Filter.Tendsto.{u1, u3} α F'' g'' l (nhds.{u3} F'' (UniformSpace.toTopologicalSpace.{u3} F'' (PseudoMetricSpace.toUniformSpace.{u3} F'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F'' _inst_8)))) (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8))))))))))))
-but is expected to have type
-  forall {α : Type.{u3}} {E'' : Type.{u2}} {F'' : Type.{u1}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u1} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E'' F'' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l f'' g'') -> (Iff (Filter.Tendsto.{u3, u2} α E'' f'' l (nhds.{u2} E'' (UniformSpace.toTopologicalSpace.{u2} E'' (PseudoMetricSpace.toUniformSpace.{u2} E'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E'' _inst_7)))) (OfNat.ofNat.{u2} E'' 0 (Zero.toOfNat0.{u2} E'' (NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7)))))))))) (Filter.Tendsto.{u3, u1} α F'' g'' l (nhds.{u1} F'' (UniformSpace.toTopologicalSpace.{u1} F'' (PseudoMetricSpace.toUniformSpace.{u1} F'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F'' _inst_8)))) (OfNat.ofNat.{u1} F'' 0 (Zero.toOfNat0.{u1} F'' (NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8)))))))))))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.tendsto_zero_iff Asymptotics.IsTheta.tendsto_zero_iffₓ'. -/
 theorem IsTheta.tendsto_zero_iff (h : f'' =Θ[l] g'') : Tendsto f'' l (𝓝 0) ↔ Tendsto g'' l (𝓝 0) :=
   by simp only [← is_o_one_iff ℝ, h.is_o_congr_left]
 #align asymptotics.is_Theta.tendsto_zero_iff Asymptotics.IsTheta.tendsto_zero_iff
 
-/- warning: asymptotics.is_Theta.tendsto_norm_at_top_iff -> Asymptotics.IsTheta.tendsto_norm_atTop_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Iff (Filter.Tendsto.{u1, 0} α Real (Function.comp.{succ u1, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4)) f') l (Filter.atTop.{0} Real Real.preorder)) (Filter.Tendsto.{u1, 0} α Real (Function.comp.{succ u1, succ u3, 1} α F' Real (Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5)) g') l (Filter.atTop.{0} Real Real.preorder)))
-but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Iff (Filter.Tendsto.{u3, 0} α Real (Function.comp.{succ u3, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4)) f') l (Filter.atTop.{0} Real Real.instPreorderReal)) (Filter.Tendsto.{u3, 0} α Real (Function.comp.{succ u3, succ u1, 1} α F' Real (Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5)) g') l (Filter.atTop.{0} Real Real.instPreorderReal)))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.tendsto_norm_at_top_iff Asymptotics.IsTheta.tendsto_norm_atTop_iffₓ'. -/
 theorem IsTheta.tendsto_norm_atTop_iff (h : f' =Θ[l] g') :
     Tendsto (norm ∘ f') l atTop ↔ Tendsto (norm ∘ g') l atTop := by
   simp only [← is_o_const_left_of_ne (one_ne_zero' ℝ), h.is_o_congr_right]
 #align asymptotics.is_Theta.tendsto_norm_at_top_iff Asymptotics.IsTheta.tendsto_norm_atTop_iff
 
-/- warning: asymptotics.is_Theta.is_bounded_under_le_iff -> Asymptotics.IsTheta.isBoundedUnder_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u1} Real α (LE.le.{0} Real Real.hasLe) l (Function.comp.{succ u1, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u1} Real α (LE.le.{0} Real Real.hasLe) l (Function.comp.{succ u1, succ u3, 1} α F' Real (Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5)) g')))
-but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6023 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6025 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6023 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6025) l (Function.comp.{succ u3, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6047 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6049 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6047 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6049) l (Function.comp.{succ u3, succ u1, 1} α F' Real (Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5)) g')))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iffₓ'. -/
 theorem IsTheta.isBoundedUnder_le_iff (h : f' =Θ[l] g') :
     IsBoundedUnder (· ≤ ·) l (norm ∘ f') ↔ IsBoundedUnder (· ≤ ·) l (norm ∘ g') := by
   simp only [← is_O_const_of_ne (one_ne_zero' ℝ), h.is_O_congr_left]
 #align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iff
 
-/- warning: asymptotics.is_Theta.smul -> Asymptotics.IsTheta.smul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.smul Asymptotics.IsTheta.smulₓ'. -/
 theorem IsTheta.smul [NormedSpace 𝕜 E'] [NormedSpace 𝕜' F'] {f₁ : α → 𝕜} {f₂ : α → 𝕜'} {g₁ : α → E'}
     {g₂ : α → F'} (hf : f₁ =Θ[l] f₂) (hg : g₁ =Θ[l] g₂) :
     (fun x => f₁ x • g₁ x) =Θ[l] fun x => f₂ x • g₂ x :=
   ⟨hf.1.smul hg.1, hf.2.smul hg.2⟩
 #align asymptotics.is_Theta.smul Asymptotics.IsTheta.smul
 
-/- warning: asymptotics.is_Theta.mul -> Asymptotics.IsTheta.mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HMul.hMul.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHMul.{u2} 𝕜 (Distrib.toHasMul.{u2} 𝕜 (Ring.toDistrib.{u2} 𝕜 (NormedRing.toRing.{u2} 𝕜 (NormedCommRing.toNormedRing.{u2} 𝕜 (NormedField.toNormedCommRing.{u2} 𝕜 _inst_12)))))) (f₁ x) (f₂ x)) (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜' 𝕜' 𝕜' (instHMul.{u3} 𝕜' (Distrib.toHasMul.{u3} 𝕜' (Ring.toDistrib.{u3} 𝕜' (NormedRing.toRing.{u3} 𝕜' (NormedCommRing.toNormedRing.{u3} 𝕜' (NormedField.toNormedCommRing.{u3} 𝕜' _inst_13)))))) (g₁ x) (g₂ x)))
-but is expected to have type
-  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HMul.hMul.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHMul.{u2} 𝕜 (NonUnitalNonAssocRing.toMul.{u2} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕜 (Ring.toNonAssocRing.{u2} 𝕜 (NormedRing.toRing.{u2} 𝕜 (NormedCommRing.toNormedRing.{u2} 𝕜 (NormedField.toNormedCommRing.{u2} 𝕜 _inst_12))))))) (f₁ x) (f₂ x)) (fun (x : α) => HMul.hMul.{u1, u1, u1} 𝕜' 𝕜' 𝕜' (instHMul.{u1} 𝕜' (NonUnitalNonAssocRing.toMul.{u1} 𝕜' (NonAssocRing.toNonUnitalNonAssocRing.{u1} 𝕜' (Ring.toNonAssocRing.{u1} 𝕜' (NormedRing.toRing.{u1} 𝕜' (NormedCommRing.toNormedRing.{u1} 𝕜' (NormedField.toNormedCommRing.{u1} 𝕜' _inst_13))))))) (g₁ x) (g₂ x)))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.mul Asymptotics.IsTheta.mulₓ'. -/
 theorem IsTheta.mul {f₁ f₂ : α → 𝕜} {g₁ g₂ : α → 𝕜'} (h₁ : f₁ =Θ[l] g₁) (h₂ : f₂ =Θ[l] g₂) :
     (fun x => f₁ x * f₂ x) =Θ[l] fun x => g₁ x * g₂ x :=
   h₁.smul h₂
 #align asymptotics.is_Theta.mul Asymptotics.IsTheta.mul
 
-/- warning: asymptotics.is_Theta.inv -> Asymptotics.IsTheta.inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (DivInvMonoid.toHasInv.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12)))) (f x)) (fun (x : α) => Inv.inv.{u3} 𝕜' (DivInvMonoid.toHasInv.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13)))) (g x)))
-but is expected to have type
-  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (Field.toInv.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12)) (f x)) (fun (x : α) => Inv.inv.{u1} 𝕜' (Field.toInv.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13)) (g x)))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.inv Asymptotics.IsTheta.invₓ'. -/
 theorem IsTheta.inv {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) :
     (fun x => (f x)⁻¹) =Θ[l] fun x => (g x)⁻¹ :=
   ⟨h.2.inv_rev h.1.eq_zero_imp, h.1.inv_rev h.2.eq_zero_imp⟩
 #align asymptotics.is_Theta.inv Asymptotics.IsTheta.inv
 
-/- warning: asymptotics.is_Theta_inv -> Asymptotics.isTheta_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (DivInvMonoid.toHasInv.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12)))) (f x)) (fun (x : α) => Inv.inv.{u3} 𝕜' (DivInvMonoid.toHasInv.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13)))) (g x))) (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g)
-but is expected to have type
-  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (Field.toInv.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12)) (f x)) (fun (x : α) => Inv.inv.{u1} 𝕜' (Field.toInv.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13)) (g x))) (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_inv Asymptotics.isTheta_invₓ'. -/
 @[simp]
 theorem isTheta_inv {f : α → 𝕜} {g : α → 𝕜'} :
     ((fun x => (f x)⁻¹) =Θ[l] fun x => (g x)⁻¹) ↔ f =Θ[l] g :=
   ⟨fun h => by simpa only [inv_inv] using h.inv, IsTheta.inv⟩
 #align asymptotics.is_Theta_inv Asymptotics.isTheta_inv
 
-/- warning: asymptotics.is_Theta.div -> Asymptotics.IsTheta.div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HDiv.hDiv.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHDiv.{u2} 𝕜 (DivInvMonoid.toHasDiv.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12))))) (f₁ x) (f₂ x)) (fun (x : α) => HDiv.hDiv.{u3, u3, u3} 𝕜' 𝕜' 𝕜' (instHDiv.{u3} 𝕜' (DivInvMonoid.toHasDiv.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13))))) (g₁ x) (g₂ x)))
-but is expected to have type
-  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HDiv.hDiv.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHDiv.{u2} 𝕜 (Field.toDiv.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12))) (f₁ x) (f₂ x)) (fun (x : α) => HDiv.hDiv.{u1, u1, u1} 𝕜' 𝕜' 𝕜' (instHDiv.{u1} 𝕜' (Field.toDiv.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13))) (g₁ x) (g₂ x)))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.div Asymptotics.IsTheta.divₓ'. -/
 theorem IsTheta.div {f₁ f₂ : α → 𝕜} {g₁ g₂ : α → 𝕜'} (h₁ : f₁ =Θ[l] g₁) (h₂ : f₂ =Θ[l] g₂) :
     (fun x => f₁ x / f₂ x) =Θ[l] fun x => g₁ x / g₂ x := by
   simpa only [div_eq_mul_inv] using h₁.mul h₂.inv
 #align asymptotics.is_Theta.div Asymptotics.IsTheta.div
 
-/- warning: asymptotics.is_Theta.pow -> Asymptotics.IsTheta.pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g) -> (forall (n : Nat), Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Nat 𝕜 (instHPow.{u2, 0} 𝕜 Nat (Monoid.Pow.{u2} 𝕜 (Ring.toMonoid.{u2} 𝕜 (NormedRing.toRing.{u2} 𝕜 (NormedCommRing.toNormedRing.{u2} 𝕜 (NormedField.toNormedCommRing.{u2} 𝕜 _inst_12)))))) (f x) n) (fun (x : α) => HPow.hPow.{u3, 0, u3} 𝕜' Nat 𝕜' (instHPow.{u3, 0} 𝕜' Nat (Monoid.Pow.{u3} 𝕜' (Ring.toMonoid.{u3} 𝕜' (NormedRing.toRing.{u3} 𝕜' (NormedCommRing.toNormedRing.{u3} 𝕜' (NormedField.toNormedCommRing.{u3} 𝕜' _inst_13)))))) (g x) n))
-but is expected to have type
-  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g) -> (forall (n : Nat), Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Nat 𝕜 (instHPow.{u2, 0} 𝕜 Nat (Monoid.Pow.{u2} 𝕜 (MonoidWithZero.toMonoid.{u2} 𝕜 (Semiring.toMonoidWithZero.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12)))))))) (f x) n) (fun (x : α) => HPow.hPow.{u1, 0, u1} 𝕜' Nat 𝕜' (instHPow.{u1, 0} 𝕜' Nat (Monoid.Pow.{u1} 𝕜' (MonoidWithZero.toMonoid.{u1} 𝕜' (Semiring.toMonoidWithZero.{u1} 𝕜' (DivisionSemiring.toSemiring.{u1} 𝕜' (Semifield.toDivisionSemiring.{u1} 𝕜' (Field.toSemifield.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13)))))))) (g x) n))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.pow Asymptotics.IsTheta.powₓ'. -/
 theorem IsTheta.pow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℕ) :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   ⟨h.1.pow n, h.2.pow n⟩
 #align asymptotics.is_Theta.pow Asymptotics.IsTheta.pow
 
-/- warning: asymptotics.is_Theta.zpow -> Asymptotics.IsTheta.zpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g) -> (forall (n : Int), Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Int 𝕜 (instHPow.{u2, 0} 𝕜 Int (DivInvMonoid.Pow.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12))))) (f x) n) (fun (x : α) => HPow.hPow.{u3, 0, u3} 𝕜' Int 𝕜' (instHPow.{u3, 0} 𝕜' Int (DivInvMonoid.Pow.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13))))) (g x) n))
-but is expected to have type
-  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g) -> (forall (n : Int), Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Int 𝕜 (instHPow.{u2, 0} 𝕜 Int (DivInvMonoid.Pow.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12))))) (f x) n) (fun (x : α) => HPow.hPow.{u1, 0, u1} 𝕜' Int 𝕜' (instHPow.{u1, 0} 𝕜' Int (DivInvMonoid.Pow.{u1} 𝕜' (DivisionRing.toDivInvMonoid.{u1} 𝕜' (NormedDivisionRing.toDivisionRing.{u1} 𝕜' (NormedField.toNormedDivisionRing.{u1} 𝕜' _inst_13))))) (g x) n))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpowₓ'. -/
 theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℤ) :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   by
@@ -459,137 +234,59 @@ theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n :
   · simpa only [zpow_negSucc] using (h.pow _).inv
 #align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpow
 
-/- warning: asymptotics.is_Theta_const_const -> Asymptotics.isTheta_const_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {l : Filter.{u1} α} {c₁ : E''} {c₂ : F''}, (Ne.{succ u2} E'' c₁ (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7)))))))))) -> (Ne.{succ u3} F'' c₂ (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂))
-but is expected to have type
-  forall {α : Type.{u1}} {E'' : Type.{u3}} {F'' : Type.{u2}} [_inst_7 : NormedAddCommGroup.{u3} E''] [_inst_8 : NormedAddCommGroup.{u2} F''] {l : Filter.{u1} α} {c₁ : E''} {c₂ : F''}, (Ne.{succ u3} E'' c₁ (OfNat.ofNat.{u3} E'' 0 (Zero.toOfNat0.{u3} E'' (NegZeroClass.toZero.{u3} E'' (SubNegZeroMonoid.toNegZeroClass.{u3} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E'' (AddCommGroup.toDivisionAddCommMonoid.{u3} E'' (NormedAddCommGroup.toAddCommGroup.{u3} E'' _inst_7))))))))) -> (Ne.{succ u2} F'' c₂ (OfNat.ofNat.{u2} F'' 0 (Zero.toOfNat0.{u2} F'' (NegZeroClass.toZero.{u2} F'' (SubNegZeroMonoid.toNegZeroClass.{u2} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F'' (AddCommGroup.toDivisionAddCommMonoid.{u2} F'' (NormedAddCommGroup.toAddCommGroup.{u2} F'' _inst_8))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α E'' F'' (NormedAddCommGroup.toNorm.{u3} E'' _inst_7) (NormedAddCommGroup.toNorm.{u2} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_const Asymptotics.isTheta_const_constₓ'. -/
 theorem isTheta_const_const {c₁ : E''} {c₂ : F''} (h₁ : c₁ ≠ 0) (h₂ : c₂ ≠ 0) :
     (fun x : α => c₁) =Θ[l] fun x => c₂ :=
   ⟨isBigO_const_const _ h₂ _, isBigO_const_const _ h₁ _⟩
 #align asymptotics.is_Theta_const_const Asymptotics.isTheta_const_const
 
-/- warning: asymptotics.is_Theta_const_const_iff -> Asymptotics.isTheta_const_const_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {l : Filter.{u1} α} [_inst_14 : Filter.NeBot.{u1} α l] {c₁ : E''} {c₂ : F''}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂)) (Iff (Eq.{succ u2} E'' c₁ (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7)))))))))) (Eq.{succ u3} F'' c₂ (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))))
-but is expected to have type
-  forall {α : Type.{u3}} {E'' : Type.{u2}} {F'' : Type.{u1}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u1} F''] {l : Filter.{u3} α} [_inst_14 : Filter.NeBot.{u3} α l] {c₁ : E''} {c₂ : F''}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F'' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂)) (Iff (Eq.{succ u2} E'' c₁ (OfNat.ofNat.{u2} E'' 0 (Zero.toOfNat0.{u2} E'' (NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))) (Eq.{succ u1} F'' c₂ (OfNat.ofNat.{u1} F'' 0 (Zero.toOfNat0.{u1} F'' (NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_const_iff Asymptotics.isTheta_const_const_iffₓ'. -/
 @[simp]
 theorem isTheta_const_const_iff [NeBot l] {c₁ : E''} {c₂ : F''} :
     ((fun x : α => c₁) =Θ[l] fun x => c₂) ↔ (c₁ = 0 ↔ c₂ = 0) := by
   simpa only [is_Theta, is_O_const_const_iff, ← iff_def] using Iff.comm
 #align asymptotics.is_Theta_const_const_iff Asymptotics.isTheta_const_const_iff
 
-/- warning: asymptotics.is_Theta_zero_left -> Asymptotics.isTheta_zero_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} {F'' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u3} F''] {g'' : α -> F''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E' F'' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (OfNat.mk.{u2} E' 0 (Zero.zero.{u2} E' (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (SubNegMonoid.toAddMonoid.{u2} E' (AddGroup.toSubNegMonoid.{u2} E' (SeminormedAddGroup.toAddGroup.{u2} E' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E' _inst_4))))))))) g'') (Filter.EventuallyEq.{u1, u3} α F'' l g'' (OfNat.ofNat.{max u1 u3} (α -> F'') 0 (OfNat.mk.{max u1 u3} (α -> F'') 0 (Zero.zero.{max u1 u3} (α -> F'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => F'') (fun (i : α) => AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))))
-but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F'' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u1} F''] {g'' : α -> F''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F'' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (Zero.toOfNat0.{u2} E' (NegZeroClass.toZero.{u2} E' (SubNegZeroMonoid.toNegZeroClass.{u2} E' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E' (AddCommGroup.toDivisionAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)))))))) g'') (Filter.EventuallyEq.{u3, u1} α F'' l g'' (OfNat.ofNat.{max u3 u1} (α -> F'') 0 (Zero.toOfNat0.{max u3 u1} (α -> F'') (Pi.instZero.{u3, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => F'') (fun (i : α) => NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_leftₓ'. -/
 @[simp]
 theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 := by
   simp only [is_Theta, is_O_zero, is_O_zero_right_iff, true_and_iff]
 #align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_left
 
-/- warning: asymptotics.is_Theta_zero_right -> Asymptotics.isTheta_zero_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F' : Type.{u2}} {E'' : Type.{u3}} [_inst_5 : SeminormedAddCommGroup.{u2} F'] [_inst_7 : NormedAddCommGroup.{u3} E''] {f'' : α -> E''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u3, u2} α E'' F' (NormedAddCommGroup.toHasNorm.{u3} E'' _inst_7) (SeminormedAddCommGroup.toHasNorm.{u2} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u2} F' 0 (OfNat.mk.{u2} F' 0 (Zero.zero.{u2} F' (AddZeroClass.toHasZero.{u2} F' (AddMonoid.toAddZeroClass.{u2} F' (SubNegMonoid.toAddMonoid.{u2} F' (AddGroup.toSubNegMonoid.{u2} F' (SeminormedAddGroup.toAddGroup.{u2} F' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F' _inst_5)))))))))) (Filter.EventuallyEq.{u1, u3} α E'' l f'' (OfNat.ofNat.{max u1 u3} (α -> E'') 0 (OfNat.mk.{max u1 u3} (α -> E'') 0 (Zero.zero.{max u1 u3} (α -> E'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => E'') (fun (i : α) => AddZeroClass.toHasZero.{u3} E'' (AddMonoid.toAddZeroClass.{u3} E'' (SubNegMonoid.toAddMonoid.{u3} E'' (AddGroup.toSubNegMonoid.{u3} E'' (NormedAddGroup.toAddGroup.{u3} E'' (NormedAddCommGroup.toNormedAddGroup.{u3} E'' _inst_7)))))))))))
-but is expected to have type
-  forall {α : Type.{u3}} {F' : Type.{u1}} {E'' : Type.{u2}} [_inst_5 : SeminormedAddCommGroup.{u1} F'] [_inst_7 : NormedAddCommGroup.{u2} E''] {f'' : α -> E''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u1} F' 0 (Zero.toOfNat0.{u1} F' (NegZeroClass.toZero.{u1} F' (SubNegZeroMonoid.toNegZeroClass.{u1} F' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F' (AddCommGroup.toDivisionAddCommMonoid.{u1} F' (SeminormedAddCommGroup.toAddCommGroup.{u1} F' _inst_5))))))))) (Filter.EventuallyEq.{u3, u2} α E'' l f'' (OfNat.ofNat.{max u3 u2} (α -> E'') 0 (Zero.toOfNat0.{max u3 u2} (α -> E'') (Pi.instZero.{u3, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => E'') (fun (i : α) => NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_rightₓ'. -/
 @[simp]
 theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
   isTheta_comm.trans isTheta_zero_left
 #align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_right
 
-/- warning: asymptotics.is_Theta_const_smul_left -> Asymptotics.isTheta_const_smul_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_leftₓ'. -/
 theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0) :
     (fun x => c • f' x) =Θ[l] g ↔ f' =Θ[l] g :=
   and_congr (isBigO_const_smul_left hc) (isBigO_const_smul_right hc)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
 
-/- warning: asymptotics.is_Theta.of_const_smul_left -> Asymptotics.IsTheta.of_const_smul_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_leftₓ'. -/
-/- warning: asymptotics.is_Theta.const_smul_left -> Asymptotics.IsTheta.const_smul_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_leftₓ'. -/
 alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_smul_left
 #align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_left
 #align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_left
 
-/- warning: asymptotics.is_Theta_const_smul_right -> Asymptotics.isTheta_const_smul_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_rightₓ'. -/
 theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c • g' x) ↔ f =Θ[l] g' :=
   and_congr (isBigO_const_smul_right hc) (isBigO_const_smul_left hc)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
 
-/- warning: asymptotics.is_Theta.of_const_smul_right -> Asymptotics.IsTheta.of_const_smul_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_rightₓ'. -/
-/- warning: asymptotics.is_Theta.const_smul_right -> Asymptotics.IsTheta.const_smul_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_rightₓ'. -/
 alias is_Theta_const_smul_right ↔ is_Theta.of_const_smul_right is_Theta.const_smul_right
 #align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_right
 #align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_right
 
-/- warning: asymptotics.is_Theta_const_mul_left -> Asymptotics.isTheta_const_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u1} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (f x)) g) (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l f g))
-but is expected to have type
-  forall {α : Type.{u2}} {F : Type.{u1}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u1} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u2} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (f x)) g) (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l f g))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_leftₓ'. -/
 theorem isTheta_const_mul_left {c : 𝕜} {f : α → 𝕜} (hc : c ≠ 0) :
     (fun x => c * f x) =Θ[l] g ↔ f =Θ[l] g := by
   simpa only [← smul_eq_mul] using is_Theta_const_smul_left hc
 #align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_left
 
-/- warning: asymptotics.is_Theta.of_const_mul_left -> Asymptotics.IsTheta.of_const_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u1} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (f x)) g) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l f g)
-but is expected to have type
-  forall {α : Type.{u2}} {F : Type.{u1}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u1} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u2} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (f x)) g) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l f g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_leftₓ'. -/
-/- warning: asymptotics.is_Theta.const_mul_left -> Asymptotics.IsTheta.const_mul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u1} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l f g) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (f x)) g)
-but is expected to have type
-  forall {α : Type.{u2}} {F : Type.{u1}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u1} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u2} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l f g) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (f x)) g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_leftₓ'. -/
 alias is_Theta_const_mul_left ↔ is_Theta.of_const_mul_left is_Theta.const_mul_left
 #align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_left
 #align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_left
 
-/- warning: asymptotics.is_Theta_const_mul_right -> Asymptotics.isTheta_const_mul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u1} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (g x))) (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f g))
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u1} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u2} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (g x))) (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f g))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_rightₓ'. -/
 theorem isTheta_const_mul_right {c : 𝕜} {g : α → 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c * g x) ↔ f =Θ[l] g := by
   simpa only [← smul_eq_mul] using is_Theta_const_smul_right hc
 #align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_right
 
-/- warning: asymptotics.is_Theta.of_const_mul_right -> Asymptotics.IsTheta.of_const_mul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u1} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (g x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f g)
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u1} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u2} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (g x))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f g)
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_rightₓ'. -/
-/- warning: asymptotics.is_Theta.const_mul_right -> Asymptotics.IsTheta.const_mul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u1} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f g) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (g x)))
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u1} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u2} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f g) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (g x)))
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_rightₓ'. -/
 alias is_Theta_const_mul_right ↔ is_Theta.of_const_mul_right is_Theta.const_mul_right
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
 #align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_right
Diff
@@ -381,10 +381,7 @@ theorem IsTheta.isBoundedUnder_le_iff (h : f' =Θ[l] g') :
 #align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iff
 
 /- warning: asymptotics.is_Theta.smul -> Asymptotics.IsTheta.smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} {𝕜' : Type.{u5}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] [_inst_13 : NormedField.{u5} 𝕜'] {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u2} 𝕜 E' _inst_12 _inst_4] [_inst_15 : NormedSpace.{u5, u3} 𝕜' F' _inst_13 _inst_5] {f₁ : α -> 𝕜} {f₂ : α -> 𝕜'} {g₁ : α -> E'} {g₂ : α -> F'}, (Asymptotics.IsTheta.{u1, u4, u5} α 𝕜 𝕜' (NormedField.toHasNorm.{u4} 𝕜 _inst_12) (NormedField.toHasNorm.{u5} 𝕜' _inst_13) l f₁ f₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l g₁ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l (fun (x : α) => SMul.smul.{u4, u2} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u2} 𝕜 E' (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (AddCommMonoid.toAddMonoid.{u2} E' (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u2} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (AddCommMonoid.toAddMonoid.{u2} E' (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u2} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (AddCommMonoid.toAddMonoid.{u2} E' (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u2} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)) (NormedSpace.toModule.{u4, u2} 𝕜 E' _inst_12 _inst_4 _inst_14))))) (f₁ x) (g₁ x)) (fun (x : α) => SMul.smul.{u5, u3} 𝕜' F' (SMulZeroClass.toHasSmul.{u5, u3} 𝕜' F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u5, u3} 𝕜' F' (MulZeroClass.toHasZero.{u5} 𝕜' (MulZeroOneClass.toMulZeroClass.{u5} 𝕜' (MonoidWithZero.toMulZeroOneClass.{u5} 𝕜' (Semiring.toMonoidWithZero.{u5} 𝕜' (Ring.toSemiring.{u5} 𝕜' (NormedRing.toRing.{u5} 𝕜' (NormedCommRing.toNormedRing.{u5} 𝕜' (NormedField.toNormedCommRing.{u5} 𝕜' _inst_13)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u5, u3} 𝕜' F' (Semiring.toMonoidWithZero.{u5} 𝕜' (Ring.toSemiring.{u5} 𝕜' (NormedRing.toRing.{u5} 𝕜' (NormedCommRing.toNormedRing.{u5} 𝕜' (NormedField.toNormedCommRing.{u5} 𝕜' _inst_13))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u5, u3} 𝕜' F' (Ring.toSemiring.{u5} 𝕜' (NormedRing.toRing.{u5} 𝕜' (NormedCommRing.toNormedRing.{u5} 𝕜' (NormedField.toNormedCommRing.{u5} 𝕜' _inst_13)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u5, u3} 𝕜' F' _inst_13 _inst_5 _inst_15))))) (f₂ x) (g₂ x)))
-but is expected to have type
-  forall {α : Type.{u1}} {E' : Type.{u4}} {F' : Type.{u2}} {𝕜 : Type.{u5}} {𝕜' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u4} E'] [_inst_5 : SeminormedAddCommGroup.{u2} F'] [_inst_12 : NormedField.{u5} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u5, u4} 𝕜 E' _inst_12 _inst_4] [_inst_15 : NormedSpace.{u3, u2} 𝕜' F' _inst_13 _inst_5] {f₁ : α -> 𝕜} {f₂ : α -> 𝕜'} {g₁ : α -> E'} {g₂ : α -> F'}, (Asymptotics.IsTheta.{u1, u5, u3} α 𝕜 𝕜' (NormedField.toNorm.{u5} 𝕜 _inst_12) (NormedField.toNorm.{u3} 𝕜' _inst_13) l f₁ f₂) -> (Asymptotics.IsTheta.{u1, u4, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u4} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l g₁ g₂) -> (Asymptotics.IsTheta.{u1, u4, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u4} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l (fun (x : α) => HSMul.hSMul.{u5, u4, u4} 𝕜 E' E' (instHSMul.{u5, u4} 𝕜 E' (SMulZeroClass.toSMul.{u5, u4} 𝕜 E' (NegZeroClass.toZero.{u4} E' (SubNegZeroMonoid.toNegZeroClass.{u4} E' (SubtractionMonoid.toSubNegZeroMonoid.{u4} E' (SubtractionCommMonoid.toSubtractionMonoid.{u4} E' (AddCommGroup.toDivisionAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u5, u4} 𝕜 E' (CommMonoidWithZero.toZero.{u5} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u5} 𝕜 (Semifield.toCommGroupWithZero.{u5} 𝕜 (Field.toSemifield.{u5} 𝕜 (NormedField.toField.{u5} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u4} E' (SubNegZeroMonoid.toNegZeroClass.{u4} E' (SubtractionMonoid.toSubNegZeroMonoid.{u4} E' (SubtractionCommMonoid.toSubtractionMonoid.{u4} E' (AddCommGroup.toDivisionAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u5, u4} 𝕜 E' (Semiring.toMonoidWithZero.{u5} 𝕜 (DivisionSemiring.toSemiring.{u5} 𝕜 (Semifield.toDivisionSemiring.{u5} 𝕜 (Field.toSemifield.{u5} 𝕜 (NormedField.toField.{u5} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u4} E' (SubNegZeroMonoid.toNegZeroClass.{u4} E' (SubtractionMonoid.toSubNegZeroMonoid.{u4} E' (SubtractionCommMonoid.toSubtractionMonoid.{u4} E' (AddCommGroup.toDivisionAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)))))) (Module.toMulActionWithZero.{u5, u4} 𝕜 E' (DivisionSemiring.toSemiring.{u5} 𝕜 (Semifield.toDivisionSemiring.{u5} 𝕜 (Field.toSemifield.{u5} 𝕜 (NormedField.toField.{u5} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)) (NormedSpace.toModule.{u5, u4} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) (f₁ x) (g₁ x)) (fun (x : α) => HSMul.hSMul.{u3, u2, u2} 𝕜' F' F' (instHSMul.{u3, u2} 𝕜' F' (SMulZeroClass.toSMul.{u3, u2} 𝕜' F' (NegZeroClass.toZero.{u2} F' (SubNegZeroMonoid.toNegZeroClass.{u2} F' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F' (AddCommGroup.toDivisionAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕜' F' (CommMonoidWithZero.toZero.{u3} 𝕜' (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜' (Semifield.toCommGroupWithZero.{u3} 𝕜' (Field.toSemifield.{u3} 𝕜' (NormedField.toField.{u3} 𝕜' _inst_13))))) (NegZeroClass.toZero.{u2} F' (SubNegZeroMonoid.toNegZeroClass.{u2} F' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F' (AddCommGroup.toDivisionAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u3, u2} 𝕜' F' (Semiring.toMonoidWithZero.{u3} 𝕜' (DivisionSemiring.toSemiring.{u3} 𝕜' (Semifield.toDivisionSemiring.{u3} 𝕜' (Field.toSemifield.{u3} 𝕜' (NormedField.toField.{u3} 𝕜' _inst_13))))) (NegZeroClass.toZero.{u2} F' (SubNegZeroMonoid.toNegZeroClass.{u2} F' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F' (AddCommGroup.toDivisionAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)))))) (Module.toMulActionWithZero.{u3, u2} 𝕜' F' (DivisionSemiring.toSemiring.{u3} 𝕜' (Semifield.toDivisionSemiring.{u3} 𝕜' (Field.toSemifield.{u3} 𝕜' (NormedField.toField.{u3} 𝕜' _inst_13)))) (AddCommGroup.toAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)) (NormedSpace.toModule.{u3, u2} 𝕜' F' _inst_13 _inst_5 _inst_15)))))) (f₂ x) (g₂ x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.smul Asymptotics.IsTheta.smulₓ'. -/
 theorem IsTheta.smul [NormedSpace 𝕜 E'] [NormedSpace 𝕜' F'] {f₁ : α → 𝕜} {f₂ : α → 𝕜'} {g₁ : α → E'}
     {g₂ : α → F'} (hf : f₁ =Θ[l] f₂) (hg : g₁ =Θ[l] g₂) :
@@ -508,10 +505,7 @@ theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
 #align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_right
 
 /- warning: asymptotics.is_Theta_const_smul_left -> Asymptotics.isTheta_const_smul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => SMul.smul.{u4, u3} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 E' (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14))))) c (f' x)) g) (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g))
-but is expected to have type
-  forall {α : Type.{u2}} {F : Type.{u1}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u1} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E' E' (instHSMul.{u4, u3} 𝕜 E' (SMulZeroClass.toSMul.{u4, u3} 𝕜 E' (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) c (f' x)) g) (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l f' g))
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_leftₓ'. -/
 theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0) :
     (fun x => c • f' x) =Θ[l] g ↔ f' =Θ[l] g :=
@@ -519,26 +513,17 @@ theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
 
 /- warning: asymptotics.is_Theta.of_const_smul_left -> Asymptotics.IsTheta.of_const_smul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => SMul.smul.{u4, u3} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 E' (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14))))) c (f' x)) g) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g)
-but is expected to have type
-  forall {α : Type.{u2}} {F : Type.{u1}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u1} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E' E' (instHSMul.{u4, u3} 𝕜 E' (SMulZeroClass.toSMul.{u4, u3} 𝕜 E' (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) c (f' x)) g) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l f' g)
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_leftₓ'. -/
 /- warning: asymptotics.is_Theta.const_smul_left -> Asymptotics.IsTheta.const_smul_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => SMul.smul.{u4, u3} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 E' (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14))))) c (f' x)) g)
-but is expected to have type
-  forall {α : Type.{u2}} {F : Type.{u1}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u1} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E' E' (instHSMul.{u4, u3} 𝕜 E' (SMulZeroClass.toSMul.{u4, u3} 𝕜 E' (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) c (f' x)) g)
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_leftₓ'. -/
 alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_smul_left
 #align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_left
 #align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_left
 
 /- warning: asymptotics.is_Theta_const_smul_right -> Asymptotics.isTheta_const_smul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f (fun (x : α) => SMul.smul.{u4, u3} 𝕜 F' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 F' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14))))) c (g' x))) (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g'))
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 F' F' (instHSMul.{u4, u3} 𝕜 F' (SMulZeroClass.toSMul.{u4, u3} 𝕜 F' (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 F' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14)))))) c (g' x))) (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g'))
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_rightₓ'. -/
 theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c • g' x) ↔ f =Θ[l] g' :=
@@ -546,16 +531,10 @@ theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
 
 /- warning: asymptotics.is_Theta.of_const_smul_right -> Asymptotics.IsTheta.of_const_smul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f (fun (x : α) => SMul.smul.{u4, u3} 𝕜 F' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 F' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14))))) c (g' x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g')
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 F' F' (instHSMul.{u4, u3} 𝕜 F' (SMulZeroClass.toSMul.{u4, u3} 𝕜 F' (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 F' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14)))))) c (g' x))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g')
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_rightₓ'. -/
 /- warning: asymptotics.is_Theta.const_smul_right -> Asymptotics.IsTheta.const_smul_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f (fun (x : α) => SMul.smul.{u4, u3} 𝕜 F' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 F' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14))))) c (g' x)))
-but is expected to have type
-  forall {α : Type.{u2}} {E : Type.{u1}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 F' F' (instHSMul.{u4, u3} 𝕜 F' (SMulZeroClass.toSMul.{u4, u3} 𝕜 F' (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 F' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14)))))) c (g' x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_rightₓ'. -/
 alias is_Theta_const_smul_right ↔ is_Theta.of_const_smul_right is_Theta.const_smul_right
 #align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_right
Diff
@@ -373,7 +373,7 @@ theorem IsTheta.tendsto_norm_atTop_iff (h : f' =Θ[l] g') :
 lean 3 declaration is
   forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u1} Real α (LE.le.{0} Real Real.hasLe) l (Function.comp.{succ u1, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u1} Real α (LE.le.{0} Real Real.hasLe) l (Function.comp.{succ u1, succ u3, 1} α F' Real (Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5)) g')))
 but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5162 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5164 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5162 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5164) l (Function.comp.{succ u3, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5186 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5188 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5186 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5188) l (Function.comp.{succ u3, succ u1, 1} α F' Real (Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5)) g')))
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6023 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6025 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6023 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6025) l (Function.comp.{succ u3, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6047 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6049 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6047 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.6049) l (Function.comp.{succ u3, succ u1, 1} α F' Real (Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5)) g')))
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iffₓ'. -/
 theorem IsTheta.isBoundedUnder_le_iff (h : f' =Θ[l] g') :
     IsBoundedUnder (· ≤ ·) l (norm ∘ f') ↔ IsBoundedUnder (· ≤ ·) l (norm ∘ g') := by
Diff
@@ -309,7 +309,7 @@ theorem IsTheta.isBigO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k
 
 /- warning: asymptotics.is_Theta.mono -> Asymptotics.IsTheta.mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α} {l' : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) l' l) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l' f g)
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α} {l' : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) l' l) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l' f g)
 but is expected to have type
   forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α} {l' : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u3} (Filter.{u3} α) (Preorder.toLE.{u3} (Filter.{u3} α) (PartialOrder.toPreorder.{u3} (Filter.{u3} α) (Filter.instPartialOrderFilter.{u3} α))) l' l) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l' f g)
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.mono Asymptotics.IsTheta.monoₓ'. -/
Diff
@@ -489,7 +489,7 @@ theorem isTheta_const_const_iff [NeBot l] {c₁ : E''} {c₂ : F''} :
 lean 3 declaration is
   forall {α : Type.{u1}} {E' : Type.{u2}} {F'' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u3} F''] {g'' : α -> F''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E' F'' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (OfNat.mk.{u2} E' 0 (Zero.zero.{u2} E' (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (SubNegMonoid.toAddMonoid.{u2} E' (AddGroup.toSubNegMonoid.{u2} E' (SeminormedAddGroup.toAddGroup.{u2} E' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E' _inst_4))))))))) g'') (Filter.EventuallyEq.{u1, u3} α F'' l g'' (OfNat.ofNat.{max u1 u3} (α -> F'') 0 (OfNat.mk.{max u1 u3} (α -> F'') 0 (Zero.zero.{max u1 u3} (α -> F'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => F'') (fun (i : α) => AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))))
 but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F'' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u1} F''] {g'' : α -> F''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F'' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (Zero.toOfNat0.{u2} E' (NegZeroClass.toZero.{u2} E' (SubNegZeroMonoid.toNegZeroClass.{u2} E' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E' (AddCommGroup.toDivisionAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)))))))) g'') (Filter.EventuallyEq.{u3, u1} α F'' l g'' (OfNat.ofNat.{max u3 u1} (α -> F'') 0 (Zero.toOfNat0.{max u3 u1} (α -> F'') (Pi.instZero.{u3, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => F'') (fun (i : α) => NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F'' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u1} F''] {g'' : α -> F''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F'' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (Zero.toOfNat0.{u2} E' (NegZeroClass.toZero.{u2} E' (SubNegZeroMonoid.toNegZeroClass.{u2} E' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E' (AddCommGroup.toDivisionAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)))))))) g'') (Filter.EventuallyEq.{u3, u1} α F'' l g'' (OfNat.ofNat.{max u3 u1} (α -> F'') 0 (Zero.toOfNat0.{max u3 u1} (α -> F'') (Pi.instZero.{u3, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => F'') (fun (i : α) => NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_leftₓ'. -/
 @[simp]
 theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 := by
@@ -500,7 +500,7 @@ theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 :=
 lean 3 declaration is
   forall {α : Type.{u1}} {F' : Type.{u2}} {E'' : Type.{u3}} [_inst_5 : SeminormedAddCommGroup.{u2} F'] [_inst_7 : NormedAddCommGroup.{u3} E''] {f'' : α -> E''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u3, u2} α E'' F' (NormedAddCommGroup.toHasNorm.{u3} E'' _inst_7) (SeminormedAddCommGroup.toHasNorm.{u2} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u2} F' 0 (OfNat.mk.{u2} F' 0 (Zero.zero.{u2} F' (AddZeroClass.toHasZero.{u2} F' (AddMonoid.toAddZeroClass.{u2} F' (SubNegMonoid.toAddMonoid.{u2} F' (AddGroup.toSubNegMonoid.{u2} F' (SeminormedAddGroup.toAddGroup.{u2} F' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F' _inst_5)))))))))) (Filter.EventuallyEq.{u1, u3} α E'' l f'' (OfNat.ofNat.{max u1 u3} (α -> E'') 0 (OfNat.mk.{max u1 u3} (α -> E'') 0 (Zero.zero.{max u1 u3} (α -> E'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => E'') (fun (i : α) => AddZeroClass.toHasZero.{u3} E'' (AddMonoid.toAddZeroClass.{u3} E'' (SubNegMonoid.toAddMonoid.{u3} E'' (AddGroup.toSubNegMonoid.{u3} E'' (NormedAddGroup.toAddGroup.{u3} E'' (NormedAddCommGroup.toNormedAddGroup.{u3} E'' _inst_7)))))))))))
 but is expected to have type
-  forall {α : Type.{u3}} {F' : Type.{u1}} {E'' : Type.{u2}} [_inst_5 : SeminormedAddCommGroup.{u1} F'] [_inst_7 : NormedAddCommGroup.{u2} E''] {f'' : α -> E''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u1} F' 0 (Zero.toOfNat0.{u1} F' (NegZeroClass.toZero.{u1} F' (SubNegZeroMonoid.toNegZeroClass.{u1} F' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F' (AddCommGroup.toDivisionAddCommMonoid.{u1} F' (SeminormedAddCommGroup.toAddCommGroup.{u1} F' _inst_5))))))))) (Filter.EventuallyEq.{u3, u2} α E'' l f'' (OfNat.ofNat.{max u3 u2} (α -> E'') 0 (Zero.toOfNat0.{max u3 u2} (α -> E'') (Pi.instZero.{u3, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => E'') (fun (i : α) => NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))))
+  forall {α : Type.{u3}} {F' : Type.{u1}} {E'' : Type.{u2}} [_inst_5 : SeminormedAddCommGroup.{u1} F'] [_inst_7 : NormedAddCommGroup.{u2} E''] {f'' : α -> E''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u1} F' 0 (Zero.toOfNat0.{u1} F' (NegZeroClass.toZero.{u1} F' (SubNegZeroMonoid.toNegZeroClass.{u1} F' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F' (AddCommGroup.toDivisionAddCommMonoid.{u1} F' (SeminormedAddCommGroup.toAddCommGroup.{u1} F' _inst_5))))))))) (Filter.EventuallyEq.{u3, u2} α E'' l f'' (OfNat.ofNat.{max u3 u2} (α -> E'') 0 (Zero.toOfNat0.{max u3 u2} (α -> E'') (Pi.instZero.{u3, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => E'') (fun (i : α) => NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))))
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_rightₓ'. -/
 @[simp]
 theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
Diff
@@ -489,7 +489,7 @@ theorem isTheta_const_const_iff [NeBot l] {c₁ : E''} {c₂ : F''} :
 lean 3 declaration is
   forall {α : Type.{u1}} {E' : Type.{u2}} {F'' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u3} F''] {g'' : α -> F''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E' F'' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (OfNat.mk.{u2} E' 0 (Zero.zero.{u2} E' (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (SubNegMonoid.toAddMonoid.{u2} E' (AddGroup.toSubNegMonoid.{u2} E' (SeminormedAddGroup.toAddGroup.{u2} E' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E' _inst_4))))))))) g'') (Filter.EventuallyEq.{u1, u3} α F'' l g'' (OfNat.ofNat.{max u1 u3} (α -> F'') 0 (OfNat.mk.{max u1 u3} (α -> F'') 0 (Zero.zero.{max u1 u3} (α -> F'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => F'') (fun (i : α) => AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))))
 but is expected to have type
-  forall {α : Type.{u3}} {E' : Type.{u2}} {F'' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u1} F''] {g'' : α -> F''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F'' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (Zero.toOfNat0.{u2} E' (NegZeroClass.toZero.{u2} E' (SubNegZeroMonoid.toNegZeroClass.{u2} E' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E' (AddCommGroup.toDivisionAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)))))))) g'') (Filter.EventuallyEq.{u3, u1} α F'' l g'' (OfNat.ofNat.{max u3 u1} (α -> F'') 0 (Zero.toOfNat0.{max u3 u1} (α -> F'') (Pi.instZero.{u3, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19139 : α) => F'') (fun (i : α) => NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F'' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u1} F''] {g'' : α -> F''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F'' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (Zero.toOfNat0.{u2} E' (NegZeroClass.toZero.{u2} E' (SubNegZeroMonoid.toNegZeroClass.{u2} E' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E' (AddCommGroup.toDivisionAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)))))))) g'') (Filter.EventuallyEq.{u3, u1} α F'' l g'' (OfNat.ofNat.{max u3 u1} (α -> F'') 0 (Zero.toOfNat0.{max u3 u1} (α -> F'') (Pi.instZero.{u3, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => F'') (fun (i : α) => NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_leftₓ'. -/
 @[simp]
 theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 := by
@@ -500,7 +500,7 @@ theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 :=
 lean 3 declaration is
   forall {α : Type.{u1}} {F' : Type.{u2}} {E'' : Type.{u3}} [_inst_5 : SeminormedAddCommGroup.{u2} F'] [_inst_7 : NormedAddCommGroup.{u3} E''] {f'' : α -> E''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u3, u2} α E'' F' (NormedAddCommGroup.toHasNorm.{u3} E'' _inst_7) (SeminormedAddCommGroup.toHasNorm.{u2} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u2} F' 0 (OfNat.mk.{u2} F' 0 (Zero.zero.{u2} F' (AddZeroClass.toHasZero.{u2} F' (AddMonoid.toAddZeroClass.{u2} F' (SubNegMonoid.toAddMonoid.{u2} F' (AddGroup.toSubNegMonoid.{u2} F' (SeminormedAddGroup.toAddGroup.{u2} F' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F' _inst_5)))))))))) (Filter.EventuallyEq.{u1, u3} α E'' l f'' (OfNat.ofNat.{max u1 u3} (α -> E'') 0 (OfNat.mk.{max u1 u3} (α -> E'') 0 (Zero.zero.{max u1 u3} (α -> E'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => E'') (fun (i : α) => AddZeroClass.toHasZero.{u3} E'' (AddMonoid.toAddZeroClass.{u3} E'' (SubNegMonoid.toAddMonoid.{u3} E'' (AddGroup.toSubNegMonoid.{u3} E'' (NormedAddGroup.toAddGroup.{u3} E'' (NormedAddCommGroup.toNormedAddGroup.{u3} E'' _inst_7)))))))))))
 but is expected to have type
-  forall {α : Type.{u3}} {F' : Type.{u1}} {E'' : Type.{u2}} [_inst_5 : SeminormedAddCommGroup.{u1} F'] [_inst_7 : NormedAddCommGroup.{u2} E''] {f'' : α -> E''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u1} F' 0 (Zero.toOfNat0.{u1} F' (NegZeroClass.toZero.{u1} F' (SubNegZeroMonoid.toNegZeroClass.{u1} F' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F' (AddCommGroup.toDivisionAddCommMonoid.{u1} F' (SeminormedAddCommGroup.toAddCommGroup.{u1} F' _inst_5))))))))) (Filter.EventuallyEq.{u3, u2} α E'' l f'' (OfNat.ofNat.{max u3 u2} (α -> E'') 0 (Zero.toOfNat0.{max u3 u2} (α -> E'') (Pi.instZero.{u3, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19139 : α) => E'') (fun (i : α) => NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))))
+  forall {α : Type.{u3}} {F' : Type.{u1}} {E'' : Type.{u2}} [_inst_5 : SeminormedAddCommGroup.{u1} F'] [_inst_7 : NormedAddCommGroup.{u2} E''] {f'' : α -> E''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u1} F' 0 (Zero.toOfNat0.{u1} F' (NegZeroClass.toZero.{u1} F' (SubNegZeroMonoid.toNegZeroClass.{u1} F' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F' (AddCommGroup.toDivisionAddCommMonoid.{u1} F' (SeminormedAddCommGroup.toAddCommGroup.{u1} F' _inst_5))))))))) (Filter.EventuallyEq.{u3, u2} α E'' l f'' (OfNat.ofNat.{max u3 u2} (α -> E'') 0 (Zero.toOfNat0.{max u3 u2} (α -> E'') (Pi.instZero.{u3, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => E'') (fun (i : α) => NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))))
 Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_rightₓ'. -/
 @[simp]
 theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.asymptotics.theta
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.Analysis.Asymptotics.Asymptotics
 /-!
 # Asymptotic equivalence up to a constant
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we define `asymptotics.is_Theta l f g` (notation: `f =Θ[l] g`) as
 `f =O[l] g ∧ g =O[l] f`, then prove basic properties of this equivalence relation.
 -/
Diff
@@ -44,183 +44,413 @@ variable {f'' : α → E''} {g'' : α → F''}
 
 variable {l l' : Filter α}
 
+#print Asymptotics.IsTheta /-
 /-- We say that `f` is `Θ(g)` along a filter `l` (notation: `f =Θ[l] g`) if `f =O[l] g` and
 `g =O[l] f`. -/
 def IsTheta (l : Filter α) (f : α → E) (g : α → F) : Prop :=
   IsBigO l f g ∧ IsBigO l g f
 #align asymptotics.is_Theta Asymptotics.IsTheta
+-/
 
 -- mathport name: «expr =Θ[ ] »
 notation:100 f " =Θ[" l "] " g:100 => IsTheta l f g
 
+/- warning: asymptotics.is_O.antisymm -> Asymptotics.IsBigO.antisymm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, (Asymptotics.IsBigO.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsBigO.{u1, u3, u2} α F E _inst_2 _inst_1 l g f) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, (Asymptotics.IsBigO.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsBigO.{u3, u1, u2} α F E _inst_2 _inst_1 l g f) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymmₓ'. -/
 theorem IsBigO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
   ⟨h₁, h₂⟩
 #align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymm
 
+/- warning: asymptotics.is_Theta_refl -> Asymptotics.isTheta_refl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} [_inst_1 : Norm.{u2} E] (f : α -> E) (l : Filter.{u1} α), Asymptotics.IsTheta.{u1, u2, u2} α E E _inst_1 _inst_1 l f f
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} [_inst_1 : Norm.{u1} E] (f : α -> E) (l : Filter.{u2} α), Asymptotics.IsTheta.{u2, u1, u1} α E E _inst_1 _inst_1 l f f
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_refl Asymptotics.isTheta_reflₓ'. -/
 @[refl]
 theorem isTheta_refl (f : α → E) (l : Filter α) : f =Θ[l] f :=
   ⟨isBigO_refl _ _, isBigO_refl _ _⟩
 #align asymptotics.is_Theta_refl Asymptotics.isTheta_refl
 
+/- warning: asymptotics.is_Theta_rfl -> Asymptotics.isTheta_rfl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} [_inst_1 : Norm.{u2} E] {f : α -> E} {l : Filter.{u1} α}, Asymptotics.IsTheta.{u1, u2, u2} α E E _inst_1 _inst_1 l f f
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} [_inst_1 : Norm.{u1} E] {f : α -> E} {l : Filter.{u2} α}, Asymptotics.IsTheta.{u2, u1, u1} α E E _inst_1 _inst_1 l f f
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_rfl Asymptotics.isTheta_rflₓ'. -/
 theorem isTheta_rfl : f =Θ[l] f :=
   isTheta_refl _ _
 #align asymptotics.is_Theta_rfl Asymptotics.isTheta_rfl
 
+/- warning: asymptotics.is_Theta.symm -> Asymptotics.IsTheta.symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u1, u3, u2} α F E _inst_2 _inst_1 l g f)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u3, u1, u2} α F E _inst_2 _inst_1 l g f)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.symm Asymptotics.IsTheta.symmₓ'. -/
 @[symm]
 theorem IsTheta.symm (h : f =Θ[l] g) : g =Θ[l] f :=
   h.symm
 #align asymptotics.is_Theta.symm Asymptotics.IsTheta.symm
 
+/- warning: asymptotics.is_Theta_comm -> Asymptotics.isTheta_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) (Asymptotics.IsTheta.{u1, u3, u2} α F E _inst_2 _inst_1 l g f)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) (Asymptotics.IsTheta.{u3, u1, u2} α F E _inst_2 _inst_1 l g f)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_comm Asymptotics.isTheta_commₓ'. -/
 theorem isTheta_comm : f =Θ[l] g ↔ g =Θ[l] f :=
   ⟨fun h => h.symm, fun h => h.symm⟩
 #align asymptotics.is_Theta_comm Asymptotics.isTheta_comm
 
+/- warning: asymptotics.is_Theta.trans -> Asymptotics.IsTheta.trans is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsTheta.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsTheta.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans Asymptotics.IsTheta.transₓ'. -/
 @[trans]
 theorem IsTheta.trans {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g) (h₂ : g =Θ[l] k) :
     f =Θ[l] k :=
   ⟨h₁.1.trans h₂.1, h₂.2.trans h₁.2⟩
 #align asymptotics.is_Theta.trans Asymptotics.IsTheta.trans
 
+/- warning: asymptotics.is_O.trans_is_Theta -> Asymptotics.IsBigO.trans_isTheta is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsBigO.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsBigO.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsTheta.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isThetaₓ'. -/
 @[trans]
 theorem IsBigO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =O[l] g)
     (h₂ : g =Θ[l] k) : f =O[l] k :=
   h₁.trans h₂.1
 #align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isTheta
 
+/- warning: asymptotics.is_Theta.trans_is_O -> Asymptotics.IsTheta.trans_isBigO is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsBigO.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsBigO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsBigO.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigOₓ'. -/
 @[trans]
 theorem IsTheta.trans_isBigO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =O[l] k) : f =O[l] k :=
   h₁.1.trans h₂
 #align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigO
 
+/- warning: asymptotics.is_o.trans_is_Theta -> Asymptotics.IsLittleO.trans_isTheta is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] [_inst_6 : SeminormedAddCommGroup.{u4} G'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F} {k : α -> G'}, (Asymptotics.IsLittleO.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u1, u3, u4} α F G' _inst_2 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l g k) -> (Asymptotics.IsLittleO.{u1, u2, u4} α E G' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l f k)
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u3}} {F : Type.{u2}} {G' : Type.{u1}} [_inst_1 : Norm.{u3} E] [_inst_2 : Norm.{u2} F] [_inst_6 : SeminormedAddCommGroup.{u1} G'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F} {k : α -> G'}, (Asymptotics.IsLittleO.{u4, u3, u2} α E F _inst_1 _inst_2 l f g) -> (Asymptotics.IsTheta.{u4, u2, u1} α F G' _inst_2 (SeminormedAddCommGroup.toNorm.{u1} G' _inst_6) l g k) -> (Asymptotics.IsLittleO.{u4, u3, u1} α E G' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} G' _inst_6) l f k)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isThetaₓ'. -/
 @[trans]
 theorem IsLittleO.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h₁ : f =o[l] g)
     (h₂ : g =Θ[l] k) : f =o[l] k :=
   h₁.trans_isBigO h₂.1
 #align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isTheta
 
+/- warning: asymptotics.is_Theta.trans_is_o -> Asymptotics.IsTheta.trans_isLittleO is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {G : Type.{u3}} {F' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_3 : Norm.{u3} G] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {l : Filter.{u1} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u1, u2, u4} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f g) -> (Asymptotics.IsLittleO.{u1, u4, u3} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsLittleO.{u1, u2, u3} α E G _inst_1 _inst_3 l f k)
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u3}} {G : Type.{u1}} {F' : Type.{u2}} [_inst_1 : Norm.{u3} E] [_inst_3 : Norm.{u1} G] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {l : Filter.{u4} α} {f : α -> E} {g : α -> F'} {k : α -> G}, (Asymptotics.IsTheta.{u4, u3, u2} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f g) -> (Asymptotics.IsLittleO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g k) -> (Asymptotics.IsLittleO.{u4, u3, u1} α E G _inst_1 _inst_3 l f k)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleOₓ'. -/
 @[trans]
 theorem IsTheta.trans_isLittleO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =o[l] k) : f =o[l] k :=
   h₁.1.trans_isLittleO h₂
 #align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleO
 
+/- warning: asymptotics.is_Theta.trans_eventually_eq -> Asymptotics.IsTheta.trans_eventuallyEq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {l : Filter.{u1} α} {f : α -> E} {g₁ : α -> F} {g₂ : α -> F}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g₁) -> (Filter.EventuallyEq.{u1, u3} α F l g₁ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g₂)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {l : Filter.{u3} α} {f : α -> E} {g₁ : α -> F} {g₂ : α -> F}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g₁) -> (Filter.EventuallyEq.{u3, u1} α F l g₁ g₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g₂)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEqₓ'. -/
 @[trans]
 theorem IsTheta.trans_eventuallyEq {f : α → E} {g₁ g₂ : α → F} (h : f =Θ[l] g₁) (hg : g₁ =ᶠ[l] g₂) :
     f =Θ[l] g₂ :=
   ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isBigO h.2⟩
 #align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEq
 
+/- warning: filter.eventually_eq.trans_is_Theta -> Filter.EventuallyEq.trans_isTheta is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {l : Filter.{u1} α} {f₁ : α -> E} {f₂ : α -> E} {g : α -> F}, (Filter.EventuallyEq.{u1, u2} α E l f₁ f₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f₂ g) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f₁ g)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {l : Filter.{u3} α} {f₁ : α -> E} {f₂ : α -> E} {g : α -> F}, (Filter.EventuallyEq.{u3, u2} α E l f₁ f₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f₂ g) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f₁ g)
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isThetaₓ'. -/
 @[trans]
 theorem Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α → F} (hf : f₁ =ᶠ[l] f₂)
     (h : f₂ =Θ[l] g) : f₁ =Θ[l] g :=
   ⟨hf.trans_isBigO h.1, h.2.trans_eventuallyEq hf.symm⟩
 #align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isTheta
 
+/- warning: asymptotics.is_Theta_norm_left -> Asymptotics.isTheta_norm_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, 0, u2} α Real F Real.hasNorm _inst_2 l (fun (x : α) => Norm.norm.{u3} E' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (f' x)) g) (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g)
+but is expected to have type
+  forall {α : Type.{u3}} {F : Type.{u2}} {E' : Type.{u1}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u1} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, 0, u2} α Real F Real.norm _inst_2 l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g) (Asymptotics.IsTheta.{u3, u1, u2} α E' F (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) _inst_2 l f' g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_leftₓ'. -/
 @[simp]
 theorem isTheta_norm_left : (fun x => ‖f' x‖) =Θ[l] g ↔ f' =Θ[l] g := by simp [is_Theta]
 #align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_left
 
+/- warning: asymptotics.is_Theta_norm_right -> Asymptotics.isTheta_norm_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, 0} α E Real _inst_1 Real.hasNorm l f (fun (x : α) => Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (g' x))) (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g')
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F' : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, 0} α E Real _inst_1 Real.norm l f (fun (x : α) => Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (g' x))) (Asymptotics.IsTheta.{u3, u2, u1} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f g')
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_rightₓ'. -/
 @[simp]
 theorem isTheta_norm_right : (f =Θ[l] fun x => ‖g' x‖) ↔ f =Θ[l] g' := by simp [is_Theta]
 #align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_right
 
+/- warning: asymptotics.is_Theta.of_norm_left -> Asymptotics.IsTheta.of_norm_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, 0, u2} α Real F Real.hasNorm _inst_2 l (fun (x : α) => Norm.norm.{u3} E' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g)
+but is expected to have type
+  forall {α : Type.{u3}} {F : Type.{u2}} {E' : Type.{u1}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u1} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, 0, u2} α Real F Real.norm _inst_2 l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u3, u1, u2} α E' F (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) _inst_2 l f' g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_leftₓ'. -/
+/- warning: asymptotics.is_Theta.norm_left -> Asymptotics.IsTheta.norm_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u1, 0, u2} α Real F Real.hasNorm _inst_2 l (fun (x : α) => Norm.norm.{u3} E' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (f' x)) g)
+but is expected to have type
+  forall {α : Type.{u3}} {F : Type.{u2}} {E' : Type.{u1}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u1} E'] {g : α -> F} {f' : α -> E'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u1, u2} α E' F (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u3, 0, u2} α Real F Real.norm _inst_2 l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.norm_left Asymptotics.IsTheta.norm_leftₓ'. -/
 alias is_Theta_norm_left ↔ is_Theta.of_norm_left is_Theta.norm_left
 #align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_left
 #align asymptotics.is_Theta.norm_left Asymptotics.IsTheta.norm_left
 
+/- warning: asymptotics.is_Theta.of_norm_right -> Asymptotics.IsTheta.of_norm_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, 0} α E Real _inst_1 Real.hasNorm l f (fun (x : α) => Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (g' x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g')
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F' : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, 0} α E Real _inst_1 Real.norm l f (fun (x : α) => Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (g' x))) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f g')
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_rightₓ'. -/
+/- warning: asymptotics.is_Theta.norm_right -> Asymptotics.IsTheta.norm_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u1, u2, 0} α E Real _inst_1 Real.hasNorm l f (fun (x : α) => Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (g' x)))
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F' : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f : α -> E} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u3, u2, 0} α E Real _inst_1 Real.norm l f (fun (x : α) => Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (g' x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_rightₓ'. -/
 alias is_Theta_norm_right ↔ is_Theta.of_norm_right is_Theta.norm_right
 #align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_right
 #align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_right
 
+/- warning: asymptotics.is_Theta_of_norm_eventually_eq -> Asymptotics.isTheta_of_norm_eventuallyEq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α}, (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => Norm.norm.{u2} E _inst_1 (f x)) (fun (x : α) => Norm.norm.{u3} F _inst_2 (g x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α}, (Filter.EventuallyEq.{u3, 0} α Real l (fun (x : α) => Norm.norm.{u2} E _inst_1 (f x)) (fun (x : α) => Norm.norm.{u1} F _inst_2 (g x))) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_of_norm_eventually_eq Asymptotics.isTheta_of_norm_eventuallyEqₓ'. -/
 theorem isTheta_of_norm_eventuallyEq (h : (fun x => ‖f x‖) =ᶠ[l] fun x => ‖g x‖) : f =Θ[l] g :=
   ⟨IsBigO.of_bound 1 <| by simpa only [one_mul] using h.le,
     IsBigO.of_bound 1 <| by simpa only [one_mul] using h.symm.le⟩
 #align asymptotics.is_Theta_of_norm_eventually_eq Asymptotics.isTheta_of_norm_eventuallyEq
 
-theorem isTheta_of_norm_eventually_eq' {g : α → ℝ} (h : (fun x => ‖f' x‖) =ᶠ[l] g) : f' =Θ[l] g :=
+/- warning: asymptotics.is_Theta_of_norm_eventually_eq' -> Asymptotics.isTheta_of_norm_eventuallyEq' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] {f' : α -> E'} {l : Filter.{u1} α} {g : α -> Real}, (Filter.EventuallyEq.{u1, 0} α Real l (fun (x : α) => Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u1, u2, 0} α E' Real (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) Real.hasNorm l f' g)
+but is expected to have type
+  forall {α : Type.{u2}} {E' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u1} E'] {f' : α -> E'} {l : Filter.{u2} α} {g : α -> Real}, (Filter.EventuallyEq.{u2, 0} α Real l (fun (x : α) => Norm.norm.{u1} E' (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) (f' x)) g) -> (Asymptotics.IsTheta.{u2, u1, 0} α E' Real (SeminormedAddCommGroup.toNorm.{u1} E' _inst_4) Real.norm l f' g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventuallyEq'ₓ'. -/
+theorem isTheta_of_norm_eventuallyEq' {g : α → ℝ} (h : (fun x => ‖f' x‖) =ᶠ[l] g) : f' =Θ[l] g :=
   isTheta_of_norm_eventuallyEq <| h.mono fun x hx => by simp only [← hx, norm_norm]
-#align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventually_eq'
-
+#align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventuallyEq'
+
+/- warning: asymptotics.is_Theta.is_o_congr_left -> Asymptotics.IsTheta.isLittleO_congr_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {G : Type.{u2}} {E' : Type.{u3}} {F' : Type.{u4}} [_inst_3 : Norm.{u2} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α E' F' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsLittleO.{u1, u3, u2} α E' G (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsLittleO.{u1, u4, u2} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g' k))
+but is expected to have type
+  forall {α : Type.{u4}} {G : Type.{u1}} {E' : Type.{u3}} {F' : Type.{u2}} [_inst_3 : Norm.{u1} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsLittleO.{u4, u3, u1} α E' G (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsLittleO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g' k))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isLittleO_congr_leftₓ'. -/
 theorem IsTheta.isLittleO_congr_left (h : f' =Θ[l] g') : f' =o[l] k ↔ g' =o[l] k :=
   ⟨h.symm.trans_isLittleO, h.trans_isLittleO⟩
 #align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isLittleO_congr_left
 
+/- warning: asymptotics.is_Theta.is_o_congr_right -> Asymptotics.IsTheta.isLittleO_congr_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {G' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u4} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α F' G' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsLittleO.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsLittleO.{u1, u2, u4} α E G' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l f k'))
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u1}} {F' : Type.{u3}} {G' : Type.{u2}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u2} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α F' G' (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsLittleO.{u4, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsLittleO.{u4, u1, u2} α E G' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l f k'))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isLittleO_congr_rightₓ'. -/
 theorem IsTheta.isLittleO_congr_right (h : g' =Θ[l] k') : f =o[l] g' ↔ f =o[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isLittleO_congr_right
 
+/- warning: asymptotics.is_Theta.is_O_congr_left -> Asymptotics.IsTheta.isBigO_congr_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {G : Type.{u2}} {E' : Type.{u3}} {F' : Type.{u4}} [_inst_3 : Norm.{u2} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u4} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α E' F' (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsBigO.{u1, u3, u2} α E' G (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsBigO.{u1, u4, u2} α F' G (SeminormedAddCommGroup.toHasNorm.{u4} F' _inst_5) _inst_3 l g' k))
+but is expected to have type
+  forall {α : Type.{u4}} {G : Type.{u1}} {E' : Type.{u3}} {F' : Type.{u2}} [_inst_3 : Norm.{u1} G] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_5 : SeminormedAddCommGroup.{u2} F'] {k : α -> G} {f' : α -> E'} {g' : α -> F'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l f' g') -> (Iff (Asymptotics.IsBigO.{u4, u3, u1} α E' G (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_3 l f' k) (Asymptotics.IsBigO.{u4, u2, u1} α F' G (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) _inst_3 l g' k))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isBigO_congr_leftₓ'. -/
 theorem IsTheta.isBigO_congr_left (h : f' =Θ[l] g') : f' =O[l] k ↔ g' =O[l] k :=
   ⟨h.symm.trans_isBigO, h.trans_isBigO⟩
 #align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isBigO_congr_left
 
+/- warning: asymptotics.is_Theta.is_O_congr_right -> Asymptotics.IsTheta.isBigO_congr_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {G' : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u4} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u3, u4} α F' G' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsBigO.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsBigO.{u1, u2, u4} α E G' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u4} G' _inst_6) l f k'))
+but is expected to have type
+  forall {α : Type.{u4}} {E : Type.{u1}} {F' : Type.{u3}} {G' : Type.{u2}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_6 : SeminormedAddCommGroup.{u2} G'] {f : α -> E} {g' : α -> F'} {k' : α -> G'} {l : Filter.{u4} α}, (Asymptotics.IsTheta.{u4, u3, u2} α F' G' (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l g' k') -> (Iff (Asymptotics.IsBigO.{u4, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g') (Asymptotics.IsBigO.{u4, u1, u2} α E G' _inst_1 (SeminormedAddCommGroup.toNorm.{u2} G' _inst_6) l f k'))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_rightₓ'. -/
 theorem IsTheta.isBigO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_right
 
+/- warning: asymptotics.is_Theta.mono -> Asymptotics.IsTheta.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u3} F] {f : α -> E} {g : α -> F} {l : Filter.{u1} α} {l' : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) l' l) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F _inst_1 _inst_2 l' f g)
+but is expected to have type
+  forall {α : Type.{u3}} {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : Norm.{u2} E] [_inst_2 : Norm.{u1} F] {f : α -> E} {g : α -> F} {l : Filter.{u3} α} {l' : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l f g) -> (LE.le.{u3} (Filter.{u3} α) (Preorder.toLE.{u3} (Filter.{u3} α) (PartialOrder.toPreorder.{u3} (Filter.{u3} α) (Filter.instPartialOrderFilter.{u3} α))) l' l) -> (Asymptotics.IsTheta.{u3, u2, u1} α E F _inst_1 _inst_2 l' f g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.mono Asymptotics.IsTheta.monoₓ'. -/
 theorem IsTheta.mono (h : f =Θ[l] g) (hl : l' ≤ l) : f =Θ[l'] g :=
   ⟨h.1.mono hl, h.2.mono hl⟩
 #align asymptotics.is_Theta.mono Asymptotics.IsTheta.mono
 
+/- warning: asymptotics.is_Theta.sup -> Asymptotics.IsTheta.sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α} {l' : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l' f' g') -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) l l') f' g')
+but is expected to have type
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α} {l' : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l' f' g') -> (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (Sup.sup.{u3} (Filter.{u3} α) (SemilatticeSup.toSup.{u3} (Filter.{u3} α) (Lattice.toSemilatticeSup.{u3} (Filter.{u3} α) (ConditionallyCompleteLattice.toLattice.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))))) l l') f' g')
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.sup Asymptotics.IsTheta.supₓ'. -/
 theorem IsTheta.sup (h : f' =Θ[l] g') (h' : f' =Θ[l'] g') : f' =Θ[l ⊔ l'] g' :=
   ⟨h.1.sup h'.1, h.2.sup h'.2⟩
 #align asymptotics.is_Theta.sup Asymptotics.IsTheta.sup
 
+/- warning: asymptotics.is_Theta_sup -> Asymptotics.isTheta_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α} {l' : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) l l') f' g') (And (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l' f' g'))
+but is expected to have type
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α} {l' : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) (Sup.sup.{u3} (Filter.{u3} α) (SemilatticeSup.toSup.{u3} (Filter.{u3} α) (Lattice.toSemilatticeSup.{u3} (Filter.{u3} α) (ConditionallyCompleteLattice.toLattice.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))))) l l') f' g') (And (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l' f' g'))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_sup Asymptotics.isTheta_supₓ'. -/
 @[simp]
 theorem isTheta_sup : f' =Θ[l ⊔ l'] g' ↔ f' =Θ[l] g' ∧ f' =Θ[l'] g' :=
   ⟨fun h => ⟨h.mono le_sup_left, h.mono le_sup_right⟩, fun h => h.1.sup h.2⟩
 #align asymptotics.is_Theta_sup Asymptotics.isTheta_sup
 
+/- warning: asymptotics.is_Theta.eq_zero_iff -> Asymptotics.IsTheta.eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l f'' g'') -> (Filter.Eventually.{u1} α (fun (x : α) => Iff (Eq.{succ u2} E'' (f'' x) (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7)))))))))) (Eq.{succ u3} F'' (g'' x) (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8))))))))))) l)
+but is expected to have type
+  forall {α : Type.{u3}} {E'' : Type.{u2}} {F'' : Type.{u1}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u1} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E'' F'' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l f'' g'') -> (Filter.Eventually.{u3} α (fun (x : α) => Iff (Eq.{succ u2} E'' (f'' x) (OfNat.ofNat.{u2} E'' 0 (Zero.toOfNat0.{u2} E'' (NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))) (Eq.{succ u1} F'' (g'' x) (OfNat.ofNat.{u1} F'' 0 (Zero.toOfNat0.{u1} F'' (NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8)))))))))) l)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.eq_zero_iff Asymptotics.IsTheta.eq_zero_iffₓ'. -/
 theorem IsTheta.eq_zero_iff (h : f'' =Θ[l] g'') : ∀ᶠ x in l, f'' x = 0 ↔ g'' x = 0 :=
   h.1.eq_zero_imp.mp <| h.2.eq_zero_imp.mono fun x => Iff.intro
 #align asymptotics.is_Theta.eq_zero_iff Asymptotics.IsTheta.eq_zero_iff
 
+/- warning: asymptotics.is_Theta.tendsto_zero_iff -> Asymptotics.IsTheta.tendsto_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l f'' g'') -> (Iff (Filter.Tendsto.{u1, u2} α E'' f'' l (nhds.{u2} E'' (UniformSpace.toTopologicalSpace.{u2} E'' (PseudoMetricSpace.toUniformSpace.{u2} E'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E'' _inst_7)))) (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7))))))))))) (Filter.Tendsto.{u1, u3} α F'' g'' l (nhds.{u3} F'' (UniformSpace.toTopologicalSpace.{u3} F'' (PseudoMetricSpace.toUniformSpace.{u3} F'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F'' _inst_8)))) (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8))))))))))))
+but is expected to have type
+  forall {α : Type.{u3}} {E'' : Type.{u2}} {F'' : Type.{u1}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u1} F''] {f'' : α -> E''} {g'' : α -> F''} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E'' F'' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l f'' g'') -> (Iff (Filter.Tendsto.{u3, u2} α E'' f'' l (nhds.{u2} E'' (UniformSpace.toTopologicalSpace.{u2} E'' (PseudoMetricSpace.toUniformSpace.{u2} E'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E'' _inst_7)))) (OfNat.ofNat.{u2} E'' 0 (Zero.toOfNat0.{u2} E'' (NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7)))))))))) (Filter.Tendsto.{u3, u1} α F'' g'' l (nhds.{u1} F'' (UniformSpace.toTopologicalSpace.{u1} F'' (PseudoMetricSpace.toUniformSpace.{u1} F'' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F'' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F'' _inst_8)))) (OfNat.ofNat.{u1} F'' 0 (Zero.toOfNat0.{u1} F'' (NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8)))))))))))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.tendsto_zero_iff Asymptotics.IsTheta.tendsto_zero_iffₓ'. -/
 theorem IsTheta.tendsto_zero_iff (h : f'' =Θ[l] g'') : Tendsto f'' l (𝓝 0) ↔ Tendsto g'' l (𝓝 0) :=
   by simp only [← is_o_one_iff ℝ, h.is_o_congr_left]
 #align asymptotics.is_Theta.tendsto_zero_iff Asymptotics.IsTheta.tendsto_zero_iff
 
+/- warning: asymptotics.is_Theta.tendsto_norm_at_top_iff -> Asymptotics.IsTheta.tendsto_norm_atTop_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Iff (Filter.Tendsto.{u1, 0} α Real (Function.comp.{succ u1, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4)) f') l (Filter.atTop.{0} Real Real.preorder)) (Filter.Tendsto.{u1, 0} α Real (Function.comp.{succ u1, succ u3, 1} α F' Real (Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5)) g') l (Filter.atTop.{0} Real Real.preorder)))
+but is expected to have type
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Iff (Filter.Tendsto.{u3, 0} α Real (Function.comp.{succ u3, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4)) f') l (Filter.atTop.{0} Real Real.instPreorderReal)) (Filter.Tendsto.{u3, 0} α Real (Function.comp.{succ u3, succ u1, 1} α F' Real (Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5)) g') l (Filter.atTop.{0} Real Real.instPreorderReal)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.tendsto_norm_at_top_iff Asymptotics.IsTheta.tendsto_norm_atTop_iffₓ'. -/
 theorem IsTheta.tendsto_norm_atTop_iff (h : f' =Θ[l] g') :
     Tendsto (norm ∘ f') l atTop ↔ Tendsto (norm ∘ g') l atTop := by
   simp only [← is_o_const_left_of_ne (one_ne_zero' ℝ), h.is_o_congr_right]
 #align asymptotics.is_Theta.tendsto_norm_at_top_iff Asymptotics.IsTheta.tendsto_norm_atTop_iff
 
+/- warning: asymptotics.is_Theta.is_bounded_under_le_iff -> Asymptotics.IsTheta.isBoundedUnder_le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u1} α}, (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u1} Real α (LE.le.{0} Real Real.hasLe) l (Function.comp.{succ u1, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u1} Real α (LE.le.{0} Real Real.hasLe) l (Function.comp.{succ u1, succ u3, 1} α F' Real (Norm.norm.{u3} F' (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5)) g')))
+but is expected to have type
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u1} F'] {f' : α -> E'} {g' : α -> F'} {l : Filter.{u3} α}, (Asymptotics.IsTheta.{u3, u2, u1} α E' F' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f' g') -> (Iff (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5162 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5164 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5162 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5164) l (Function.comp.{succ u3, succ u2, 1} α E' Real (Norm.norm.{u2} E' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4)) f')) (Filter.IsBoundedUnder.{0, u3} Real α (fun (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5186 : Real) (x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5188 : Real) => LE.le.{0} Real Real.instLEReal x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5186 x._@.Mathlib.Analysis.Asymptotics.Theta._hyg.5188) l (Function.comp.{succ u3, succ u1, 1} α F' Real (Norm.norm.{u1} F' (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5)) g')))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iffₓ'. -/
 theorem IsTheta.isBoundedUnder_le_iff (h : f' =Θ[l] g') :
     IsBoundedUnder (· ≤ ·) l (norm ∘ f') ↔ IsBoundedUnder (· ≤ ·) l (norm ∘ g') := by
   simp only [← is_O_const_of_ne (one_ne_zero' ℝ), h.is_O_congr_left]
 #align asymptotics.is_Theta.is_bounded_under_le_iff Asymptotics.IsTheta.isBoundedUnder_le_iff
 
+/- warning: asymptotics.is_Theta.smul -> Asymptotics.IsTheta.smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} {𝕜' : Type.{u5}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] [_inst_13 : NormedField.{u5} 𝕜'] {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u2} 𝕜 E' _inst_12 _inst_4] [_inst_15 : NormedSpace.{u5, u3} 𝕜' F' _inst_13 _inst_5] {f₁ : α -> 𝕜} {f₂ : α -> 𝕜'} {g₁ : α -> E'} {g₂ : α -> F'}, (Asymptotics.IsTheta.{u1, u4, u5} α 𝕜 𝕜' (NormedField.toHasNorm.{u4} 𝕜 _inst_12) (NormedField.toHasNorm.{u5} 𝕜' _inst_13) l f₁ f₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l g₁ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α E' F' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l (fun (x : α) => SMul.smul.{u4, u2} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u2} 𝕜 E' (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (AddCommMonoid.toAddMonoid.{u2} E' (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u2} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (AddCommMonoid.toAddMonoid.{u2} E' (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u2} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (AddCommMonoid.toAddMonoid.{u2} E' (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u2} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)) (NormedSpace.toModule.{u4, u2} 𝕜 E' _inst_12 _inst_4 _inst_14))))) (f₁ x) (g₁ x)) (fun (x : α) => SMul.smul.{u5, u3} 𝕜' F' (SMulZeroClass.toHasSmul.{u5, u3} 𝕜' F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u5, u3} 𝕜' F' (MulZeroClass.toHasZero.{u5} 𝕜' (MulZeroOneClass.toMulZeroClass.{u5} 𝕜' (MonoidWithZero.toMulZeroOneClass.{u5} 𝕜' (Semiring.toMonoidWithZero.{u5} 𝕜' (Ring.toSemiring.{u5} 𝕜' (NormedRing.toRing.{u5} 𝕜' (NormedCommRing.toNormedRing.{u5} 𝕜' (NormedField.toNormedCommRing.{u5} 𝕜' _inst_13)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u5, u3} 𝕜' F' (Semiring.toMonoidWithZero.{u5} 𝕜' (Ring.toSemiring.{u5} 𝕜' (NormedRing.toRing.{u5} 𝕜' (NormedCommRing.toNormedRing.{u5} 𝕜' (NormedField.toNormedCommRing.{u5} 𝕜' _inst_13))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u5, u3} 𝕜' F' (Ring.toSemiring.{u5} 𝕜' (NormedRing.toRing.{u5} 𝕜' (NormedCommRing.toNormedRing.{u5} 𝕜' (NormedField.toNormedCommRing.{u5} 𝕜' _inst_13)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u5, u3} 𝕜' F' _inst_13 _inst_5 _inst_15))))) (f₂ x) (g₂ x)))
+but is expected to have type
+  forall {α : Type.{u1}} {E' : Type.{u4}} {F' : Type.{u2}} {𝕜 : Type.{u5}} {𝕜' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u4} E'] [_inst_5 : SeminormedAddCommGroup.{u2} F'] [_inst_12 : NormedField.{u5} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u5, u4} 𝕜 E' _inst_12 _inst_4] [_inst_15 : NormedSpace.{u3, u2} 𝕜' F' _inst_13 _inst_5] {f₁ : α -> 𝕜} {f₂ : α -> 𝕜'} {g₁ : α -> E'} {g₂ : α -> F'}, (Asymptotics.IsTheta.{u1, u5, u3} α 𝕜 𝕜' (NormedField.toNorm.{u5} 𝕜 _inst_12) (NormedField.toNorm.{u3} 𝕜' _inst_13) l f₁ f₂) -> (Asymptotics.IsTheta.{u1, u4, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u4} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l g₁ g₂) -> (Asymptotics.IsTheta.{u1, u4, u2} α E' F' (SeminormedAddCommGroup.toNorm.{u4} E' _inst_4) (SeminormedAddCommGroup.toNorm.{u2} F' _inst_5) l (fun (x : α) => HSMul.hSMul.{u5, u4, u4} 𝕜 E' E' (instHSMul.{u5, u4} 𝕜 E' (SMulZeroClass.toSMul.{u5, u4} 𝕜 E' (NegZeroClass.toZero.{u4} E' (SubNegZeroMonoid.toNegZeroClass.{u4} E' (SubtractionMonoid.toSubNegZeroMonoid.{u4} E' (SubtractionCommMonoid.toSubtractionMonoid.{u4} E' (AddCommGroup.toDivisionAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u5, u4} 𝕜 E' (CommMonoidWithZero.toZero.{u5} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u5} 𝕜 (Semifield.toCommGroupWithZero.{u5} 𝕜 (Field.toSemifield.{u5} 𝕜 (NormedField.toField.{u5} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u4} E' (SubNegZeroMonoid.toNegZeroClass.{u4} E' (SubtractionMonoid.toSubNegZeroMonoid.{u4} E' (SubtractionCommMonoid.toSubtractionMonoid.{u4} E' (AddCommGroup.toDivisionAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u5, u4} 𝕜 E' (Semiring.toMonoidWithZero.{u5} 𝕜 (DivisionSemiring.toSemiring.{u5} 𝕜 (Semifield.toDivisionSemiring.{u5} 𝕜 (Field.toSemifield.{u5} 𝕜 (NormedField.toField.{u5} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u4} E' (SubNegZeroMonoid.toNegZeroClass.{u4} E' (SubtractionMonoid.toSubNegZeroMonoid.{u4} E' (SubtractionCommMonoid.toSubtractionMonoid.{u4} E' (AddCommGroup.toDivisionAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)))))) (Module.toMulActionWithZero.{u5, u4} 𝕜 E' (DivisionSemiring.toSemiring.{u5} 𝕜 (Semifield.toDivisionSemiring.{u5} 𝕜 (Field.toSemifield.{u5} 𝕜 (NormedField.toField.{u5} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u4} E' (SeminormedAddCommGroup.toAddCommGroup.{u4} E' _inst_4)) (NormedSpace.toModule.{u5, u4} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) (f₁ x) (g₁ x)) (fun (x : α) => HSMul.hSMul.{u3, u2, u2} 𝕜' F' F' (instHSMul.{u3, u2} 𝕜' F' (SMulZeroClass.toSMul.{u3, u2} 𝕜' F' (NegZeroClass.toZero.{u2} F' (SubNegZeroMonoid.toNegZeroClass.{u2} F' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F' (AddCommGroup.toDivisionAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕜' F' (CommMonoidWithZero.toZero.{u3} 𝕜' (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜' (Semifield.toCommGroupWithZero.{u3} 𝕜' (Field.toSemifield.{u3} 𝕜' (NormedField.toField.{u3} 𝕜' _inst_13))))) (NegZeroClass.toZero.{u2} F' (SubNegZeroMonoid.toNegZeroClass.{u2} F' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F' (AddCommGroup.toDivisionAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u3, u2} 𝕜' F' (Semiring.toMonoidWithZero.{u3} 𝕜' (DivisionSemiring.toSemiring.{u3} 𝕜' (Semifield.toDivisionSemiring.{u3} 𝕜' (Field.toSemifield.{u3} 𝕜' (NormedField.toField.{u3} 𝕜' _inst_13))))) (NegZeroClass.toZero.{u2} F' (SubNegZeroMonoid.toNegZeroClass.{u2} F' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F' (AddCommGroup.toDivisionAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)))))) (Module.toMulActionWithZero.{u3, u2} 𝕜' F' (DivisionSemiring.toSemiring.{u3} 𝕜' (Semifield.toDivisionSemiring.{u3} 𝕜' (Field.toSemifield.{u3} 𝕜' (NormedField.toField.{u3} 𝕜' _inst_13)))) (AddCommGroup.toAddCommMonoid.{u2} F' (SeminormedAddCommGroup.toAddCommGroup.{u2} F' _inst_5)) (NormedSpace.toModule.{u3, u2} 𝕜' F' _inst_13 _inst_5 _inst_15)))))) (f₂ x) (g₂ x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.smul Asymptotics.IsTheta.smulₓ'. -/
 theorem IsTheta.smul [NormedSpace 𝕜 E'] [NormedSpace 𝕜' F'] {f₁ : α → 𝕜} {f₂ : α → 𝕜'} {g₁ : α → E'}
     {g₂ : α → F'} (hf : f₁ =Θ[l] f₂) (hg : g₁ =Θ[l] g₂) :
     (fun x => f₁ x • g₁ x) =Θ[l] fun x => f₂ x • g₂ x :=
   ⟨hf.1.smul hg.1, hf.2.smul hg.2⟩
 #align asymptotics.is_Theta.smul Asymptotics.IsTheta.smul
 
+/- warning: asymptotics.is_Theta.mul -> Asymptotics.IsTheta.mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HMul.hMul.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHMul.{u2} 𝕜 (Distrib.toHasMul.{u2} 𝕜 (Ring.toDistrib.{u2} 𝕜 (NormedRing.toRing.{u2} 𝕜 (NormedCommRing.toNormedRing.{u2} 𝕜 (NormedField.toNormedCommRing.{u2} 𝕜 _inst_12)))))) (f₁ x) (f₂ x)) (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜' 𝕜' 𝕜' (instHMul.{u3} 𝕜' (Distrib.toHasMul.{u3} 𝕜' (Ring.toDistrib.{u3} 𝕜' (NormedRing.toRing.{u3} 𝕜' (NormedCommRing.toNormedRing.{u3} 𝕜' (NormedField.toNormedCommRing.{u3} 𝕜' _inst_13)))))) (g₁ x) (g₂ x)))
+but is expected to have type
+  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HMul.hMul.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHMul.{u2} 𝕜 (NonUnitalNonAssocRing.toMul.{u2} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕜 (Ring.toNonAssocRing.{u2} 𝕜 (NormedRing.toRing.{u2} 𝕜 (NormedCommRing.toNormedRing.{u2} 𝕜 (NormedField.toNormedCommRing.{u2} 𝕜 _inst_12))))))) (f₁ x) (f₂ x)) (fun (x : α) => HMul.hMul.{u1, u1, u1} 𝕜' 𝕜' 𝕜' (instHMul.{u1} 𝕜' (NonUnitalNonAssocRing.toMul.{u1} 𝕜' (NonAssocRing.toNonUnitalNonAssocRing.{u1} 𝕜' (Ring.toNonAssocRing.{u1} 𝕜' (NormedRing.toRing.{u1} 𝕜' (NormedCommRing.toNormedRing.{u1} 𝕜' (NormedField.toNormedCommRing.{u1} 𝕜' _inst_13))))))) (g₁ x) (g₂ x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.mul Asymptotics.IsTheta.mulₓ'. -/
 theorem IsTheta.mul {f₁ f₂ : α → 𝕜} {g₁ g₂ : α → 𝕜'} (h₁ : f₁ =Θ[l] g₁) (h₂ : f₂ =Θ[l] g₂) :
     (fun x => f₁ x * f₂ x) =Θ[l] fun x => g₁ x * g₂ x :=
   h₁.smul h₂
 #align asymptotics.is_Theta.mul Asymptotics.IsTheta.mul
 
+/- warning: asymptotics.is_Theta.inv -> Asymptotics.IsTheta.inv is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (DivInvMonoid.toHasInv.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12)))) (f x)) (fun (x : α) => Inv.inv.{u3} 𝕜' (DivInvMonoid.toHasInv.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13)))) (g x)))
+but is expected to have type
+  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (Field.toInv.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12)) (f x)) (fun (x : α) => Inv.inv.{u1} 𝕜' (Field.toInv.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13)) (g x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.inv Asymptotics.IsTheta.invₓ'. -/
 theorem IsTheta.inv {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) :
     (fun x => (f x)⁻¹) =Θ[l] fun x => (g x)⁻¹ :=
   ⟨h.2.inv_rev h.1.eq_zero_imp, h.1.inv_rev h.2.eq_zero_imp⟩
 #align asymptotics.is_Theta.inv Asymptotics.IsTheta.inv
 
+/- warning: asymptotics.is_Theta_inv -> Asymptotics.isTheta_inv is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (DivInvMonoid.toHasInv.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12)))) (f x)) (fun (x : α) => Inv.inv.{u3} 𝕜' (DivInvMonoid.toHasInv.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13)))) (g x))) (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g)
+but is expected to have type
+  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => Inv.inv.{u2} 𝕜 (Field.toInv.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12)) (f x)) (fun (x : α) => Inv.inv.{u1} 𝕜' (Field.toInv.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13)) (g x))) (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_inv Asymptotics.isTheta_invₓ'. -/
 @[simp]
 theorem isTheta_inv {f : α → 𝕜} {g : α → 𝕜'} :
     ((fun x => (f x)⁻¹) =Θ[l] fun x => (g x)⁻¹) ↔ f =Θ[l] g :=
   ⟨fun h => by simpa only [inv_inv] using h.inv, IsTheta.inv⟩
 #align asymptotics.is_Theta_inv Asymptotics.isTheta_inv
 
+/- warning: asymptotics.is_Theta.div -> Asymptotics.IsTheta.div is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HDiv.hDiv.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHDiv.{u2} 𝕜 (DivInvMonoid.toHasDiv.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12))))) (f₁ x) (f₂ x)) (fun (x : α) => HDiv.hDiv.{u3, u3, u3} 𝕜' 𝕜' 𝕜' (instHDiv.{u3} 𝕜' (DivInvMonoid.toHasDiv.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13))))) (g₁ x) (g₂ x)))
+but is expected to have type
+  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f₁ : α -> 𝕜} {f₂ : α -> 𝕜} {g₁ : α -> 𝕜'} {g₂ : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₁ g₁) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f₂ g₂) -> (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HDiv.hDiv.{u2, u2, u2} 𝕜 𝕜 𝕜 (instHDiv.{u2} 𝕜 (Field.toDiv.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12))) (f₁ x) (f₂ x)) (fun (x : α) => HDiv.hDiv.{u1, u1, u1} 𝕜' 𝕜' 𝕜' (instHDiv.{u1} 𝕜' (Field.toDiv.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13))) (g₁ x) (g₂ x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.div Asymptotics.IsTheta.divₓ'. -/
 theorem IsTheta.div {f₁ f₂ : α → 𝕜} {g₁ g₂ : α → 𝕜'} (h₁ : f₁ =Θ[l] g₁) (h₂ : f₂ =Θ[l] g₂) :
     (fun x => f₁ x / f₂ x) =Θ[l] fun x => g₁ x / g₂ x := by
   simpa only [div_eq_mul_inv] using h₁.mul h₂.inv
 #align asymptotics.is_Theta.div Asymptotics.IsTheta.div
 
+/- warning: asymptotics.is_Theta.pow -> Asymptotics.IsTheta.pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g) -> (forall (n : Nat), Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Nat 𝕜 (instHPow.{u2, 0} 𝕜 Nat (Monoid.Pow.{u2} 𝕜 (Ring.toMonoid.{u2} 𝕜 (NormedRing.toRing.{u2} 𝕜 (NormedCommRing.toNormedRing.{u2} 𝕜 (NormedField.toNormedCommRing.{u2} 𝕜 _inst_12)))))) (f x) n) (fun (x : α) => HPow.hPow.{u3, 0, u3} 𝕜' Nat 𝕜' (instHPow.{u3, 0} 𝕜' Nat (Monoid.Pow.{u3} 𝕜' (Ring.toMonoid.{u3} 𝕜' (NormedRing.toRing.{u3} 𝕜' (NormedCommRing.toNormedRing.{u3} 𝕜' (NormedField.toNormedCommRing.{u3} 𝕜' _inst_13)))))) (g x) n))
+but is expected to have type
+  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g) -> (forall (n : Nat), Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Nat 𝕜 (instHPow.{u2, 0} 𝕜 Nat (Monoid.Pow.{u2} 𝕜 (MonoidWithZero.toMonoid.{u2} 𝕜 (Semiring.toMonoidWithZero.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 _inst_12)))))))) (f x) n) (fun (x : α) => HPow.hPow.{u1, 0, u1} 𝕜' Nat 𝕜' (instHPow.{u1, 0} 𝕜' Nat (Monoid.Pow.{u1} 𝕜' (MonoidWithZero.toMonoid.{u1} 𝕜' (Semiring.toMonoidWithZero.{u1} 𝕜' (DivisionSemiring.toSemiring.{u1} 𝕜' (Semifield.toDivisionSemiring.{u1} 𝕜' (Field.toSemifield.{u1} 𝕜' (NormedField.toField.{u1} 𝕜' _inst_13)))))))) (g x) n))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.pow Asymptotics.IsTheta.powₓ'. -/
 theorem IsTheta.pow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℕ) :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   ⟨h.1.pow n, h.2.pow n⟩
 #align asymptotics.is_Theta.pow Asymptotics.IsTheta.pow
 
+/- warning: asymptotics.is_Theta.zpow -> Asymptotics.IsTheta.zpow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {𝕜 : Type.{u2}} {𝕜' : Type.{u3}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u3} 𝕜'] {l : Filter.{u1} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l f g) -> (forall (n : Int), Asymptotics.IsTheta.{u1, u2, u3} α 𝕜 𝕜' (NormedField.toHasNorm.{u2} 𝕜 _inst_12) (NormedField.toHasNorm.{u3} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Int 𝕜 (instHPow.{u2, 0} 𝕜 Int (DivInvMonoid.Pow.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12))))) (f x) n) (fun (x : α) => HPow.hPow.{u3, 0, u3} 𝕜' Int 𝕜' (instHPow.{u3, 0} 𝕜' Int (DivInvMonoid.Pow.{u3} 𝕜' (DivisionRing.toDivInvMonoid.{u3} 𝕜' (NormedDivisionRing.toDivisionRing.{u3} 𝕜' (NormedField.toNormedDivisionRing.{u3} 𝕜' _inst_13))))) (g x) n))
+but is expected to have type
+  forall {α : Type.{u3}} {𝕜 : Type.{u2}} {𝕜' : Type.{u1}} [_inst_12 : NormedField.{u2} 𝕜] [_inst_13 : NormedField.{u1} 𝕜'] {l : Filter.{u3} α} {f : α -> 𝕜} {g : α -> 𝕜'}, (Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l f g) -> (forall (n : Int), Asymptotics.IsTheta.{u3, u2, u1} α 𝕜 𝕜' (NormedField.toNorm.{u2} 𝕜 _inst_12) (NormedField.toNorm.{u1} 𝕜' _inst_13) l (fun (x : α) => HPow.hPow.{u2, 0, u2} 𝕜 Int 𝕜 (instHPow.{u2, 0} 𝕜 Int (DivInvMonoid.Pow.{u2} 𝕜 (DivisionRing.toDivInvMonoid.{u2} 𝕜 (NormedDivisionRing.toDivisionRing.{u2} 𝕜 (NormedField.toNormedDivisionRing.{u2} 𝕜 _inst_12))))) (f x) n) (fun (x : α) => HPow.hPow.{u1, 0, u1} 𝕜' Int 𝕜' (instHPow.{u1, 0} 𝕜' Int (DivInvMonoid.Pow.{u1} 𝕜' (DivisionRing.toDivInvMonoid.{u1} 𝕜' (NormedDivisionRing.toDivisionRing.{u1} 𝕜' (NormedField.toNormedDivisionRing.{u1} 𝕜' _inst_13))))) (g x) n))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpowₓ'. -/
 theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℤ) :
     (fun x => f x ^ n) =Θ[l] fun x => g x ^ n :=
   by
@@ -229,59 +459,155 @@ theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n :
   · simpa only [zpow_negSucc] using (h.pow _).inv
 #align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpow
 
+/- warning: asymptotics.is_Theta_const_const -> Asymptotics.isTheta_const_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {l : Filter.{u1} α} {c₁ : E''} {c₂ : F''}, (Ne.{succ u2} E'' c₁ (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7)))))))))) -> (Ne.{succ u3} F'' c₂ (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂))
+but is expected to have type
+  forall {α : Type.{u1}} {E'' : Type.{u3}} {F'' : Type.{u2}} [_inst_7 : NormedAddCommGroup.{u3} E''] [_inst_8 : NormedAddCommGroup.{u2} F''] {l : Filter.{u1} α} {c₁ : E''} {c₂ : F''}, (Ne.{succ u3} E'' c₁ (OfNat.ofNat.{u3} E'' 0 (Zero.toOfNat0.{u3} E'' (NegZeroClass.toZero.{u3} E'' (SubNegZeroMonoid.toNegZeroClass.{u3} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E'' (AddCommGroup.toDivisionAddCommMonoid.{u3} E'' (NormedAddCommGroup.toAddCommGroup.{u3} E'' _inst_7))))))))) -> (Ne.{succ u2} F'' c₂ (OfNat.ofNat.{u2} F'' 0 (Zero.toOfNat0.{u2} F'' (NegZeroClass.toZero.{u2} F'' (SubNegZeroMonoid.toNegZeroClass.{u2} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} F'' (AddCommGroup.toDivisionAddCommMonoid.{u2} F'' (NormedAddCommGroup.toAddCommGroup.{u2} F'' _inst_8))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α E'' F'' (NormedAddCommGroup.toNorm.{u3} E'' _inst_7) (NormedAddCommGroup.toNorm.{u2} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_const Asymptotics.isTheta_const_constₓ'. -/
 theorem isTheta_const_const {c₁ : E''} {c₂ : F''} (h₁ : c₁ ≠ 0) (h₂ : c₂ ≠ 0) :
     (fun x : α => c₁) =Θ[l] fun x => c₂ :=
   ⟨isBigO_const_const _ h₂ _, isBigO_const_const _ h₁ _⟩
 #align asymptotics.is_Theta_const_const Asymptotics.isTheta_const_const
 
+/- warning: asymptotics.is_Theta_const_const_iff -> Asymptotics.isTheta_const_const_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E'' : Type.{u2}} {F'' : Type.{u3}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u3} F''] {l : Filter.{u1} α} [_inst_14 : Filter.NeBot.{u1} α l] {c₁ : E''} {c₂ : F''}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E'' F'' (NormedAddCommGroup.toHasNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂)) (Iff (Eq.{succ u2} E'' c₁ (OfNat.ofNat.{u2} E'' 0 (OfNat.mk.{u2} E'' 0 (Zero.zero.{u2} E'' (AddZeroClass.toHasZero.{u2} E'' (AddMonoid.toAddZeroClass.{u2} E'' (SubNegMonoid.toAddMonoid.{u2} E'' (AddGroup.toSubNegMonoid.{u2} E'' (NormedAddGroup.toAddGroup.{u2} E'' (NormedAddCommGroup.toNormedAddGroup.{u2} E'' _inst_7)))))))))) (Eq.{succ u3} F'' c₂ (OfNat.ofNat.{u3} F'' 0 (OfNat.mk.{u3} F'' 0 (Zero.zero.{u3} F'' (AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))))
+but is expected to have type
+  forall {α : Type.{u3}} {E'' : Type.{u2}} {F'' : Type.{u1}} [_inst_7 : NormedAddCommGroup.{u2} E''] [_inst_8 : NormedAddCommGroup.{u1} F''] {l : Filter.{u3} α} [_inst_14 : Filter.NeBot.{u3} α l] {c₁ : E''} {c₂ : F''}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F'' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => c₁) (fun (x : α) => c₂)) (Iff (Eq.{succ u2} E'' c₁ (OfNat.ofNat.{u2} E'' 0 (Zero.toOfNat0.{u2} E'' (NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))) (Eq.{succ u1} F'' c₂ (OfNat.ofNat.{u1} F'' 0 (Zero.toOfNat0.{u1} F'' (NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_const_iff Asymptotics.isTheta_const_const_iffₓ'. -/
 @[simp]
 theorem isTheta_const_const_iff [NeBot l] {c₁ : E''} {c₂ : F''} :
     ((fun x : α => c₁) =Θ[l] fun x => c₂) ↔ (c₁ = 0 ↔ c₂ = 0) := by
   simpa only [is_Theta, is_O_const_const_iff, ← iff_def] using Iff.comm
 #align asymptotics.is_Theta_const_const_iff Asymptotics.isTheta_const_const_iff
 
+/- warning: asymptotics.is_Theta_zero_left -> Asymptotics.isTheta_zero_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E' : Type.{u2}} {F'' : Type.{u3}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u3} F''] {g'' : α -> F''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u2, u3} α E' F'' (SeminormedAddCommGroup.toHasNorm.{u2} E' _inst_4) (NormedAddCommGroup.toHasNorm.{u3} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (OfNat.mk.{u2} E' 0 (Zero.zero.{u2} E' (AddZeroClass.toHasZero.{u2} E' (AddMonoid.toAddZeroClass.{u2} E' (SubNegMonoid.toAddMonoid.{u2} E' (AddGroup.toSubNegMonoid.{u2} E' (SeminormedAddGroup.toAddGroup.{u2} E' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E' _inst_4))))))))) g'') (Filter.EventuallyEq.{u1, u3} α F'' l g'' (OfNat.ofNat.{max u1 u3} (α -> F'') 0 (OfNat.mk.{max u1 u3} (α -> F'') 0 (Zero.zero.{max u1 u3} (α -> F'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => F'') (fun (i : α) => AddZeroClass.toHasZero.{u3} F'' (AddMonoid.toAddZeroClass.{u3} F'' (SubNegMonoid.toAddMonoid.{u3} F'' (AddGroup.toSubNegMonoid.{u3} F'' (NormedAddGroup.toAddGroup.{u3} F'' (NormedAddCommGroup.toNormedAddGroup.{u3} F'' _inst_8)))))))))))
+but is expected to have type
+  forall {α : Type.{u3}} {E' : Type.{u2}} {F'' : Type.{u1}} [_inst_4 : SeminormedAddCommGroup.{u2} E'] [_inst_8 : NormedAddCommGroup.{u1} F''] {g'' : α -> F''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E' F'' (SeminormedAddCommGroup.toNorm.{u2} E' _inst_4) (NormedAddCommGroup.toNorm.{u1} F'' _inst_8) l (fun (x : α) => OfNat.ofNat.{u2} E' 0 (Zero.toOfNat0.{u2} E' (NegZeroClass.toZero.{u2} E' (SubNegZeroMonoid.toNegZeroClass.{u2} E' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E' (AddCommGroup.toDivisionAddCommMonoid.{u2} E' (SeminormedAddCommGroup.toAddCommGroup.{u2} E' _inst_4)))))))) g'') (Filter.EventuallyEq.{u3, u1} α F'' l g'' (OfNat.ofNat.{max u3 u1} (α -> F'') 0 (Zero.toOfNat0.{max u3 u1} (α -> F'') (Pi.instZero.{u3, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19139 : α) => F'') (fun (i : α) => NegZeroClass.toZero.{u1} F'' (SubNegZeroMonoid.toNegZeroClass.{u1} F'' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F'' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F'' (AddCommGroup.toDivisionAddCommMonoid.{u1} F'' (NormedAddCommGroup.toAddCommGroup.{u1} F'' _inst_8))))))))))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_leftₓ'. -/
 @[simp]
 theorem isTheta_zero_left : (fun x => (0 : E')) =Θ[l] g'' ↔ g'' =ᶠ[l] 0 := by
   simp only [is_Theta, is_O_zero, is_O_zero_right_iff, true_and_iff]
 #align asymptotics.is_Theta_zero_left Asymptotics.isTheta_zero_left
 
+/- warning: asymptotics.is_Theta_zero_right -> Asymptotics.isTheta_zero_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F' : Type.{u2}} {E'' : Type.{u3}} [_inst_5 : SeminormedAddCommGroup.{u2} F'] [_inst_7 : NormedAddCommGroup.{u3} E''] {f'' : α -> E''} {l : Filter.{u1} α}, Iff (Asymptotics.IsTheta.{u1, u3, u2} α E'' F' (NormedAddCommGroup.toHasNorm.{u3} E'' _inst_7) (SeminormedAddCommGroup.toHasNorm.{u2} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u2} F' 0 (OfNat.mk.{u2} F' 0 (Zero.zero.{u2} F' (AddZeroClass.toHasZero.{u2} F' (AddMonoid.toAddZeroClass.{u2} F' (SubNegMonoid.toAddMonoid.{u2} F' (AddGroup.toSubNegMonoid.{u2} F' (SeminormedAddGroup.toAddGroup.{u2} F' (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F' _inst_5)))))))))) (Filter.EventuallyEq.{u1, u3} α E'' l f'' (OfNat.ofNat.{max u1 u3} (α -> E'') 0 (OfNat.mk.{max u1 u3} (α -> E'') 0 (Zero.zero.{max u1 u3} (α -> E'') (Pi.instZero.{u1, u3} α (fun (ᾰ : α) => E'') (fun (i : α) => AddZeroClass.toHasZero.{u3} E'' (AddMonoid.toAddZeroClass.{u3} E'' (SubNegMonoid.toAddMonoid.{u3} E'' (AddGroup.toSubNegMonoid.{u3} E'' (NormedAddGroup.toAddGroup.{u3} E'' (NormedAddCommGroup.toNormedAddGroup.{u3} E'' _inst_7)))))))))))
+but is expected to have type
+  forall {α : Type.{u3}} {F' : Type.{u1}} {E'' : Type.{u2}} [_inst_5 : SeminormedAddCommGroup.{u1} F'] [_inst_7 : NormedAddCommGroup.{u2} E''] {f'' : α -> E''} {l : Filter.{u3} α}, Iff (Asymptotics.IsTheta.{u3, u2, u1} α E'' F' (NormedAddCommGroup.toNorm.{u2} E'' _inst_7) (SeminormedAddCommGroup.toNorm.{u1} F' _inst_5) l f'' (fun (x : α) => OfNat.ofNat.{u1} F' 0 (Zero.toOfNat0.{u1} F' (NegZeroClass.toZero.{u1} F' (SubNegZeroMonoid.toNegZeroClass.{u1} F' (SubtractionMonoid.toSubNegZeroMonoid.{u1} F' (SubtractionCommMonoid.toSubtractionMonoid.{u1} F' (AddCommGroup.toDivisionAddCommMonoid.{u1} F' (SeminormedAddCommGroup.toAddCommGroup.{u1} F' _inst_5))))))))) (Filter.EventuallyEq.{u3, u2} α E'' l f'' (OfNat.ofNat.{max u3 u2} (α -> E'') 0 (Zero.toOfNat0.{max u3 u2} (α -> E'') (Pi.instZero.{u3, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19139 : α) => E'') (fun (i : α) => NegZeroClass.toZero.{u2} E'' (SubNegZeroMonoid.toNegZeroClass.{u2} E'' (SubtractionMonoid.toSubNegZeroMonoid.{u2} E'' (SubtractionCommMonoid.toSubtractionMonoid.{u2} E'' (AddCommGroup.toDivisionAddCommMonoid.{u2} E'' (NormedAddCommGroup.toAddCommGroup.{u2} E'' _inst_7))))))))))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_rightₓ'. -/
 @[simp]
 theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
   isTheta_comm.trans isTheta_zero_left
 #align asymptotics.is_Theta_zero_right Asymptotics.isTheta_zero_right
 
+/- warning: asymptotics.is_Theta_const_smul_left -> Asymptotics.isTheta_const_smul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => SMul.smul.{u4, u3} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 E' (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14))))) c (f' x)) g) (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g))
+but is expected to have type
+  forall {α : Type.{u2}} {F : Type.{u1}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u1} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E' E' (instHSMul.{u4, u3} 𝕜 E' (SMulZeroClass.toSMul.{u4, u3} 𝕜 E' (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) c (f' x)) g) (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l f' g))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_leftₓ'. -/
 theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0) :
     (fun x => c • f' x) =Θ[l] g ↔ f' =Θ[l] g :=
   and_congr (isBigO_const_smul_left hc) (isBigO_const_smul_right hc)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
 
+/- warning: asymptotics.is_Theta.of_const_smul_left -> Asymptotics.IsTheta.of_const_smul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => SMul.smul.{u4, u3} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 E' (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14))))) c (f' x)) g) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g)
+but is expected to have type
+  forall {α : Type.{u2}} {F : Type.{u1}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u1} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E' E' (instHSMul.{u4, u3} 𝕜 E' (SMulZeroClass.toSMul.{u4, u3} 𝕜 E' (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) c (f' x)) g) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l f' g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_leftₓ'. -/
+/- warning: asymptotics.is_Theta.const_smul_left -> Asymptotics.IsTheta.const_smul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u2} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u1, u3, u2} α E' F (SeminormedAddCommGroup.toHasNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => SMul.smul.{u4, u3} 𝕜 E' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 E' (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 E' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} E' (AddMonoid.toAddZeroClass.{u3} E' (AddCommMonoid.toAddMonoid.{u3} E' (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14))))) c (f' x)) g)
+but is expected to have type
+  forall {α : Type.{u2}} {F : Type.{u1}} {E' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_2 : Norm.{u1} F] [_inst_4 : SeminormedAddCommGroup.{u3} E'] [_inst_12 : NormedField.{u4} 𝕜] {g : α -> F} {f' : α -> E'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 E' _inst_12 _inst_4] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l f' g) -> (Asymptotics.IsTheta.{u2, u3, u1} α E' F (SeminormedAddCommGroup.toNorm.{u3} E' _inst_4) _inst_2 l (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E' E' (instHSMul.{u4, u3} 𝕜 E' (SMulZeroClass.toSMul.{u4, u3} 𝕜 E' (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} E' (SubNegZeroMonoid.toNegZeroClass.{u3} E' (SubtractionMonoid.toSubNegZeroMonoid.{u3} E' (SubtractionCommMonoid.toSubtractionMonoid.{u3} E' (AddCommGroup.toDivisionAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} E' (SeminormedAddCommGroup.toAddCommGroup.{u3} E' _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E' _inst_12 _inst_4 _inst_14)))))) c (f' x)) g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_leftₓ'. -/
 alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_smul_left
 #align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_left
 #align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_left
 
+/- warning: asymptotics.is_Theta_const_smul_right -> Asymptotics.isTheta_const_smul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f (fun (x : α) => SMul.smul.{u4, u3} 𝕜 F' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 F' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14))))) c (g' x))) (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g'))
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 F' F' (instHSMul.{u4, u3} 𝕜 F' (SMulZeroClass.toSMul.{u4, u3} 𝕜 F' (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 F' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14)))))) c (g' x))) (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g'))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_rightₓ'. -/
 theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c • g' x) ↔ f =Θ[l] g' :=
   and_congr (isBigO_const_smul_right hc) (isBigO_const_smul_left hc)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
 
+/- warning: asymptotics.is_Theta.of_const_smul_right -> Asymptotics.IsTheta.of_const_smul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f (fun (x : α) => SMul.smul.{u4, u3} 𝕜 F' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 F' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14))))) c (g' x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g')
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 F' F' (instHSMul.{u4, u3} 𝕜 F' (SMulZeroClass.toSMul.{u4, u3} 𝕜 F' (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 F' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14)))))) c (g' x))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g')
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_rightₓ'. -/
+/- warning: asymptotics.is_Theta.const_smul_right -> Asymptotics.IsTheta.const_smul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u2} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u1} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (OfNat.mk.{u4} 𝕜 0 (Zero.zero.{u4} 𝕜 (MulZeroClass.toHasZero.{u4} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u4} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u4} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u4} 𝕜 (Ring.toNonAssocRing.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u1, u2, u3} α E F' _inst_1 (SeminormedAddCommGroup.toHasNorm.{u3} F' _inst_5) l f (fun (x : α) => SMul.smul.{u4, u3} 𝕜 F' (SMulZeroClass.toHasSmul.{u4, u3} 𝕜 F' (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (SMulWithZero.toSmulZeroClass.{u4, u3} 𝕜 F' (MulZeroClass.toHasZero.{u4} 𝕜 (MulZeroOneClass.toMulZeroClass.{u4} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u4} 𝕜 (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12))))) (AddZeroClass.toHasZero.{u3} F' (AddMonoid.toAddZeroClass.{u3} F' (AddCommMonoid.toAddMonoid.{u3} F' (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (Ring.toSemiring.{u4} 𝕜 (NormedRing.toRing.{u4} 𝕜 (NormedCommRing.toNormedRing.{u4} 𝕜 (NormedField.toNormedCommRing.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14))))) c (g' x)))
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} {F' : Type.{u3}} {𝕜 : Type.{u4}} [_inst_1 : Norm.{u1} E] [_inst_5 : SeminormedAddCommGroup.{u3} F'] [_inst_12 : NormedField.{u4} 𝕜] {f : α -> E} {g' : α -> F'} {l : Filter.{u2} α} [_inst_14 : NormedSpace.{u4, u3} 𝕜 F' _inst_12 _inst_5] {c : 𝕜}, (Ne.{succ u4} 𝕜 c (OfNat.ofNat.{u4} 𝕜 0 (Zero.toOfNat0.{u4} 𝕜 (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f g') -> (Asymptotics.IsTheta.{u2, u1, u3} α E F' _inst_1 (SeminormedAddCommGroup.toNorm.{u3} F' _inst_5) l f (fun (x : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 F' F' (instHSMul.{u4, u3} 𝕜 F' (SMulZeroClass.toSMul.{u4, u3} 𝕜 F' (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 F' (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 F' (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12))))) (NegZeroClass.toZero.{u3} F' (SubNegZeroMonoid.toNegZeroClass.{u3} F' (SubtractionMonoid.toSubNegZeroMonoid.{u3} F' (SubtractionCommMonoid.toSubtractionMonoid.{u3} F' (AddCommGroup.toDivisionAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 F' (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 _inst_12)))) (AddCommGroup.toAddCommMonoid.{u3} F' (SeminormedAddCommGroup.toAddCommGroup.{u3} F' _inst_5)) (NormedSpace.toModule.{u4, u3} 𝕜 F' _inst_12 _inst_5 _inst_14)))))) c (g' x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_rightₓ'. -/
 alias is_Theta_const_smul_right ↔ is_Theta.of_const_smul_right is_Theta.const_smul_right
 #align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_right
 #align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_right
 
+/- warning: asymptotics.is_Theta_const_mul_left -> Asymptotics.isTheta_const_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u1} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (f x)) g) (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l f g))
+but is expected to have type
+  forall {α : Type.{u2}} {F : Type.{u1}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u1} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u2} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (f x)) g) (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l f g))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_leftₓ'. -/
 theorem isTheta_const_mul_left {c : 𝕜} {f : α → 𝕜} (hc : c ≠ 0) :
     (fun x => c * f x) =Θ[l] g ↔ f =Θ[l] g := by
   simpa only [← smul_eq_mul] using is_Theta_const_smul_left hc
 #align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_left
 
+/- warning: asymptotics.is_Theta.of_const_mul_left -> Asymptotics.IsTheta.of_const_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u1} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (f x)) g) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l f g)
+but is expected to have type
+  forall {α : Type.{u2}} {F : Type.{u1}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u1} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u2} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (f x)) g) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l f g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_leftₓ'. -/
+/- warning: asymptotics.is_Theta.const_mul_left -> Asymptotics.IsTheta.const_mul_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {F : Type.{u2}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u2} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u1} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l f g) -> (Asymptotics.IsTheta.{u1, u3, u2} α 𝕜 F (NormedField.toHasNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (f x)) g)
+but is expected to have type
+  forall {α : Type.{u2}} {F : Type.{u1}} {𝕜 : Type.{u3}} [_inst_2 : Norm.{u1} F] [_inst_12 : NormedField.{u3} 𝕜] {g : α -> F} {l : Filter.{u2} α} {c : 𝕜} {f : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l f g) -> (Asymptotics.IsTheta.{u2, u3, u1} α 𝕜 F (NormedField.toNorm.{u3} 𝕜 _inst_12) _inst_2 l (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (f x)) g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_leftₓ'. -/
 alias is_Theta_const_mul_left ↔ is_Theta.of_const_mul_left is_Theta.const_mul_left
 #align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_left
 #align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_left
 
+/- warning: asymptotics.is_Theta_const_mul_right -> Asymptotics.isTheta_const_mul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u1} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Iff (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (g x))) (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f g))
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u1} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u2} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Iff (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (g x))) (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f g))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_rightₓ'. -/
 theorem isTheta_const_mul_right {c : 𝕜} {g : α → 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c * g x) ↔ f =Θ[l] g := by
   simpa only [← smul_eq_mul] using is_Theta_const_smul_right hc
 #align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_right
 
+/- warning: asymptotics.is_Theta.of_const_mul_right -> Asymptotics.IsTheta.of_const_mul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u1} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (g x))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f g)
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u1} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u2} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (g x))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f g)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_rightₓ'. -/
+/- warning: asymptotics.is_Theta.const_mul_right -> Asymptotics.IsTheta.const_mul_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {E : Type.{u2}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u2} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u1} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (OfNat.mk.{u3} 𝕜 0 (Zero.zero.{u3} 𝕜 (MulZeroClass.toHasZero.{u3} 𝕜 (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} 𝕜 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))))))))) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f g) -> (Asymptotics.IsTheta.{u1, u2, u3} α E 𝕜 _inst_1 (NormedField.toHasNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (Distrib.toHasMul.{u3} 𝕜 (Ring.toDistrib.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12)))))) c (g x)))
+but is expected to have type
+  forall {α : Type.{u2}} {E : Type.{u1}} {𝕜 : Type.{u3}} [_inst_1 : Norm.{u1} E] [_inst_12 : NormedField.{u3} 𝕜] {f : α -> E} {l : Filter.{u2} α} {c : 𝕜} {g : α -> 𝕜}, (Ne.{succ u3} 𝕜 c (OfNat.ofNat.{u3} 𝕜 0 (Zero.toOfNat0.{u3} 𝕜 (CommMonoidWithZero.toZero.{u3} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u3} 𝕜 (Semifield.toCommGroupWithZero.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 _inst_12)))))))) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f g) -> (Asymptotics.IsTheta.{u2, u1, u3} α E 𝕜 _inst_1 (NormedField.toNorm.{u3} 𝕜 _inst_12) l f (fun (x : α) => HMul.hMul.{u3, u3, u3} 𝕜 𝕜 𝕜 (instHMul.{u3} 𝕜 (NonUnitalNonAssocRing.toMul.{u3} 𝕜 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕜 (Ring.toNonAssocRing.{u3} 𝕜 (NormedRing.toRing.{u3} 𝕜 (NormedCommRing.toNormedRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 _inst_12))))))) c (g x)))
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_rightₓ'. -/
 alias is_Theta_const_mul_right ↔ is_Theta.of_const_mul_right is_Theta.const_mul_right
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
 #align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_right
Diff
@@ -47,19 +47,19 @@ variable {l l' : Filter α}
 /-- We say that `f` is `Θ(g)` along a filter `l` (notation: `f =Θ[l] g`) if `f =O[l] g` and
 `g =O[l] f`. -/
 def IsTheta (l : Filter α) (f : α → E) (g : α → F) : Prop :=
-  IsO l f g ∧ IsO l g f
+  IsBigO l f g ∧ IsBigO l g f
 #align asymptotics.is_Theta Asymptotics.IsTheta
 
 -- mathport name: «expr =Θ[ ] »
 notation:100 f " =Θ[" l "] " g:100 => IsTheta l f g
 
-theorem IsO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
+theorem IsBigO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
   ⟨h₁, h₂⟩
-#align asymptotics.is_O.antisymm Asymptotics.IsO.antisymm
+#align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymm
 
 @[refl]
 theorem isTheta_refl (f : α → E) (l : Filter α) : f =Θ[l] f :=
-  ⟨isO_refl _ _, isO_refl _ _⟩
+  ⟨isBigO_refl _ _, isBigO_refl _ _⟩
 #align asymptotics.is_Theta_refl Asymptotics.isTheta_refl
 
 theorem isTheta_rfl : f =Θ[l] f :=
@@ -82,39 +82,39 @@ theorem IsTheta.trans {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =
 #align asymptotics.is_Theta.trans Asymptotics.IsTheta.trans
 
 @[trans]
-theorem IsO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =O[l] g) (h₂ : g =Θ[l] k) :
-    f =O[l] k :=
+theorem IsBigO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =O[l] g)
+    (h₂ : g =Θ[l] k) : f =O[l] k :=
   h₁.trans h₂.1
-#align asymptotics.is_O.trans_is_Theta Asymptotics.IsO.trans_isTheta
+#align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isTheta
 
 @[trans]
-theorem IsTheta.trans_isO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g) (h₂ : g =O[l] k) :
-    f =O[l] k :=
+theorem IsTheta.trans_isBigO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
+    (h₂ : g =O[l] k) : f =O[l] k :=
   h₁.1.trans h₂
-#align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isO
+#align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigO
 
 @[trans]
-theorem IsOCat.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h₁ : f =o[l] g)
+theorem IsLittleO.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h₁ : f =o[l] g)
     (h₂ : g =Θ[l] k) : f =o[l] k :=
-  h₁.trans_isO h₂.1
-#align asymptotics.is_o.trans_is_Theta Asymptotics.IsOCat.trans_isTheta
+  h₁.trans_isBigO h₂.1
+#align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isTheta
 
 @[trans]
-theorem IsTheta.trans_isOCat {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
+theorem IsTheta.trans_isLittleO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =o[l] k) : f =o[l] k :=
-  h₁.1.trans_isOCat h₂
-#align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isOCat
+  h₁.1.trans_isLittleO h₂
+#align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleO
 
 @[trans]
 theorem IsTheta.trans_eventuallyEq {f : α → E} {g₁ g₂ : α → F} (h : f =Θ[l] g₁) (hg : g₁ =ᶠ[l] g₂) :
     f =Θ[l] g₂ :=
-  ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isO h.2⟩
+  ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isBigO h.2⟩
 #align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEq
 
 @[trans]
 theorem Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α → F} (hf : f₁ =ᶠ[l] f₂)
     (h : f₂ =Θ[l] g) : f₁ =Θ[l] g :=
-  ⟨hf.trans_isO h.1, h.2.trans_eventuallyEq hf.symm⟩
+  ⟨hf.trans_isBigO h.1, h.2.trans_eventuallyEq hf.symm⟩
 #align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isTheta
 
 @[simp]
@@ -134,29 +134,29 @@ alias is_Theta_norm_right ↔ is_Theta.of_norm_right is_Theta.norm_right
 #align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_right
 
 theorem isTheta_of_norm_eventuallyEq (h : (fun x => ‖f x‖) =ᶠ[l] fun x => ‖g x‖) : f =Θ[l] g :=
-  ⟨IsO.of_bound 1 <| by simpa only [one_mul] using h.le,
-    IsO.of_bound 1 <| by simpa only [one_mul] using h.symm.le⟩
+  ⟨IsBigO.of_bound 1 <| by simpa only [one_mul] using h.le,
+    IsBigO.of_bound 1 <| by simpa only [one_mul] using h.symm.le⟩
 #align asymptotics.is_Theta_of_norm_eventually_eq Asymptotics.isTheta_of_norm_eventuallyEq
 
 theorem isTheta_of_norm_eventually_eq' {g : α → ℝ} (h : (fun x => ‖f' x‖) =ᶠ[l] g) : f' =Θ[l] g :=
   isTheta_of_norm_eventuallyEq <| h.mono fun x hx => by simp only [← hx, norm_norm]
 #align asymptotics.is_Theta_of_norm_eventually_eq' Asymptotics.isTheta_of_norm_eventually_eq'
 
-theorem IsTheta.isOCat_congr_left (h : f' =Θ[l] g') : f' =o[l] k ↔ g' =o[l] k :=
-  ⟨h.symm.trans_isOCat, h.trans_isOCat⟩
-#align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isOCat_congr_left
+theorem IsTheta.isLittleO_congr_left (h : f' =Θ[l] g') : f' =o[l] k ↔ g' =o[l] k :=
+  ⟨h.symm.trans_isLittleO, h.trans_isLittleO⟩
+#align asymptotics.is_Theta.is_o_congr_left Asymptotics.IsTheta.isLittleO_congr_left
 
-theorem IsTheta.isOCat_congr_right (h : g' =Θ[l] k') : f =o[l] g' ↔ f =o[l] k' :=
+theorem IsTheta.isLittleO_congr_right (h : g' =Θ[l] k') : f =o[l] g' ↔ f =o[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
-#align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isOCat_congr_right
+#align asymptotics.is_Theta.is_o_congr_right Asymptotics.IsTheta.isLittleO_congr_right
 
-theorem IsTheta.isO_congr_left (h : f' =Θ[l] g') : f' =O[l] k ↔ g' =O[l] k :=
-  ⟨h.symm.trans_isO, h.trans_isO⟩
-#align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isO_congr_left
+theorem IsTheta.isBigO_congr_left (h : f' =Θ[l] g') : f' =O[l] k ↔ g' =O[l] k :=
+  ⟨h.symm.trans_isBigO, h.trans_isBigO⟩
+#align asymptotics.is_Theta.is_O_congr_left Asymptotics.IsTheta.isBigO_congr_left
 
-theorem IsTheta.isO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k' :=
+theorem IsTheta.isBigO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k' :=
   ⟨fun H => H.trans_isTheta h, fun H => H.trans_isTheta h.symm⟩
-#align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isO_congr_right
+#align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_right
 
 theorem IsTheta.mono (h : f =Θ[l] g) (hl : l' ≤ l) : f =Θ[l'] g :=
   ⟨h.1.mono hl, h.2.mono hl⟩
@@ -231,7 +231,7 @@ theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n :
 
 theorem isTheta_const_const {c₁ : E''} {c₂ : F''} (h₁ : c₁ ≠ 0) (h₂ : c₂ ≠ 0) :
     (fun x : α => c₁) =Θ[l] fun x => c₂ :=
-  ⟨isO_const_const _ h₂ _, isO_const_const _ h₁ _⟩
+  ⟨isBigO_const_const _ h₂ _, isBigO_const_const _ h₁ _⟩
 #align asymptotics.is_Theta_const_const Asymptotics.isTheta_const_const
 
 @[simp]
@@ -252,7 +252,7 @@ theorem isTheta_zero_right : (f'' =Θ[l] fun x => (0 : F')) ↔ f'' =ᶠ[l] 0 :=
 
 theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0) :
     (fun x => c • f' x) =Θ[l] g ↔ f' =Θ[l] g :=
-  and_congr (isO_const_smul_left hc) (isO_const_smul_right hc)
+  and_congr (isBigO_const_smul_left hc) (isBigO_const_smul_right hc)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
 
 alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_smul_left
@@ -261,7 +261,7 @@ alias is_Theta_const_smul_left ↔ is_Theta.of_const_smul_left is_Theta.const_sm
 
 theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0) :
     (f =Θ[l] fun x => c • g' x) ↔ f =Θ[l] g' :=
-  and_congr (isO_const_smul_right hc) (isO_const_smul_left hc)
+  and_congr (isBigO_const_smul_right hc) (isBigO_const_smul_left hc)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
 
 alias is_Theta_const_smul_right ↔ is_Theta.of_const_smul_right is_Theta.const_smul_right
Diff
@@ -31,8 +31,8 @@ variable {α : Type _} {β : Type _} {E : Type _} {F : Type _} {G : Type _} {E'
 variable [Norm E] [Norm F] [Norm G]
 
 variable [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] [SeminormedAddCommGroup G']
-  [NormedAddCommGroup E''] [NormedAddCommGroup F''] [NormedAddCommGroup G''] [SemiNormedRing R]
-  [SemiNormedRing R']
+  [NormedAddCommGroup E''] [NormedAddCommGroup F''] [NormedAddCommGroup G''] [SeminormedRing R]
+  [SeminormedRing R']
 
 variable [NormedField 𝕜] [NormedField 𝕜']
 
Diff
@@ -28,7 +28,7 @@ variable {α : Type _} {β : Type _} {E : Type _} {F : Type _} {G : Type _} {E'
   {F' : Type _} {G' : Type _} {E'' : Type _} {F'' : Type _} {G'' : Type _} {R : Type _}
   {R' : Type _} {𝕜 : Type _} {𝕜' : Type _}
 
-variable [HasNorm E] [HasNorm F] [HasNorm G]
+variable [Norm E] [Norm F] [Norm G]
 
 variable [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] [SeminormedAddCommGroup G']
   [NormedAddCommGroup E''] [NormedAddCommGroup F''] [NormedAddCommGroup G''] [SemiNormedRing R]

Changes in mathlib4

mathlib3
mathlib4
chore: Rename zpow_coe_nat to zpow_natCast (#11528)

... and add a deprecated alias for the old name. This is mostly just me discovering the power of F2

Diff
@@ -260,7 +260,7 @@ theorem IsTheta.pow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : 
 theorem IsTheta.zpow {f : α → 𝕜} {g : α → 𝕜'} (h : f =Θ[l] g) (n : ℤ) :
     (fun x ↦ f x ^ n) =Θ[l] fun x ↦ g x ^ n := by
   cases n
-  · simpa only [Int.ofNat_eq_coe, zpow_coe_nat] using h.pow _
+  · simpa only [Int.ofNat_eq_coe, zpow_natCast] using h.pow _
   · simpa only [zpow_negSucc] using (h.pow _).inv
 #align asymptotics.is_Theta.zpow Asymptotics.IsTheta.zpow
 
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -29,19 +29,14 @@ variable {α : Type*} {β : Type*} {E : Type*} {F : Type*} {G : Type*} {E' : Typ
   {R' : Type*} {𝕜 : Type*} {𝕜' : Type*}
 
 variable [Norm E] [Norm F] [Norm G]
-
 variable [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] [SeminormedAddCommGroup G']
   [NormedAddCommGroup E''] [NormedAddCommGroup F''] [NormedAddCommGroup G''] [SeminormedRing R]
   [SeminormedRing R']
 
 variable [NormedField 𝕜] [NormedField 𝕜']
-
 variable {c c' c₁ c₂ : ℝ} {f : α → E} {g : α → F} {k : α → G}
-
 variable {f' : α → E'} {g' : α → F'} {k' : α → G'}
-
 variable {f'' : α → E''} {g'' : α → F''}
-
 variable {l l' : Filter α}
 
 /-- We say that `f` is `Θ(g)` along a filter `l` (notation: `f =Θ[l] g`) if `f =O[l] g` and
chore: classify added instance porting notes (#10755)

Classifies by adding issue number (#10754) to porting notes claiming added instance.

Diff
@@ -85,7 +85,7 @@ theorem IsTheta.trans {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =
   ⟨h₁.1.trans h₂.1, h₂.2.trans h₁.2⟩
 #align asymptotics.is_Theta.trans Asymptotics.IsTheta.trans
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsTheta l) (IsTheta l) (IsTheta l) :=
   ⟨IsTheta.trans⟩
 
@@ -95,7 +95,7 @@ theorem IsBigO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁
   h₁.trans h₂.1
 #align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isTheta
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsBigO l) (IsTheta l) (IsBigO l) :=
   ⟨IsBigO.trans_isTheta⟩
 
@@ -105,7 +105,7 @@ theorem IsTheta.trans_isBigO {f : α → E} {g : α → F'} {k : α → G} (h₁
   h₁.1.trans h₂
 #align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigO
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsTheta l) (IsBigO l) (IsBigO l) :=
   ⟨IsTheta.trans_isBigO⟩
 
@@ -115,7 +115,7 @@ theorem IsLittleO.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h
   h₁.trans_isBigO h₂.1
 #align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isTheta
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → F') (γ := α → G') (IsLittleO l) (IsTheta l) (IsLittleO l) :=
   ⟨IsLittleO.trans_isTheta⟩
 
@@ -125,7 +125,7 @@ theorem IsTheta.trans_isLittleO {f : α → E} {g : α → F'} {k : α → G} (h
   h₁.1.trans_isLittleO h₂
 #align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleO
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsTheta l) (IsLittleO l) (IsLittleO l) :=
   ⟨IsTheta.trans_isLittleO⟩
 
@@ -135,7 +135,7 @@ theorem IsTheta.trans_eventuallyEq {f : α → E} {g₁ g₂ : α → F} (h : f
   ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isBigO h.2⟩
 #align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEq
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → F) (γ := α → F) (IsTheta l) (EventuallyEq l) (IsTheta l) :=
   ⟨IsTheta.trans_eventuallyEq⟩
 
@@ -145,7 +145,7 @@ theorem _root_.Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α
   ⟨hf.trans_isBigO h.1, h.2.trans_eventuallyEq hf.symm⟩
 #align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isTheta
 
--- Porting note: added
+-- Porting note (#10754): added instance
 instance : Trans (α := α → E) (β := α → E) (γ := α → F) (EventuallyEq l) (IsTheta l) (IsTheta l) :=
   ⟨EventuallyEq.trans_isTheta⟩
 
feat: dot notation for IsTheta.add_isLittleO, and add_commed variants (#10386)

BREAKING CHANGE: Change IsTheta.add_isLittleO into a dot-notation statement, in line with the existing IsBigO.add_isLittleO. Move the current IsTheta.add_isLittleO statement to IsLittleO.right_isTheta_add', in line with the existing IsLittleO.right_isBigO_add.

feat: Add add_commed variants of related lemmas.

These changes smoothen the flow when proving e.g. a + b + c + d + e + f =Θ[l] d.

Co-authored-by: L Lllvvuu <git@llllvvuu.dev>

Diff
@@ -326,8 +326,20 @@ alias ⟨IsTheta.of_const_mul_right, IsTheta.const_mul_right⟩ := isTheta_const
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
 #align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_right
 
-lemma IsTheta.add_isLittleO {f₁ f₂ : α → E'}
-    (h : f₂ =o[l] f₁) : (f₁ + f₂) =Θ[l] f₁ :=
-  ⟨(isBigO_refl _ _).add_isLittleO h, by rw [add_comm]; exact h.right_isBigO_add⟩
+theorem IsLittleO.right_isTheta_add {f₁ f₂ : α → E'} (h : f₁ =o[l] f₂) :
+    f₂ =Θ[l] (f₁ + f₂) :=
+  ⟨h.right_isBigO_add, h.add_isBigO (isBigO_refl _ _)⟩
+
+theorem IsLittleO.right_isTheta_add' {f₁ f₂ : α → E'} (h : f₁ =o[l] f₂) :
+    f₂ =Θ[l] (f₂ + f₁) :=
+  add_comm f₁ f₂ ▸ h.right_isTheta_add
+
+lemma IsTheta.add_isLittleO {f₁ f₂ : α → E'} {g : α → F}
+    (hΘ : f₁ =Θ[l] g) (ho : f₂ =o[l] g) : (f₁ + f₂) =Θ[l] g :=
+  (ho.trans_isTheta hΘ.symm).right_isTheta_add'.symm.trans hΘ
+
+lemma IsLittleO.add_isTheta {f₁ f₂ : α → E'} {g : α → F}
+    (ho : f₁ =o[l] g) (hΘ : f₂ =Θ[l] g) : (f₁ + f₂) =Θ[l] g :=
+  add_comm f₁ f₂ ▸ hΘ.add_isLittleO ho
 
 end Asymptotics
feat(Analysis/Asymptotics/Asymptotics): generalize smul lemmas to normed rings (#9811)

Using BoundedSMul instead of NormedSpace makes these true more generally. The old proofs do not generalize, so are replaced with copies of the mul proofs.

The const_smul_self lemmas match the existing const_mul_self ones.

shake then reports that the imports can be reduced.

Diff
@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
 -/
 import Mathlib.Analysis.Asymptotics.Asymptotics
+import Mathlib.Analysis.NormedSpace.Basic
 
 #align_import analysis.asymptotics.theta from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
doc: @[inherit_doc] on notations (#9942)

Make all the notations that unambiguously should inherit the docstring of their definition actually inherit it.

Also write a few docstrings by hand. I only wrote the ones I was competent to write and which I was sure of. Some docstrings come from mathlib3 as they were lost during the early port.

This PR is only intended as a first pass There are many more docstrings to add.

Diff
@@ -49,6 +49,7 @@ def IsTheta (l : Filter α) (f : α → E) (g : α → F) : Prop :=
   IsBigO l f g ∧ IsBigO l g f
 #align asymptotics.is_Theta Asymptotics.IsTheta
 
+@[inherit_doc]
 notation:100 f " =Θ[" l "] " g:100 => IsTheta l f g
 
 theorem IsBigO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
feat(Asymptotics/Theta): add 3 trivial lemmas (#8258)

Add Filter.EventuallyEq.isTheta, Asymptotics.IsTheta.isTheta_congr_left, and Asymptotics.IsTheta.isTheta_congr_right.

Diff
@@ -147,6 +147,9 @@ theorem _root_.Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α
 instance : Trans (α := α → E) (β := α → E) (γ := α → F) (EventuallyEq l) (IsTheta l) (IsTheta l) :=
   ⟨EventuallyEq.trans_isTheta⟩
 
+lemma _root_.Filter.EventuallyEq.isTheta {f g : α → E} (h : f =ᶠ[l] g) : f =Θ[l] g :=
+  h.trans_isTheta isTheta_rfl
+
 @[simp]
 theorem isTheta_norm_left : (fun x ↦ ‖f' x‖) =Θ[l] g ↔ f' =Θ[l] g := by simp [IsTheta]
 #align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_left
@@ -188,6 +191,12 @@ theorem IsTheta.isBigO_congr_right (h : g' =Θ[l] k') : f =O[l] g' ↔ f =O[l] k
   ⟨fun H ↦ H.trans_isTheta h, fun H ↦ H.trans_isTheta h.symm⟩
 #align asymptotics.is_Theta.is_O_congr_right Asymptotics.IsTheta.isBigO_congr_right
 
+lemma IsTheta.isTheta_congr_left (h : f' =Θ[l] g') : f' =Θ[l] k ↔ g' =Θ[l] k :=
+  h.isBigO_congr_left.and h.isBigO_congr_right
+
+lemma IsTheta.isTheta_congr_right (h : f' =Θ[l] g') : k =Θ[l] f' ↔ k =Θ[l] g' :=
+  h.isBigO_congr_right.and h.isBigO_congr_left
+
 theorem IsTheta.mono (h : f =Θ[l] g) (hl : l' ≤ l) : f =Θ[l'] g :=
   ⟨h.1.mono hl, h.2.mono hl⟩
 #align asymptotics.is_Theta.mono Asymptotics.IsTheta.mono
feat: patch for new alias command (#6172)
Diff
@@ -155,11 +155,11 @@ theorem isTheta_norm_left : (fun x ↦ ‖f' x‖) =Θ[l] g ↔ f' =Θ[l] g := b
 theorem isTheta_norm_right : (f =Θ[l] fun x ↦ ‖g' x‖) ↔ f =Θ[l] g' := by simp [IsTheta]
 #align asymptotics.is_Theta_norm_right Asymptotics.isTheta_norm_right
 
-alias isTheta_norm_left ↔ IsTheta.of_norm_left IsTheta.norm_left
+alias ⟨IsTheta.of_norm_left, IsTheta.norm_left⟩ := isTheta_norm_left
 #align asymptotics.is_Theta.of_norm_left Asymptotics.IsTheta.of_norm_left
 #align asymptotics.is_Theta.norm_left Asymptotics.IsTheta.norm_left
 
-alias isTheta_norm_right ↔ IsTheta.of_norm_right IsTheta.norm_right
+alias ⟨IsTheta.of_norm_right, IsTheta.norm_right⟩ := isTheta_norm_right
 #align asymptotics.is_Theta.of_norm_right Asymptotics.IsTheta.of_norm_right
 #align asymptotics.is_Theta.norm_right Asymptotics.IsTheta.norm_right
 
@@ -284,7 +284,7 @@ theorem isTheta_const_smul_left [NormedSpace 𝕜 E'] {c : 𝕜} (hc : c ≠ 0)
   and_congr (isBigO_const_smul_left hc) (isBigO_const_smul_right hc)
 #align asymptotics.is_Theta_const_smul_left Asymptotics.isTheta_const_smul_left
 
-alias isTheta_const_smul_left ↔ IsTheta.of_const_smul_left IsTheta.const_smul_left
+alias ⟨IsTheta.of_const_smul_left, IsTheta.const_smul_left⟩ := isTheta_const_smul_left
 #align asymptotics.is_Theta.of_const_smul_left Asymptotics.IsTheta.of_const_smul_left
 #align asymptotics.is_Theta.const_smul_left Asymptotics.IsTheta.const_smul_left
 
@@ -293,7 +293,7 @@ theorem isTheta_const_smul_right [NormedSpace 𝕜 F'] {c : 𝕜} (hc : c ≠ 0)
   and_congr (isBigO_const_smul_right hc) (isBigO_const_smul_left hc)
 #align asymptotics.is_Theta_const_smul_right Asymptotics.isTheta_const_smul_right
 
-alias isTheta_const_smul_right ↔ IsTheta.of_const_smul_right IsTheta.const_smul_right
+alias ⟨IsTheta.of_const_smul_right, IsTheta.const_smul_right⟩ := isTheta_const_smul_right
 #align asymptotics.is_Theta.of_const_smul_right Asymptotics.IsTheta.of_const_smul_right
 #align asymptotics.is_Theta.const_smul_right Asymptotics.IsTheta.const_smul_right
 
@@ -302,7 +302,7 @@ theorem isTheta_const_mul_left {c : 𝕜} {f : α → 𝕜} (hc : c ≠ 0) :
   simpa only [← smul_eq_mul] using isTheta_const_smul_left hc
 #align asymptotics.is_Theta_const_mul_left Asymptotics.isTheta_const_mul_left
 
-alias isTheta_const_mul_left ↔ IsTheta.of_const_mul_left IsTheta.const_mul_left
+alias ⟨IsTheta.of_const_mul_left, IsTheta.const_mul_left⟩ := isTheta_const_mul_left
 #align asymptotics.is_Theta.of_const_mul_left Asymptotics.IsTheta.of_const_mul_left
 #align asymptotics.is_Theta.const_mul_left Asymptotics.IsTheta.const_mul_left
 
@@ -311,7 +311,7 @@ theorem isTheta_const_mul_right {c : 𝕜} {g : α → 𝕜} (hc : c ≠ 0) :
   simpa only [← smul_eq_mul] using isTheta_const_smul_right hc
 #align asymptotics.is_Theta_const_mul_right Asymptotics.isTheta_const_mul_right
 
-alias isTheta_const_mul_right ↔ IsTheta.of_const_mul_right IsTheta.const_mul_right
+alias ⟨IsTheta.of_const_mul_right, IsTheta.const_mul_right⟩ := isTheta_const_mul_right
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
 #align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_right
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -23,9 +23,9 @@ namespace Asymptotics
 
 set_option linter.uppercaseLean3 false -- is_Theta
 
-variable {α : Type _} {β : Type _} {E : Type _} {F : Type _} {G : Type _} {E' : Type _}
-  {F' : Type _} {G' : Type _} {E'' : Type _} {F'' : Type _} {G'' : Type _} {R : Type _}
-  {R' : Type _} {𝕜 : Type _} {𝕜' : Type _}
+variable {α : Type*} {β : Type*} {E : Type*} {F : Type*} {G : Type*} {E' : Type*}
+  {F' : Type*} {G' : Type*} {E'' : Type*} {F'' : Type*} {G'' : Type*} {R : Type*}
+  {R' : Type*} {𝕜 : Type*} {𝕜' : Type*}
 
 variable [Norm E] [Norm F] [Norm G]
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury G. Kudryashov
-
-! This file was ported from Lean 3 source module analysis.asymptotics.theta
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.Asymptotics.Asymptotics
 
+#align_import analysis.asymptotics.theta from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Asymptotic equivalence up to a constant
 
feat: miscellaneous lemmas about asymptotics (#5680)

Co-authored-by: Frédéric Dupuis <31101893+dupuisf@users.noreply.github.com>

Diff
@@ -58,6 +58,10 @@ theorem IsBigO.antisymm (h₁ : f =O[l] g) (h₂ : g =O[l] f) : f =Θ[l] g :=
   ⟨h₁, h₂⟩
 #align asymptotics.is_O.antisymm Asymptotics.IsBigO.antisymm
 
+lemma IsTheta.isBigO (h : f =Θ[l] g) : f =O[l] g := h.1
+
+lemma IsTheta.isBigO_symm (h : f =Θ[l] g) : g =O[l] f := h.2
+
 @[refl]
 theorem isTheta_refl (f : α → E) (l : Filter α) : f =Θ[l] f :=
   ⟨isBigO_refl _ _, isBigO_refl _ _⟩
@@ -314,4 +318,8 @@ alias isTheta_const_mul_right ↔ IsTheta.of_const_mul_right IsTheta.const_mul_r
 #align asymptotics.is_Theta.of_const_mul_right Asymptotics.IsTheta.of_const_mul_right
 #align asymptotics.is_Theta.const_mul_right Asymptotics.IsTheta.const_mul_right
 
+lemma IsTheta.add_isLittleO {f₁ f₂ : α → E'}
+    (h : f₂ =o[l] f₁) : (f₁ + f₂) =Θ[l] f₁ :=
+  ⟨(isBigO_refl _ _).add_isLittleO h, by rw [add_comm]; exact h.right_isBigO_add⟩
+
 end Asymptotics
feat: port Analysis.SpecialFunctions.Pow.Asymptotics (#4174)

Co-authored-by: Jireh Loreaux <loreaujy@gmail.com>

Diff
@@ -82,42 +82,70 @@ theorem IsTheta.trans {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =
   ⟨h₁.1.trans h₂.1, h₂.2.trans h₁.2⟩
 #align asymptotics.is_Theta.trans Asymptotics.IsTheta.trans
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsTheta l) (IsTheta l) (IsTheta l) :=
+  ⟨IsTheta.trans⟩
+
 @[trans]
 theorem IsBigO.trans_isTheta {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =O[l] g)
     (h₂ : g =Θ[l] k) : f =O[l] k :=
   h₁.trans h₂.1
 #align asymptotics.is_O.trans_is_Theta Asymptotics.IsBigO.trans_isTheta
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsBigO l) (IsTheta l) (IsBigO l) :=
+  ⟨IsBigO.trans_isTheta⟩
+
 @[trans]
 theorem IsTheta.trans_isBigO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =O[l] k) : f =O[l] k :=
   h₁.1.trans h₂
 #align asymptotics.is_Theta.trans_is_O Asymptotics.IsTheta.trans_isBigO
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsTheta l) (IsBigO l) (IsBigO l) :=
+  ⟨IsTheta.trans_isBigO⟩
+
 @[trans]
 theorem IsLittleO.trans_isTheta {f : α → E} {g : α → F} {k : α → G'} (h₁ : f =o[l] g)
     (h₂ : g =Θ[l] k) : f =o[l] k :=
   h₁.trans_isBigO h₂.1
 #align asymptotics.is_o.trans_is_Theta Asymptotics.IsLittleO.trans_isTheta
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → F') (γ := α → G') (IsLittleO l) (IsTheta l) (IsLittleO l) :=
+  ⟨IsLittleO.trans_isTheta⟩
+
 @[trans]
 theorem IsTheta.trans_isLittleO {f : α → E} {g : α → F'} {k : α → G} (h₁ : f =Θ[l] g)
     (h₂ : g =o[l] k) : f =o[l] k :=
   h₁.1.trans_isLittleO h₂
 #align asymptotics.is_Theta.trans_is_o Asymptotics.IsTheta.trans_isLittleO
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → F') (γ := α → G) (IsTheta l) (IsLittleO l) (IsLittleO l) :=
+  ⟨IsTheta.trans_isLittleO⟩
+
 @[trans]
 theorem IsTheta.trans_eventuallyEq {f : α → E} {g₁ g₂ : α → F} (h : f =Θ[l] g₁) (hg : g₁ =ᶠ[l] g₂) :
     f =Θ[l] g₂ :=
   ⟨h.1.trans_eventuallyEq hg, hg.symm.trans_isBigO h.2⟩
 #align asymptotics.is_Theta.trans_eventually_eq Asymptotics.IsTheta.trans_eventuallyEq
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → F) (γ := α → F) (IsTheta l) (EventuallyEq l) (IsTheta l) :=
+  ⟨IsTheta.trans_eventuallyEq⟩
+
 @[trans]
 theorem _root_.Filter.EventuallyEq.trans_isTheta {f₁ f₂ : α → E} {g : α → F} (hf : f₁ =ᶠ[l] f₂)
     (h : f₂ =Θ[l] g) : f₁ =Θ[l] g :=
   ⟨hf.trans_isBigO h.1, h.2.trans_eventuallyEq hf.symm⟩
 #align filter.eventually_eq.trans_is_Theta Filter.EventuallyEq.trans_isTheta
 
+-- Porting note: added
+instance : Trans (α := α → E) (β := α → E) (γ := α → F) (EventuallyEq l) (IsTheta l) (IsTheta l) :=
+  ⟨EventuallyEq.trans_isTheta⟩
+
 @[simp]
 theorem isTheta_norm_left : (fun x ↦ ‖f' x‖) =Θ[l] g ↔ f' =Θ[l] g := by simp [IsTheta]
 #align asymptotics.is_Theta_norm_left Asymptotics.isTheta_norm_left
feat: port Analysis.Asymptotics.Theta (#3416)

Dependencies 10 + 614

615 files ported (98.4%)
270939 lines ported (98.1%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file