analysis.box_integral.box.basicMathlib.Analysis.BoxIntegral.Box.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Data.Set.Intervals.Monotone
+import Order.Interval.Set.Monotone
 import Topology.Order.MonotoneConvergence
 import Topology.MetricSpace.Basic
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
 import Data.Set.Intervals.Monotone
-import Topology.Algebra.Order.MonotoneConvergence
+import Topology.Order.MonotoneConvergence
 import Topology.MetricSpace.Basic
 
 #align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b"
@@ -625,7 +625,7 @@ theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
   calc
     nndist I.lower I.upper =
         nndist I.lower I.upper / nndist (I.lower i) (I.upper i) * nndist (I.lower i) (I.upper i) :=
-      (div_mul_cancel _ <| mt nndist_eq_zero.1 (I.lower_lt_upper i).Ne).symm
+      (div_mul_cancel₀ _ <| mt nndist_eq_zero.1 (I.lower_lt_upper i).Ne).symm
     _ ≤ I.distortion * nndist (I.lower i) (I.upper i) :=
       mul_le_mul_right' (Finset.le_sup <| Finset.mem_univ i) _
 #align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mul
Diff
@@ -213,7 +213,7 @@ theorem le_iff_bounds : I ≤ J ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
 theorem injective_coe : Injective (coe : Box ι → Set (ι → ℝ)) :=
   by
   rintro ⟨l₁, u₁, h₁⟩ ⟨l₂, u₂, h₂⟩ h
-  simp only [subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h 
+  simp only [subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h
   congr
   exacts [le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
 #align box_integral.box.injective_coe BoxIntegral.Box.injective_coe
@@ -613,7 +613,7 @@ theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
   have : 0 < r := by
     by_contra hr
     have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr)
-    rw [← h] at this 
+    rw [← h] at this
     exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i)
   simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ ((map_ne_zero Real.nnabs).2 this.ne')]
 #align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_div
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathbin.Data.Set.Intervals.Monotone
-import Mathbin.Topology.Algebra.Order.MonotoneConvergence
-import Mathbin.Topology.MetricSpace.Basic
+import Data.Set.Intervals.Monotone
+import Topology.Algebra.Order.MonotoneConvergence
+import Topology.MetricSpace.Basic
 
 #align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.box_integral.box.basic
-! leanprover-community/mathlib commit 4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Set.Intervals.Monotone
 import Mathbin.Topology.Algebra.Order.MonotoneConvergence
 import Mathbin.Topology.MetricSpace.Basic
 
+#align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b"
+
 /-!
 # Rectangular boxes in `ℝⁿ`
 
Diff
@@ -484,14 +484,14 @@ theorem not_disjoint_coe_iff_nonempty_inter :
 `I.lower ∘ fin.succ_above i` and `I.upper ∘ fin.succ_above i`. -/
 @[simps (config := { simpRhs := true })]
 def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
-  ⟨I.lower ∘ Fin.succAbove i, I.upper ∘ Fin.succAbove i, fun j => I.lower_lt_upper _⟩
+  ⟨I.lower ∘ Fin.succAboveEmb i, I.upper ∘ Fin.succAboveEmb i, fun j => I.lower_lt_upper _⟩
 #align box_integral.box.face BoxIntegral.Box.face
 -/
 
 #print BoxIntegral.Box.face_mk /-
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
-    face ⟨l, u, h⟩ i = ⟨l ∘ Fin.succAbove i, u ∘ Fin.succAbove i, fun j => h _⟩ :=
+    face ⟨l, u, h⟩ i = ⟨l ∘ Fin.succAboveEmb i, u ∘ Fin.succAboveEmb i, fun j => h _⟩ :=
   rfl
 #align box_integral.box.face_mk BoxIntegral.Box.face_mk
 -/
Diff
@@ -91,8 +91,10 @@ variable (I J : Box ι) {x y : ι → ℝ}
 instance : Inhabited (Box ι) :=
   ⟨⟨0, 1, fun i => zero_lt_one⟩⟩
 
+#print BoxIntegral.Box.lower_le_upper /-
 theorem lower_le_upper : I.lower ≤ I.upper := fun i => (I.lower_lt_upper i).le
 #align box_integral.box.lower_le_upper BoxIntegral.Box.lower_le_upper
+-/
 
 #print BoxIntegral.Box.lower_ne_upper /-
 theorem lower_ne_upper (i) : I.lower i ≠ I.upper i :=
@@ -106,10 +108,12 @@ instance : Membership (ι → ℝ) (Box ι) :=
 instance : CoeTC (Box ι) (Set <| ι → ℝ) :=
   ⟨fun I => {x | x ∈ I}⟩
 
+#print BoxIntegral.Box.mem_mk /-
 @[simp]
 theorem mem_mk {l u x : ι → ℝ} {H} : x ∈ mk l u H ↔ ∀ i, x i ∈ Ioc (l i) (u i) :=
   Iff.rfl
 #align box_integral.box.mem_mk BoxIntegral.Box.mem_mk
+-/
 
 #print BoxIntegral.Box.mem_coe /-
 @[simp, norm_cast]
@@ -177,6 +181,7 @@ theorem le_def : I ≤ J ↔ ∀ x ∈ I, x ∈ J :=
 #align box_integral.box.le_def BoxIntegral.Box.le_def
 -/
 
+#print BoxIntegral.Box.le_TFAE /-
 theorem le_TFAE :
     TFAE
       [I ≤ J, (I : Set (ι → ℝ)) ⊆ J, Icc I.lower I.upper ⊆ Icc J.lower J.upper,
@@ -190,6 +195,7 @@ theorem le_TFAE :
   tfae_have 4 → 2; exact fun h x hx i => Ioc_subset_Ioc (h.1 i) (h.2 i) (hx i)
   tfae_finish
 #align box_integral.box.le_tfae BoxIntegral.Box.le_TFAE
+-/
 
 variable {I J}
 
@@ -200,9 +206,11 @@ theorem coe_subset_coe : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J :=
 #align box_integral.box.coe_subset_coe BoxIntegral.Box.coe_subset_coe
 -/
 
+#print BoxIntegral.Box.le_iff_bounds /-
 theorem le_iff_bounds : I ≤ J ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper :=
   (le_TFAE I J).out 0 3
 #align box_integral.box.le_iff_bounds BoxIntegral.Box.le_iff_bounds
+-/
 
 #print BoxIntegral.Box.injective_coe /-
 theorem injective_coe : Injective (coe : Box ι → Set (ι → ℝ)) :=
@@ -228,9 +236,11 @@ theorem ext (H : ∀ x, x ∈ I ↔ x ∈ J) : I = J :=
 #align box_integral.box.ext BoxIntegral.Box.ext
 -/
 
+#print BoxIntegral.Box.ne_of_disjoint_coe /-
 theorem ne_of_disjoint_coe (h : Disjoint (I : Set (ι → ℝ)) J) : I ≠ J :=
   mt coe_inj.2 <| h.Ne I.coe_ne_empty
 #align box_integral.box.ne_of_disjoint_coe BoxIntegral.Box.ne_of_disjoint_coe
+-/
 
 instance : PartialOrder (Box ι) :=
   { PartialOrder.lift (coe : Box ι → Set (ι → ℝ)) injective_coe with le := (· ≤ ·) }
@@ -242,40 +252,58 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
 #align box_integral.box.Icc BoxIntegral.Box.Icc
 -/
 
+#print BoxIntegral.Box.Icc_def /-
 theorem Icc_def : I.Icc = Icc I.lower I.upper :=
   rfl
 #align box_integral.box.Icc_def BoxIntegral.Box.Icc_def
+-/
 
+#print BoxIntegral.Box.upper_mem_Icc /-
 @[simp]
 theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
   right_mem_Icc.2 I.lower_le_upper
 #align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Icc
+-/
 
+#print BoxIntegral.Box.lower_mem_Icc /-
 @[simp]
 theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
   left_mem_Icc.2 I.lower_le_upper
 #align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Icc
+-/
 
+#print BoxIntegral.Box.isCompact_Icc /-
 protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
   isCompact_Icc
 #align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Icc
+-/
 
+#print BoxIntegral.Box.Icc_eq_pi /-
 theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
 #align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_pi
+-/
 
+#print BoxIntegral.Box.le_iff_Icc /-
 theorem le_iff_Icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
   (le_TFAE I J).out 0 2
 #align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Icc
+-/
 
+#print BoxIntegral.Box.antitone_lower /-
 theorem antitone_lower : Antitone fun I : Box ι => I.lower := fun I J H => (le_iff_bounds.1 H).1
 #align box_integral.box.antitone_lower BoxIntegral.Box.antitone_lower
+-/
 
+#print BoxIntegral.Box.monotone_upper /-
 theorem monotone_upper : Monotone fun I : Box ι => I.upper := fun I J H => (le_iff_bounds.1 H).2
 #align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
+-/
 
+#print BoxIntegral.Box.coe_subset_Icc /-
 theorem coe_subset_Icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
 #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
+-/
 
 /-!
 ### Supremum of two boxes
@@ -306,9 +334,11 @@ In this section we define coercion from `with_bot (box ι)` to `set (ι → ℝ)
 -/
 
 
+#print BoxIntegral.Box.withBotCoe /-
 instance withBotCoe : CoeTC (WithBot (Box ι)) (Set (ι → ℝ)) :=
   ⟨fun o => o.elim ∅ coe⟩
 #align box_integral.box.with_bot_coe BoxIntegral.Box.withBotCoe
+-/
 
 #print BoxIntegral.Box.coe_bot /-
 @[simp, norm_cast]
@@ -338,6 +368,7 @@ theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
 #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.biUnion_coe_eq_coe
 -/
 
+#print BoxIntegral.Box.withBotCoe_subset_iff /-
 @[simp, norm_cast]
 theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J :=
   by
@@ -345,6 +376,7 @@ theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ))
   induction J using WithBot.recBotCoe; · simp [subset_empty_iff]
   simp
 #align box_integral.box.with_bot_coe_subset_iff BoxIntegral.Box.withBotCoe_subset_iff
+-/
 
 #print BoxIntegral.Box.withBotCoe_inj /-
 @[simp, norm_cast]
@@ -362,10 +394,12 @@ def mk' (l u : ι → ℝ) : WithBot (Box ι) :=
 #align box_integral.box.mk' BoxIntegral.Box.mk'
 -/
 
+#print BoxIntegral.Box.mk'_eq_bot /-
 @[simp]
 theorem mk'_eq_bot {l u : ι → ℝ} : mk' l u = ⊥ ↔ ∃ i, u i ≤ l i := by rw [mk'];
   split_ifs <;> simpa using h
 #align box_integral.box.mk'_eq_bot BoxIntegral.Box.mk'_eq_bot
+-/
 
 #print BoxIntegral.Box.mk'_eq_coe /-
 @[simp]
@@ -394,6 +428,7 @@ instance : Inf (WithBot (Box ι)) :=
     WithBot.recBotCoe (fun J => ⊥)
       (fun I J => WithBot.recBotCoe ⊥ (fun J => mk' (I.lower ⊔ J.lower) (I.upper ⊓ J.upper)) J) I⟩
 
+#print BoxIntegral.Box.coe_inf /-
 @[simp]
 theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = I ∩ J :=
   by
@@ -403,6 +438,7 @@ theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = I
   simp only [coe_eq_pi, ← pi_inter_distrib, Ioc_inter_Ioc, Pi.sup_apply, Pi.inf_apply, coe_mk',
     coe_coe]
 #align box_integral.box.coe_inf BoxIntegral.Box.coe_inf
+-/
 
 instance : Lattice (WithBot (Box ι)) :=
   { WithBot.semilatticeSup,
@@ -418,19 +454,25 @@ instance : Lattice (WithBot (Box ι)) :=
       simp only [← with_bot_coe_subset_iff, coe_inf] at *
       exact subset_inter h₁ h₂ }
 
+#print BoxIntegral.Box.disjoint_withBotCoe /-
 @[simp, norm_cast]
 theorem disjoint_withBotCoe {I J : WithBot (Box ι)} : Disjoint (I : Set (ι → ℝ)) J ↔ Disjoint I J :=
   by simp only [disjoint_iff_inf_le, ← with_bot_coe_subset_iff, coe_inf]; rfl
 #align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoe
+-/
 
+#print BoxIntegral.Box.disjoint_coe /-
 theorem disjoint_coe : Disjoint (I : WithBot (Box ι)) J ↔ Disjoint (I : Set (ι → ℝ)) J :=
   disjoint_withBotCoe.symm
 #align box_integral.box.disjoint_coe BoxIntegral.Box.disjoint_coe
+-/
 
+#print BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter /-
 theorem not_disjoint_coe_iff_nonempty_inter :
     ¬Disjoint (I : WithBot (Box ι)) J ↔ (I ∩ J : Set (ι → ℝ)).Nonempty := by
   rw [disjoint_coe, Set.not_disjoint_iff_nonempty_inter]
 #align box_integral.box.not_disjoint_coe_iff_nonempty_inter BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter
+-/
 
 /-!
 ### Hyperface of a box in `ℝⁿ⁺¹ = fin (n + 1) → ℝ`
@@ -446,11 +488,13 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 #align box_integral.box.face BoxIntegral.Box.face
 -/
 
+#print BoxIntegral.Box.face_mk /-
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
     face ⟨l, u, h⟩ i = ⟨l ∘ Fin.succAbove i, u ∘ Fin.succAbove i, fun j => h _⟩ :=
   rfl
 #align box_integral.box.face_mk BoxIntegral.Box.face_mk
+-/
 
 #print BoxIntegral.Box.face_mono /-
 @[mono]
@@ -460,14 +504,18 @@ theorem face_mono {n} {I J : Box (Fin (n + 1))} (h : I ≤ J) (i : Fin (n + 1))
 #align box_integral.box.face_mono BoxIntegral.Box.face_mono
 -/
 
+#print BoxIntegral.Box.monotone_face /-
 theorem monotone_face {n} (i : Fin (n + 1)) : Monotone fun I => face I i := fun I J h =>
   face_mono h i
 #align box_integral.box.monotone_face BoxIntegral.Box.monotone_face
+-/
 
+#print BoxIntegral.Box.mapsTo_insertNth_face_Icc /-
 theorem mapsTo_insertNth_face_Icc {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i).Icc I.Icc :=
   fun y hy => Fin.insertNth_mem_Icc.2 ⟨hx, hy⟩
 #align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Icc
+-/
 
 #print BoxIntegral.Box.mapsTo_insertNth_face /-
 theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
@@ -477,17 +525,20 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
 #align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
 -/
 
+#print BoxIntegral.Box.continuousOn_face_Icc /-
 theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : ContinuousOn (f ∘ i.insertNth x) (I.face i).Icc :=
   h.comp (continuousOn_const.fin_insertNth i continuousOn_id) (I.mapsTo_insertNth_face_Icc hx)
 #align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Icc
+-/
 
 /-!
 ### Covering of the interior of a box by a monotone sequence of smaller boxes
 -/
 
 
+#print BoxIntegral.Box.Ioo /-
 /-- The interior of a box. -/
 protected def Ioo : Box ι →o Set (ι → ℝ)
     where
@@ -495,16 +546,20 @@ protected def Ioo : Box ι →o Set (ι → ℝ)
   monotone' I J h :=
     pi_mono fun i hi => Ioo_subset_Ioo ((le_iff_bounds.1 h).1 i) ((le_iff_bounds.1 h).2 i)
 #align box_integral.box.Ioo BoxIntegral.Box.Ioo
+-/
 
 #print BoxIntegral.Box.Ioo_subset_coe /-
 theorem Ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Ioc_self (hx i trivial)
 #align box_integral.box.Ioo_subset_coe BoxIntegral.Box.Ioo_subset_coe
 -/
 
+#print BoxIntegral.Box.Ioo_subset_Icc /-
 protected theorem Ioo_subset_Icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
   I.Ioo_subset_coe.trans coe_subset_Icc
 #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
+-/
 
+#print BoxIntegral.Box.iUnion_Ioo_of_tendsto /-
 theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, (J n).Ioo) = I.Ioo :=
@@ -521,7 +576,9 @@ theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ
           (isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
           (isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
 #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendsto
+-/
 
+#print BoxIntegral.Box.exists_seq_mono_tendsto /-
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
       (∀ n, (J n).Icc ⊆ I.Ioo) ∧
@@ -535,6 +592,7 @@ theorem exists_seq_mono_tendsto (I : Box ι) :
       fun n x hx i hi => ⟨(ha_mem _ _).1.trans_le (hx.1 _), (hx.2 _).trans_lt (hb_mem _ _).2⟩,
       tendsto_pi_nhds.2 ha_tendsto, tendsto_pi_nhds.2 hb_tendsto⟩
 #align box_integral.box.exists_seq_mono_tendsto BoxIntegral.Box.exists_seq_mono_tendsto
+-/
 
 section Distortion
 
@@ -549,6 +607,7 @@ def distortion (I : Box ι) : ℝ≥0 :=
 #align box_integral.box.distortion BoxIntegral.Box.distortion
 -/
 
+#print BoxIntegral.Box.distortion_eq_of_sub_eq_div /-
 theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
     (h : ∀ i, I.upper i - I.lower i = (J.upper i - J.lower i) / r) : distortion I = distortion J :=
   by
@@ -561,7 +620,9 @@ theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
     exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i)
   simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ ((map_ne_zero Real.nnabs).2 this.ne')]
 #align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_div
+-/
 
+#print BoxIntegral.Box.nndist_le_distortion_mul /-
 theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
     nndist I.lower I.upper ≤ I.distortion * nndist (I.lower i) (I.upper i) :=
   calc
@@ -571,7 +632,9 @@ theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
     _ ≤ I.distortion * nndist (I.lower i) (I.upper i) :=
       mul_le_mul_right' (Finset.le_sup <| Finset.mem_univ i) _
 #align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mul
+-/
 
+#print BoxIntegral.Box.dist_le_distortion_mul /-
 theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     dist I.lower I.upper ≤ I.distortion * (I.upper i - I.lower i) :=
   by
@@ -579,7 +642,9 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
   simpa only [← NNReal.coe_le_coe, ← dist_nndist, NNReal.coe_mul, Real.dist_eq, abs_of_neg A,
     neg_sub] using I.nndist_le_distortion_mul i
 #align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
+-/
 
+#print BoxIntegral.Box.diam_Icc_le_of_distortion_le /-
 theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam I.Icc ≤ c * (I.upper i - I.lower i) :=
   have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
@@ -591,6 +656,7 @@ theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
       _ ≤ c * (I.upper i - I.lower i) :=
         mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
 #align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
+-/
 
 end Distortion
 
Diff
@@ -520,7 +520,6 @@ theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ
         iUnion_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
           (isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
           (isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
-    
 #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendsto
 
 theorem exists_seq_mono_tendsto (I : Box ι) :
@@ -571,7 +570,6 @@ theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
       (div_mul_cancel _ <| mt nndist_eq_zero.1 (I.lower_lt_upper i).Ne).symm
     _ ≤ I.distortion * nndist (I.lower i) (I.upper i) :=
       mul_le_mul_right' (Finset.le_sup <| Finset.mem_univ i) _
-    
 #align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mul
 
 theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
@@ -592,7 +590,6 @@ theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
       _ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
       _ ≤ c * (I.upper i - I.lower i) :=
         mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
-      
 #align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
 
 end Distortion
Diff
@@ -104,7 +104,7 @@ instance : Membership (ι → ℝ) (Box ι) :=
   ⟨fun x I => ∀ i, x i ∈ Ioc (I.lower i) (I.upper i)⟩
 
 instance : CoeTC (Box ι) (Set <| ι → ℝ) :=
-  ⟨fun I => { x | x ∈ I }⟩
+  ⟨fun I => {x | x ∈ I}⟩
 
 @[simp]
 theorem mem_mk {l u x : ι → ℝ} {H} : x ∈ mk l u H ↔ ∀ i, x i ∈ Ioc (l i) (u i) :=
Diff
@@ -208,9 +208,9 @@ theorem le_iff_bounds : I ≤ J ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper
 theorem injective_coe : Injective (coe : Box ι → Set (ι → ℝ)) :=
   by
   rintro ⟨l₁, u₁, h₁⟩ ⟨l₂, u₂, h₂⟩ h
-  simp only [subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h
+  simp only [subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h 
   congr
-  exacts[le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
+  exacts [le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
 #align box_integral.box.injective_coe BoxIntegral.Box.injective_coe
 -/
 
@@ -558,7 +558,7 @@ theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
   have : 0 < r := by
     by_contra hr
     have := div_nonpos_of_nonneg_of_nonpos (sub_nonneg.2 <| J.lower_le_upper i) (not_lt.1 hr)
-    rw [← h] at this
+    rw [← h] at this 
     exact this.not_lt (sub_pos.2 <| I.lower_lt_upper i)
   simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ ((map_ne_zero Real.nnabs).2 this.ne')]
 #align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_div
Diff
@@ -62,7 +62,7 @@ open Set Function Metric Filter
 
 noncomputable section
 
-open NNReal Classical Topology
+open scoped NNReal Classical Topology
 
 namespace BoxIntegral
 
Diff
@@ -91,12 +91,6 @@ variable (I J : Box ι) {x y : ι → ℝ}
 instance : Inhabited (Box ι) :=
   ⟨⟨0, 1, fun i => zero_lt_one⟩⟩
 
-/- warning: box_integral.box.lower_le_upper -> BoxIntegral.Box.lower_le_upper is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_le_upper BoxIntegral.Box.lower_le_upperₓ'. -/
 theorem lower_le_upper : I.lower ≤ I.upper := fun i => (I.lower_lt_upper i).le
 #align box_integral.box.lower_le_upper BoxIntegral.Box.lower_le_upper
 
@@ -112,12 +106,6 @@ instance : Membership (ι → ℝ) (Box ι) :=
 instance : CoeTC (Box ι) (Set <| ι → ℝ) :=
   ⟨fun I => { x | x ∈ I }⟩
 
-/- warning: box_integral.box.mem_mk -> BoxIntegral.Box.mem_mk is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real} {x : ι -> Real} {H : forall (i : ι), LT.lt.{0} Real Real.hasLt (l i) (u i)}, Iff (Membership.Mem.{u1, u1} (ι -> Real) (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasMem.{u1} ι) x (BoxIntegral.Box.mk.{u1} ι l u H)) (forall (i : ι), Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) (x i) (Set.Ioc.{0} Real Real.preorder (l i) (u i)))
-but is expected to have type
-  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real} {x : ι -> Real} {H : forall (i : ι), LT.lt.{0} Real Real.instLTReal (l i) (u i)}, Iff (Membership.mem.{u1, u1} (ι -> Real) (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instMembershipForAllRealBox.{u1} ι) x (BoxIntegral.Box.mk.{u1} ι l u H)) (forall (i : ι), Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) (x i) (Set.Ioc.{0} Real Real.instPreorderReal (l i) (u i)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.mem_mk BoxIntegral.Box.mem_mkₓ'. -/
 @[simp]
 theorem mem_mk {l u x : ι → ℝ} {H} : x ∈ mk l u H ↔ ∀ i, x i ∈ Ioc (l i) (u i) :=
   Iff.rfl
@@ -189,12 +177,6 @@ theorem le_def : I ≤ J ↔ ∀ x ∈ I, x ∈ J :=
 #align box_integral.box.le_def BoxIntegral.Box.le_def
 -/
 
-/- warning: box_integral.box.le_tfae -> BoxIntegral.Box.le_TFAE is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι) (J : BoxIntegral.Box.{u1} ι), List.TFAE (List.cons.{0} Prop (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J)) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.upper.{u1} ι J))) (List.cons.{0} Prop (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J))) (List.nil.{0} Prop)))))
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι) (J : BoxIntegral.Box.{u1} ι), List.TFAE (List.cons.{0} Prop (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J)) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.upper.{u1} ι J))) (List.cons.{0} Prop (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J))) (List.nil.{0} Prop)))))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.le_tfae BoxIntegral.Box.le_TFAEₓ'. -/
 theorem le_TFAE :
     TFAE
       [I ≤ J, (I : Set (ι → ℝ)) ⊆ J, Icc I.lower I.upper ⊆ Icc J.lower J.upper,
@@ -218,12 +200,6 @@ theorem coe_subset_coe : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J :=
 #align box_integral.box.coe_subset_coe BoxIntegral.Box.coe_subset_coe
 -/
 
-/- warning: box_integral.box.le_iff_bounds -> BoxIntegral.Box.le_iff_bounds is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J)))
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_bounds BoxIntegral.Box.le_iff_boundsₓ'. -/
 theorem le_iff_bounds : I ≤ J ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper :=
   (le_TFAE I J).out 0 3
 #align box_integral.box.le_iff_bounds BoxIntegral.Box.le_iff_bounds
@@ -252,12 +228,6 @@ theorem ext (H : ∀ x, x ∈ I ↔ x ∈ J) : I = J :=
 #align box_integral.box.ext BoxIntegral.Box.ext
 -/
 
-/- warning: box_integral.box.ne_of_disjoint_coe -> BoxIntegral.Box.ne_of_disjoint_coe is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} (ι -> Real)) (Set.booleanAlgebra.{u1} (ι -> Real)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J)) -> (Ne.{succ u1} (BoxIntegral.Box.{u1} ι) I J)
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (Preorder.toLE.{u1} (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J)) -> (Ne.{succ u1} (BoxIntegral.Box.{u1} ι) I J)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.ne_of_disjoint_coe BoxIntegral.Box.ne_of_disjoint_coeₓ'. -/
 theorem ne_of_disjoint_coe (h : Disjoint (I : Set (ι → ℝ)) J) : I ≠ J :=
   mt coe_inj.2 <| h.Ne I.coe_ne_empty
 #align box_integral.box.ne_of_disjoint_coe BoxIntegral.Box.ne_of_disjoint_coe
@@ -272,92 +242,38 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
 #align box_integral.box.Icc BoxIntegral.Box.Icc
 -/
 
-/- warning: box_integral.box.Icc_def -> BoxIntegral.Box.Icc_def is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_def BoxIntegral.Box.Icc_defₓ'. -/
 theorem Icc_def : I.Icc = Icc I.lower I.upper :=
   rfl
 #align box_integral.box.Icc_def BoxIntegral.Box.Icc_def
 
-/- warning: box_integral.box.upper_mem_Icc -> BoxIntegral.Box.upper_mem_Icc is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Iccₓ'. -/
 @[simp]
 theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
   right_mem_Icc.2 I.lower_le_upper
 #align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Icc
 
-/- warning: box_integral.box.lower_mem_Icc -> BoxIntegral.Box.lower_mem_Icc is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Iccₓ'. -/
 @[simp]
 theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
   left_mem_Icc.2 I.lower_le_upper
 #align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Icc
 
-/- warning: box_integral.box.is_compact_Icc -> BoxIntegral.Box.isCompact_Icc is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Iccₓ'. -/
 protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
   isCompact_Icc
 #align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Icc
 
-/- warning: box_integral.box.Icc_eq_pi -> BoxIntegral.Box.Icc_eq_pi is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_piₓ'. -/
 theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
 #align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_pi
 
-/- warning: box_integral.box.le_iff_Icc -> BoxIntegral.Box.le_iff_Icc is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) J))
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) J))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Iccₓ'. -/
 theorem le_iff_Icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
   (le_TFAE I J).out 0 2
 #align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Icc
 
-/- warning: box_integral.box.antitone_lower -> BoxIntegral.Box.antitone_lower is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}}, Antitone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.lower.{u1} ι I)
-but is expected to have type
-  forall {ι : Type.{u1}}, Antitone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.lower.{u1} ι I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.antitone_lower BoxIntegral.Box.antitone_lowerₓ'. -/
 theorem antitone_lower : Antitone fun I : Box ι => I.lower := fun I J H => (le_iff_bounds.1 H).1
 #align box_integral.box.antitone_lower BoxIntegral.Box.antitone_lower
 
-/- warning: box_integral.box.monotone_upper -> BoxIntegral.Box.monotone_upper is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}}, Monotone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.upper.{u1} ι I)
-but is expected to have type
-  forall {ι : Type.{u1}}, Monotone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.upper.{u1} ι I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upperₓ'. -/
 theorem monotone_upper : Monotone fun I : Box ι => I.upper := fun I J H => (le_iff_bounds.1 H).2
 #align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
 
-/- warning: box_integral.box.coe_subset_Icc -> BoxIntegral.Box.coe_subset_Icc is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Iccₓ'. -/
 theorem coe_subset_Icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
 #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
 
@@ -390,12 +306,6 @@ In this section we define coercion from `with_bot (box ι)` to `set (ι → ℝ)
 -/
 
 
-/- warning: box_integral.box.with_bot_coe -> BoxIntegral.Box.withBotCoe is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}}, CoeTCₓ.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real))
-but is expected to have type
-  forall {ι : Type.{u1}}, CoeTC.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.with_bot_coe BoxIntegral.Box.withBotCoeₓ'. -/
 instance withBotCoe : CoeTC (WithBot (Box ι)) (Set (ι → ℝ)) :=
   ⟨fun o => o.elim ∅ coe⟩
 #align box_integral.box.with_bot_coe BoxIntegral.Box.withBotCoe
@@ -428,12 +338,6 @@ theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
 #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.biUnion_coe_eq_coe
 -/
 
-/- warning: box_integral.box.with_bot_coe_subset_iff -> BoxIntegral.Box.withBotCoe_subset_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toHasLe.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)))) I J)
-but is expected to have type
-  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toLE.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) I J)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.with_bot_coe_subset_iff BoxIntegral.Box.withBotCoe_subset_iffₓ'. -/
 @[simp, norm_cast]
 theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J :=
   by
@@ -458,12 +362,6 @@ def mk' (l u : ι → ℝ) : WithBot (Box ι) :=
 #align box_integral.box.mk' BoxIntegral.Box.mk'
 -/
 
-/- warning: box_integral.box.mk'_eq_bot -> BoxIntegral.Box.mk'_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real}, Iff (Eq.{succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.mk'.{u1} ι l u) (Bot.bot.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasBot.{u1} (BoxIntegral.Box.{u1} ι)))) (Exists.{succ u1} ι (fun (i : ι) => LE.le.{0} Real Real.hasLe (u i) (l i)))
-but is expected to have type
-  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real}, Iff (Eq.{succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.mk'.{u1} ι l u) (Bot.bot.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.bot.{u1} (BoxIntegral.Box.{u1} ι)))) (Exists.{succ u1} ι (fun (i : ι) => LE.le.{0} Real Real.instLEReal (u i) (l i)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.mk'_eq_bot BoxIntegral.Box.mk'_eq_botₓ'. -/
 @[simp]
 theorem mk'_eq_bot {l u : ι → ℝ} : mk' l u = ⊥ ↔ ∃ i, u i ≤ l i := by rw [mk'];
   split_ifs <;> simpa using h
@@ -496,12 +394,6 @@ instance : Inf (WithBot (Box ι)) :=
     WithBot.recBotCoe (fun J => ⊥)
       (fun I J => WithBot.recBotCoe ⊥ (fun J => mk' (I.lower ⊔ J.lower) (I.upper ⊓ J.upper)) J) I⟩
 
-/- warning: box_integral.box.coe_inf -> BoxIntegral.Box.coe_inf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)), Eq.{succ u1} (Set.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) (Inf.inf.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.WithBot.hasInf.{u1} ι) I J)) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.hasInter.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J))
-but is expected to have type
-  forall {ι : Type.{u1}} (I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)), Eq.{succ u1} (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι (Inf.inf.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.WithBot.inf.{u1} ι) I J)) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.instInterSet.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_inf BoxIntegral.Box.coe_infₓ'. -/
 @[simp]
 theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = I ∩ J :=
   by
@@ -526,33 +418,15 @@ instance : Lattice (WithBot (Box ι)) :=
       simp only [← with_bot_coe_subset_iff, coe_inf] at *
       exact subset_inter h₁ h₂ }
 
-/- warning: box_integral.box.disjoint_with_bot_coe -> BoxIntegral.Box.disjoint_withBotCoe is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} (ι -> Real)) (Set.booleanAlgebra.{u1} (ι -> Real)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J)) (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) I J)
-but is expected to have type
-  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (Preorder.toLE.{u1} (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J)) (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (Preorder.toLE.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) I J)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoeₓ'. -/
 @[simp, norm_cast]
 theorem disjoint_withBotCoe {I J : WithBot (Box ι)} : Disjoint (I : Set (ι → ℝ)) J ↔ Disjoint I J :=
   by simp only [disjoint_iff_inf_le, ← with_bot_coe_subset_iff, coe_inf]; rfl
 #align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoe
 
-/- warning: box_integral.box.disjoint_coe -> BoxIntegral.Box.disjoint_coe is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) J)) (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} (ι -> Real)) (Set.booleanAlgebra.{u1} (ι -> Real)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J))
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (Preorder.toLE.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) I) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) J)) (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (Preorder.toLE.{u1} (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.disjoint_coe BoxIntegral.Box.disjoint_coeₓ'. -/
 theorem disjoint_coe : Disjoint (I : WithBot (Box ι)) J ↔ Disjoint (I : Set (ι → ℝ)) J :=
   disjoint_withBotCoe.symm
 #align box_integral.box.disjoint_coe BoxIntegral.Box.disjoint_coe
 
-/- warning: box_integral.box.not_disjoint_coe_iff_nonempty_inter -> BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Not (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) J))) (Set.Nonempty.{u1} (ι -> Real) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.hasInter.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J)))
-but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Not (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (Preorder.toLE.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) I) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) J))) (Set.Nonempty.{u1} (ι -> Real) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.instInterSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.not_disjoint_coe_iff_nonempty_inter BoxIntegral.Box.not_disjoint_coe_iff_nonempty_interₓ'. -/
 theorem not_disjoint_coe_iff_nonempty_inter :
     ¬Disjoint (I : WithBot (Box ι)) J ↔ (I ∩ J : Set (ι → ℝ)).Nonempty := by
   rw [disjoint_coe, Set.not_disjoint_iff_nonempty_inter]
@@ -572,9 +446,6 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 #align box_integral.box.face BoxIntegral.Box.face
 -/
 
-/- warning: box_integral.box.face_mk -> BoxIntegral.Box.face_mk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
     face ⟨l, u, h⟩ i = ⟨l ∘ Fin.succAbove i, u ∘ Fin.succAbove i, fun j => h _⟩ :=
@@ -589,19 +460,10 @@ theorem face_mono {n} {I J : Box (Fin (n + 1))} (h : I ≤ J) (i : Fin (n + 1))
 #align box_integral.box.face_mono BoxIntegral.Box.face_mono
 -/
 
-/- warning: box_integral.box.monotone_face -> BoxIntegral.Box.monotone_face is a dubious translation:
-lean 3 declaration is
-  forall {n : Nat} (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Monotone.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.{0} (Fin n)) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.partialOrder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.partialOrder.{0} (Fin n))) (fun (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => BoxIntegral.Box.face n I i)
-but is expected to have type
-  forall {n : Nat} (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Monotone.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.{0} (Fin n)) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instPartialOrderBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instPartialOrderBox.{0} (Fin n))) (fun (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => BoxIntegral.Box.face n I i)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.monotone_face BoxIntegral.Box.monotone_faceₓ'. -/
 theorem monotone_face {n} (i : Fin (n + 1)) : Monotone fun I => face I i := fun I J h =>
   face_mono h i
 #align box_integral.box.monotone_face BoxIntegral.Box.monotone_face
 
-/- warning: box_integral.box.maps_to_insert_nth_face_Icc -> BoxIntegral.Box.mapsTo_insertNth_face_Icc is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Iccₓ'. -/
 theorem mapsTo_insertNth_face_Icc {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i).Icc I.Icc :=
   fun y hy => Fin.insertNth_mem_Icc.2 ⟨hx, hy⟩
@@ -615,9 +477,6 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
 #align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
 -/
 
-/- warning: box_integral.box.continuous_on_face_Icc -> BoxIntegral.Box.continuousOn_face_Icc is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Iccₓ'. -/
 theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : ContinuousOn (f ∘ i.insertNth x) (I.face i).Icc :=
@@ -629,12 +488,6 @@ theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) →
 -/
 
 
-/- warning: box_integral.box.Ioo -> BoxIntegral.Box.Ioo is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}}, OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))
-but is expected to have type
-  forall {ι : Type.{u1}}, OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo BoxIntegral.Box.Iooₓ'. -/
 /-- The interior of a box. -/
 protected def Ioo : Box ι →o Set (ι → ℝ)
     where
@@ -648,22 +501,10 @@ theorem Ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Io
 #align box_integral.box.Ioo_subset_coe BoxIntegral.Box.Ioo_subset_coe
 -/
 
-/- warning: box_integral.box.Ioo_subset_Icc -> BoxIntegral.Box.Ioo_subset_Icc is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Iccₓ'. -/
 protected theorem Ioo_subset_Icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
   I.Ioo_subset_coe.trans coe_subset_Icc
 #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
 
-/- warning: box_integral.box.Union_Ioo_of_tendsto -> BoxIntegral.Box.iUnion_Ioo_of_tendsto is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.iUnion.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
-but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.iUnion.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendstoₓ'. -/
 theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, (J n).Ioo) = I.Ioo :=
@@ -682,9 +523,6 @@ theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ
     
 #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendsto
 
-/- warning: box_integral.box.exists_seq_mono_tendsto -> BoxIntegral.Box.exists_seq_mono_tendsto is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align box_integral.box.exists_seq_mono_tendsto BoxIntegral.Box.exists_seq_mono_tendstoₓ'. -/
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
       (∀ n, (J n).Icc ⊆ I.Ioo) ∧
@@ -712,12 +550,6 @@ def distortion (I : Box ι) : ℝ≥0 :=
 #align box_integral.box.distortion BoxIntegral.Box.distortion
 -/
 
-/- warning: box_integral.box.distortion_eq_of_sub_eq_div -> BoxIntegral.Box.distortion_eq_of_sub_eq_div is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι} {r : Real}, (forall (i : ι), Eq.{1} Real (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι J i) (BoxIntegral.Box.lower.{u1} ι J i)) r)) -> (Eq.{1} NNReal (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (BoxIntegral.Box.distortion.{u1} ι _inst_1 J))
-but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι} {r : Real}, (forall (i : ι), Eq.{1} Real (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι J i) (BoxIntegral.Box.lower.{u1} ι J i)) r)) -> (Eq.{1} NNReal (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (BoxIntegral.Box.distortion.{u1} ι _inst_1 J))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_divₓ'. -/
 theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
     (h : ∀ i, I.upper i - I.lower i = (J.upper i - J.lower i) / r) : distortion I = distortion J :=
   by
@@ -731,12 +563,6 @@ theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
   simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ ((map_ne_zero Real.nnabs).2 this.ne')]
 #align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_div
 
-/- warning: box_integral.box.nndist_le_distortion_mul -> BoxIntegral.Box.nndist_le_distortion_mul is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (Distrib.toHasMul.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
-but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (CanonicallyOrderedCommSemiring.toMul.{0} NNReal instNNRealCanonicallyOrderedCommSemiring)) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mulₓ'. -/
 theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
     nndist I.lower I.upper ≤ I.distortion * nndist (I.lower i) (I.upper i) :=
   calc
@@ -748,12 +574,6 @@ theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
     
 #align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mul
 
-/- warning: box_integral.box.dist_le_distortion_mul -> BoxIntegral.Box.dist_le_distortion_mul is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} (ι -> Real) (PseudoMetricSpace.toHasDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)))
-but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} (ι -> Real) (PseudoMetricSpace.toDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal (BoxIntegral.Box.distortion.{u1} ι _inst_1 I)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mulₓ'. -/
 theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     dist I.lower I.upper ≤ I.distortion * (I.upper i - I.lower i) :=
   by
@@ -762,12 +582,6 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     neg_sub] using I.nndist_le_distortion_mul i
 #align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
 
-/- warning: box_integral.box.diam_Icc_le_of_distortion_le -> BoxIntegral.Box.diam_Icc_le_of_distortion_le is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
-but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_leₓ'. -/
 theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam I.Icc ≤ c * (I.upper i - I.lower i) :=
   have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
Diff
@@ -416,12 +416,8 @@ theorem coe_coe : ((I : WithBot (Box ι)) : Set (ι → ℝ)) = I :=
 
 #print BoxIntegral.Box.isSome_iff /-
 theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → ℝ)).Nonempty
-  | ⊥ => by
-    erw [Option.isSome]
-    simp
-  | (I : box ι) => by
-    erw [Option.isSome]
-    simp [I.nonempty_coe]
+  | ⊥ => by erw [Option.isSome]; simp
+  | (I : box ι) => by erw [Option.isSome]; simp [I.nonempty_coe]
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 -/
 
@@ -469,9 +465,7 @@ but is expected to have type
   forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real}, Iff (Eq.{succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.mk'.{u1} ι l u) (Bot.bot.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.bot.{u1} (BoxIntegral.Box.{u1} ι)))) (Exists.{succ u1} ι (fun (i : ι) => LE.le.{0} Real Real.instLEReal (u i) (l i)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.mk'_eq_bot BoxIntegral.Box.mk'_eq_botₓ'. -/
 @[simp]
-theorem mk'_eq_bot {l u : ι → ℝ} : mk' l u = ⊥ ↔ ∃ i, u i ≤ l i :=
-  by
-  rw [mk']
+theorem mk'_eq_bot {l u : ι → ℝ} : mk' l u = ⊥ ↔ ∃ i, u i ≤ l i := by rw [mk'];
   split_ifs <;> simpa using h
 #align box_integral.box.mk'_eq_bot BoxIntegral.Box.mk'_eq_bot
 
@@ -482,8 +476,7 @@ theorem mk'_eq_coe {l u : ι → ℝ} : mk' l u = I ↔ l = I.lower ∧ u = I.up
   cases' I with lI uI hI; rw [mk']; split_ifs
   · simp [WithBot.coe_eq_coe]
   · suffices l = lI → u ≠ uI by simpa
-    rintro rfl rfl
-    exact h hI
+    rintro rfl rfl; exact h hI
 #align box_integral.box.mk'_eq_coe BoxIntegral.Box.mk'_eq_coe
 -/
 
@@ -494,8 +487,7 @@ theorem coe_mk' (l u : ι → ℝ) : (mk' l u : Set (ι → ℝ)) = pi univ fun
   rw [mk']; split_ifs
   · exact coe_eq_pi _
   · rcases not_forall.mp h with ⟨i, hi⟩
-    rw [coe_bot, univ_pi_eq_empty]
-    exact Ioc_eq_empty hi
+    rw [coe_bot, univ_pi_eq_empty]; exact Ioc_eq_empty hi
 #align box_integral.box.coe_mk' BoxIntegral.Box.coe_mk'
 -/
 
@@ -513,12 +505,8 @@ Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_i
 @[simp]
 theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = I ∩ J :=
   by
-  induction I using WithBot.recBotCoe;
-  · change ∅ = _
-    simp
-  induction J using WithBot.recBotCoe;
-  · change ∅ = _
-    simp
+  induction I using WithBot.recBotCoe; · change ∅ = _; simp
+  induction J using WithBot.recBotCoe; · change ∅ = _; simp
   change ↑(mk' _ _) = _
   simp only [coe_eq_pi, ← pi_inter_distrib, Ioc_inter_Ioc, Pi.sup_apply, Pi.inf_apply, coe_mk',
     coe_coe]
@@ -546,9 +534,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoeₓ'. -/
 @[simp, norm_cast]
 theorem disjoint_withBotCoe {I J : WithBot (Box ι)} : Disjoint (I : Set (ι → ℝ)) J ↔ Disjoint I J :=
-  by
-  simp only [disjoint_iff_inf_le, ← with_bot_coe_subset_iff, coe_inf]
-  rfl
+  by simp only [disjoint_iff_inf_le, ← with_bot_coe_subset_iff, coe_inf]; rfl
 #align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoe
 
 /- warning: box_integral.box.disjoint_coe -> BoxIntegral.Box.disjoint_coe is a dubious translation:
Diff
@@ -587,10 +587,7 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 -/
 
 /- warning: box_integral.box.face_mk -> BoxIntegral.Box.face_mk is a dubious translation:
-lean 3 declaration is
-  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
-but is expected to have type
-  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))))) (Fin.succAbove n i) j)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
@@ -617,10 +614,7 @@ theorem monotone_face {n} (i : Fin (n + 1)) : Monotone fun I => face I i := fun
 #align box_integral.box.monotone_face BoxIntegral.Box.monotone_face
 
 /- warning: box_integral.box.maps_to_insert_nth_face_Icc -> BoxIntegral.Box.mapsTo_insertNth_face_Icc is a dubious translation:
-lean 3 declaration is
-  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (Fin.insertNth.{0} n (fun {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} => Real) i x) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I))
-but is expected to have type
-  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (Fin.insertNth.{0} n (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I))
+<too large>
 Case conversion may be inaccurate. Consider using '#align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Iccₓ'. -/
 theorem mapsTo_insertNth_face_Icc {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i).Icc I.Icc :=
@@ -636,10 +630,7 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
 -/
 
 /- warning: box_integral.box.continuous_on_face_Icc -> BoxIntegral.Box.continuousOn_face_Icc is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) i x)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Iccₓ'. -/
 theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
@@ -706,10 +697,7 @@ theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ
 #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendsto
 
 /- warning: box_integral.box.exists_seq_mono_tendsto -> BoxIntegral.Box.exists_seq_mono_tendsto is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J n)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
-but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align box_integral.box.exists_seq_mono_tendsto BoxIntegral.Box.exists_seq_mono_tendstoₓ'. -/
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
Diff
@@ -276,7 +276,7 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_def BoxIntegral.Box.Icc_defₓ'. -/
 theorem Icc_def : I.Icc = Icc I.lower I.upper :=
   rfl
@@ -286,7 +286,7 @@ theorem Icc_def : I.Icc = Icc I.lower I.upper :=
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Iccₓ'. -/
 @[simp]
 theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
@@ -297,7 +297,7 @@ theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Iccₓ'. -/
 @[simp]
 theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
@@ -308,7 +308,7 @@ theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Iccₓ'. -/
 protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
   isCompact_Icc
@@ -318,7 +318,7 @@ protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_piₓ'. -/
 theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
@@ -328,7 +328,7 @@ theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) J))
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) J))
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) J))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Iccₓ'. -/
 theorem le_iff_Icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
   (le_TFAE I J).out 0 2
@@ -356,7 +356,7 @@ theorem monotone_upper : Monotone fun I : Box ι => I.upper := fun I J H => (le_
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Iccₓ'. -/
 theorem coe_subset_Icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
 #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
@@ -590,7 +590,7 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 lean 3 declaration is
   forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
 but is expected to have type
-  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i) j)))
+  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))))) (Fin.succAbove n i) j)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
@@ -620,7 +620,7 @@ theorem monotone_face {n} (i : Fin (n + 1)) : Monotone fun I => face I i := fun
 lean 3 declaration is
   forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (Fin.insertNth.{0} n (fun {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} => Real) i x) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I))
 but is expected to have type
-  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (Fin.insertNth.{0} n (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I))
+  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (Fin.insertNth.{0} n (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Iccₓ'. -/
 theorem mapsTo_insertNth_face_Icc {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i).Icc I.Icc :=
@@ -639,7 +639,7 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
 lean 3 declaration is
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) i x)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
 but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Iccₓ'. -/
 theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
@@ -675,7 +675,7 @@ theorem Ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Io
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Iccₓ'. -/
 protected theorem Ioo_subset_Icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
   I.Ioo_subset_coe.trans coe_subset_Icc
@@ -709,7 +709,7 @@ theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J n)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.exists_seq_mono_tendsto BoxIntegral.Box.exists_seq_mono_tendstoₓ'. -/
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
@@ -792,7 +792,7 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
 lean 3 declaration is
   forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_leₓ'. -/
 theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam I.Icc ≤ c * (I.upper i - I.lower i) :=
Diff
@@ -434,7 +434,7 @@ theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
 
 /- warning: box_integral.box.with_bot_coe_subset_iff -> BoxIntegral.Box.withBotCoe_subset_iff is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toLE.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)))) I J)
+  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toHasLe.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)))) I J)
 but is expected to have type
   forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toLE.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) I J)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.with_bot_coe_subset_iff BoxIntegral.Box.withBotCoe_subset_iffₓ'. -/
@@ -588,7 +588,7 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 
 /- warning: box_integral.box.face_mk -> BoxIntegral.Box.face_mk is a dubious translation:
 lean 3 declaration is
-  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
+  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toHasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
 but is expected to have type
   forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i) j)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
@@ -759,7 +759,7 @@ theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
 
 /- warning: box_integral.box.nndist_le_distortion_mul -> BoxIntegral.Box.nndist_le_distortion_mul is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (Distrib.toHasMul.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (Distrib.toHasMul.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 but is expected to have type
   forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (CanonicallyOrderedCommSemiring.toMul.{0} NNReal instNNRealCanonicallyOrderedCommSemiring)) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mulₓ'. -/
@@ -790,7 +790,7 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
 
 /- warning: box_integral.box.diam_Icc_le_of_distortion_le -> BoxIntegral.Box.diam_Icc_le_of_distortion_le is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 but is expected to have type
   forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_leₓ'. -/
Diff
@@ -425,11 +425,11 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 -/
 
-#print BoxIntegral.Box.bunionᵢ_coe_eq_coe /-
-theorem bunionᵢ_coe_eq_coe (I : WithBot (Box ι)) :
+#print BoxIntegral.Box.biUnion_coe_eq_coe /-
+theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
     (⋃ (J : Box ι) (hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
-#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bunionᵢ_coe_eq_coe
+#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.biUnion_coe_eq_coe
 -/
 
 /- warning: box_integral.box.with_bot_coe_subset_iff -> BoxIntegral.Box.withBotCoe_subset_iff is a dubious translation:
@@ -681,13 +681,13 @@ protected theorem Ioo_subset_Icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
   I.Ioo_subset_coe.trans coe_subset_Icc
 #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
 
-/- warning: box_integral.box.Union_Ioo_of_tendsto -> BoxIntegral.Box.unionᵢ_Ioo_of_tendsto is a dubious translation:
+/- warning: box_integral.box.Union_Ioo_of_tendsto -> BoxIntegral.Box.iUnion_Ioo_of_tendsto is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.unionᵢ.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
+  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.iUnion.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
 but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.unionᵢ.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendstoₓ'. -/
-theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
+  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.iUnion.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendstoₓ'. -/
+theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, (J n).Ioo) = I.Ioo :=
   have hl' : ∀ i, Antitone fun n => (J n).lower i := fun i =>
@@ -696,14 +696,14 @@ theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
     (monotone_eval i).comp (monotone_upper.comp hJ)
   calc
     (⋃ n, (J n).Ioo) = pi univ fun i => ⋃ n, Ioo ((J n).lower i) ((J n).upper i) :=
-      unionᵢ_univ_pi_of_monotone fun i => (hl' i).Ioo (hu' i)
+      iUnion_univ_pi_of_monotone fun i => (hl' i).Ioo (hu' i)
     _ = I.Ioo :=
       pi_congr rfl fun i hi =>
-        unionᵢ_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
+        iUnion_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
           (isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
           (isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
     
-#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendsto
+#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendsto
 
 /- warning: box_integral.box.exists_seq_mono_tendsto -> BoxIntegral.Box.exists_seq_mono_tendsto is a dubious translation:
 lean 3 declaration is
Diff
@@ -590,7 +590,7 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 lean 3 declaration is
   forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
 but is expected to have type
-  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Fin.succAbove n i) j)))
+  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.Hom.Lattice._hyg.494 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (InfHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Lattice.toInf.{0} (Fin n) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n)))) (Lattice.toInf.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n)) (LatticeHomClass.toInfHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (DistribLattice.toLattice.{0} (Fin n) (instDistribLattice.{0} (Fin n) (Fin.instLinearOrderFin n))) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (OrderHomClass.toLatticeHomClass.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Fin.instLinearOrderFin n) (Fin.instLatticeFinHAddNatInstHAddInstAddNatOfNat n) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))))) (Fin.succAbove n i) j)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
Diff
@@ -276,7 +276,7 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_def BoxIntegral.Box.Icc_defₓ'. -/
 theorem Icc_def : I.Icc = Icc I.lower I.upper :=
   rfl
@@ -286,7 +286,7 @@ theorem Icc_def : I.Icc = Icc I.lower I.upper :=
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Iccₓ'. -/
 @[simp]
 theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
@@ -297,7 +297,7 @@ theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Iccₓ'. -/
 @[simp]
 theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
@@ -308,7 +308,7 @@ theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Iccₓ'. -/
 protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
   isCompact_Icc
@@ -318,7 +318,7 @@ protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_piₓ'. -/
 theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
@@ -328,7 +328,7 @@ theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) J))
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) J))
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) J))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Iccₓ'. -/
 theorem le_iff_Icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
   (le_TFAE I J).out 0 2
@@ -356,7 +356,7 @@ theorem monotone_upper : Monotone fun I : Box ι => I.upper := fun I J H => (le_
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Iccₓ'. -/
 theorem coe_subset_Icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
 #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
@@ -590,7 +590,7 @@ def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
 lean 3 declaration is
   forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
 but is expected to have type
-  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Function.instEmbeddingLikeEmbedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (RelEmbedding.toEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Fin.succAbove n i)))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Function.instEmbeddingLikeEmbedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (RelEmbedding.toEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Fin.succAbove n i)))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Function.instEmbeddingLikeEmbedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (RelEmbedding.toEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Fin.succAbove n i)) j)))
+  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Fin.succAbove n i))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin n) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (Fin.succAbove n i) j)))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
@@ -620,7 +620,7 @@ theorem monotone_face {n} (i : Fin (n + 1)) : Monotone fun I => face I i := fun
 lean 3 declaration is
   forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (Fin.insertNth.{0} n (fun {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} => Real) i x) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I))
 but is expected to have type
-  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (Fin.insertNth.{0} n (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin n))) (BoxIntegral.Box.face n I i)) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) I))
+  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (Fin.insertNth.{0} n (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Iccₓ'. -/
 theorem mapsTo_insertNth_face_Icc {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i).Icc I.Icc :=
@@ -639,7 +639,7 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
 lean 3 declaration is
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) i x)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
 but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin n))) (BoxIntegral.Box.face n I i))))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (RelHomClass.toFunLike.{0, 0, 0} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) (Set.instLESet.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Iccₓ'. -/
 theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
@@ -675,7 +675,7 @@ theorem Ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Io
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)
 Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Iccₓ'. -/
 protected theorem Ioo_subset_Icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
   I.Ioo_subset_coe.trans coe_subset_Icc
@@ -709,7 +709,7 @@ theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J n)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
 but is expected to have type
-  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.exists_seq_mono_tendsto BoxIntegral.Box.exists_seq_mono_tendstoₓ'. -/
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
@@ -792,7 +792,7 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
 lean 3 declaration is
   forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 but is expected to have type
-  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (RelHomClass.toFunLike.{u1, u1, u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.instLEBox.{u1} ι) (Set.instLESet.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_leₓ'. -/
 theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam I.Icc ≤ c * (I.upper i - I.lower i) :=
Diff
@@ -272,67 +272,67 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
 #align box_integral.box.Icc BoxIntegral.Box.Icc
 -/
 
-/- warning: box_integral.box.Icc_def -> BoxIntegral.Box.icc_def is a dubious translation:
+/- warning: box_integral.box.Icc_def -> BoxIntegral.Box.Icc_def is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
 but is expected to have type
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_def BoxIntegral.Box.icc_defₓ'. -/
-theorem icc_def : I.Icc = Icc I.lower I.upper :=
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_def BoxIntegral.Box.Icc_defₓ'. -/
+theorem Icc_def : I.Icc = Icc I.lower I.upper :=
   rfl
-#align box_integral.box.Icc_def BoxIntegral.Box.icc_def
+#align box_integral.box.Icc_def BoxIntegral.Box.Icc_def
 
-/- warning: box_integral.box.upper_mem_Icc -> BoxIntegral.Box.upper_mem_icc is a dubious translation:
+/- warning: box_integral.box.upper_mem_Icc -> BoxIntegral.Box.upper_mem_Icc is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_iccₓ'. -/
+Case conversion may be inaccurate. Consider using '#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Iccₓ'. -/
 @[simp]
-theorem upper_mem_icc (I : Box ι) : I.upper ∈ I.Icc :=
+theorem upper_mem_Icc (I : Box ι) : I.upper ∈ I.Icc :=
   right_mem_Icc.2 I.lower_le_upper
-#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_icc
+#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Icc
 
-/- warning: box_integral.box.lower_mem_Icc -> BoxIntegral.Box.lower_mem_icc is a dubious translation:
+/- warning: box_integral.box.lower_mem_Icc -> BoxIntegral.Box.lower_mem_Icc is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_iccₓ'. -/
+Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Iccₓ'. -/
 @[simp]
-theorem lower_mem_icc (I : Box ι) : I.lower ∈ I.Icc :=
+theorem lower_mem_Icc (I : Box ι) : I.lower ∈ I.Icc :=
   left_mem_Icc.2 I.lower_le_upper
-#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_icc
+#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Icc
 
-/- warning: box_integral.box.is_compact_Icc -> BoxIntegral.Box.isCompact_icc is a dubious translation:
+/- warning: box_integral.box.is_compact_Icc -> BoxIntegral.Box.isCompact_Icc is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_iccₓ'. -/
-protected theorem isCompact_icc (I : Box ι) : IsCompact I.Icc :=
+Case conversion may be inaccurate. Consider using '#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Iccₓ'. -/
+protected theorem isCompact_Icc (I : Box ι) : IsCompact I.Icc :=
   isCompact_Icc
-#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_icc
+#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Icc
 
-/- warning: box_integral.box.Icc_eq_pi -> BoxIntegral.Box.icc_eq_pi is a dubious translation:
+/- warning: box_integral.box.Icc_eq_pi -> BoxIntegral.Box.Icc_eq_pi is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
 but is expected to have type
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_piₓ'. -/
-theorem icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_piₓ'. -/
+theorem Icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
-#align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_pi
+#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_pi
 
-/- warning: box_integral.box.le_iff_Icc -> BoxIntegral.Box.le_iff_icc is a dubious translation:
+/- warning: box_integral.box.le_iff_Icc -> BoxIntegral.Box.le_iff_Icc is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) J))
 but is expected to have type
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) J))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_iccₓ'. -/
-theorem le_iff_icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
+Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Iccₓ'. -/
+theorem le_iff_Icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
   (le_TFAE I J).out 0 2
-#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_icc
+#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Icc
 
 /- warning: box_integral.box.antitone_lower -> BoxIntegral.Box.antitone_lower is a dubious translation:
 lean 3 declaration is
@@ -352,14 +352,14 @@ Case conversion may be inaccurate. Consider using '#align box_integral.box.monot
 theorem monotone_upper : Monotone fun I : Box ι => I.upper := fun I J H => (le_iff_bounds.1 H).2
 #align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
 
-/- warning: box_integral.box.coe_subset_Icc -> BoxIntegral.Box.coe_subset_icc is a dubious translation:
+/- warning: box_integral.box.coe_subset_Icc -> BoxIntegral.Box.coe_subset_Icc is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
   forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_iccₓ'. -/
-theorem coe_subset_icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
-#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_icc
+Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Iccₓ'. -/
+theorem coe_subset_Icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
+#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
 
 /-!
 ### Supremum of two boxes
@@ -425,11 +425,11 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 -/
 
-#print BoxIntegral.Box.bUnion_coe_eq_coe /-
-theorem bUnion_coe_eq_coe (I : WithBot (Box ι)) :
+#print BoxIntegral.Box.bunionᵢ_coe_eq_coe /-
+theorem bunionᵢ_coe_eq_coe (I : WithBot (Box ι)) :
     (⋃ (J : Box ι) (hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
-#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bUnion_coe_eq_coe
+#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bunionᵢ_coe_eq_coe
 -/
 
 /- warning: box_integral.box.with_bot_coe_subset_iff -> BoxIntegral.Box.withBotCoe_subset_iff is a dubious translation:
@@ -635,17 +635,17 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
 #align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
 -/
 
-/- warning: box_integral.box.continuous_on_face_Icc -> BoxIntegral.Box.continuousOn_face_icc is a dubious translation:
+/- warning: box_integral.box.continuous_on_face_Icc -> BoxIntegral.Box.continuousOn_face_Icc is a dubious translation:
 lean 3 declaration is
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) i x)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin n))) (BoxIntegral.Box.face n I i))))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_iccₓ'. -/
-theorem continuousOn_face_icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
+Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Iccₓ'. -/
+theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : ContinuousOn (f ∘ i.insertNth x) (I.face i).Icc :=
   h.comp (continuousOn_const.fin_insertNth i continuousOn_id) (I.mapsTo_insertNth_face_Icc hx)
-#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_icc
+#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Icc
 
 /-!
 ### Covering of the interior of a box by a monotone sequence of smaller boxes
@@ -666,28 +666,28 @@ protected def Ioo : Box ι →o Set (ι → ℝ)
     pi_mono fun i hi => Ioo_subset_Ioo ((le_iff_bounds.1 h).1 i) ((le_iff_bounds.1 h).2 i)
 #align box_integral.box.Ioo BoxIntegral.Box.Ioo
 
-#print BoxIntegral.Box.ioo_subset_coe /-
-theorem ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Ioc_self (hx i trivial)
-#align box_integral.box.Ioo_subset_coe BoxIntegral.Box.ioo_subset_coe
+#print BoxIntegral.Box.Ioo_subset_coe /-
+theorem Ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Ioc_self (hx i trivial)
+#align box_integral.box.Ioo_subset_coe BoxIntegral.Box.Ioo_subset_coe
 -/
 
-/- warning: box_integral.box.Ioo_subset_Icc -> BoxIntegral.Box.ioo_subset_icc is a dubious translation:
+/- warning: box_integral.box.Ioo_subset_Icc -> BoxIntegral.Box.Ioo_subset_Icc is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
 but is expected to have type
   forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_iccₓ'. -/
-protected theorem ioo_subset_icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
-  I.ioo_subset_coe.trans coe_subset_icc
-#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_icc
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Iccₓ'. -/
+protected theorem Ioo_subset_Icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
+  I.Ioo_subset_coe.trans coe_subset_Icc
+#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
 
-/- warning: box_integral.box.Union_Ioo_of_tendsto -> BoxIntegral.Box.unionᵢ_ioo_of_tendsto is a dubious translation:
+/- warning: box_integral.box.Union_Ioo_of_tendsto -> BoxIntegral.Box.unionᵢ_Ioo_of_tendsto is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.unionᵢ.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
 but is expected to have type
   forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.unionᵢ.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendstoₓ'. -/
-theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendstoₓ'. -/
+theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, (J n).Ioo) = I.Ioo :=
   have hl' : ∀ i, Antitone fun n => (J n).lower i := fun i =>
@@ -703,7 +703,7 @@ theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
           (isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
           (isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
     
-#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendsto
+#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendsto
 
 /- warning: box_integral.box.exists_seq_mono_tendsto -> BoxIntegral.Box.exists_seq_mono_tendsto is a dubious translation:
 lean 3 declaration is
@@ -788,13 +788,13 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     neg_sub] using I.nndist_le_distortion_mul i
 #align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
 
-/- warning: box_integral.box.diam_Icc_le_of_distortion_le -> BoxIntegral.Box.diam_icc_le_of_distortion_le is a dubious translation:
+/- warning: box_integral.box.diam_Icc_le_of_distortion_le -> BoxIntegral.Box.diam_Icc_le_of_distortion_le is a dubious translation:
 lean 3 declaration is
   forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
 but is expected to have type
   forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
-Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_icc_le_of_distortion_leₓ'. -/
-theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
+Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_leₓ'. -/
+theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam I.Icc ≤ c * (I.upper i - I.lower i) :=
   have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
     mul_nonneg c.coe_nonneg (sub_nonneg.2 <| I.lower_le_upper _)
@@ -805,7 +805,7 @@ theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
       _ ≤ c * (I.upper i - I.lower i) :=
         mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
       
-#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_icc_le_of_distortion_le
+#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
 
 end Distortion
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.box_integral.box.basic
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 4f4a1c875d0baa92ab5d92f3fb1bb258ad9f3e5b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Topology.MetricSpace.Basic
 /-!
 # Rectangular boxes in `ℝⁿ`
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we define rectangular boxes in `ℝⁿ`. As usual, we represent `ℝⁿ` as the type of
 functions `ι → ℝ` (usually `ι = fin n` for some `n`). When we need to interpret a box `[l, u]` as a
 set, we use the product `{x | ∀ i, l i < x i ∧ x i ≤ u i}` of half-open intervals `(l i, u i]`. We
Diff
@@ -70,12 +70,14 @@ variable {ι : Type _}
 -/
 
 
+#print BoxIntegral.Box /-
 /-- A nontrivial rectangular box in `ι → ℝ` with corners `lower` and `upper`. Repesents the product
 of half-open intervals `(lower i, upper i]`. -/
 structure Box (ι : Type _) where
   (lower upper : ι → ℝ)
   lower_lt_upper : ∀ i, lower i < upper i
 #align box_integral.box BoxIntegral.Box
+-/
 
 attribute [simp] box.lower_lt_upper
 
@@ -86,12 +88,20 @@ variable (I J : Box ι) {x y : ι → ℝ}
 instance : Inhabited (Box ι) :=
   ⟨⟨0, 1, fun i => zero_lt_one⟩⟩
 
+/- warning: box_integral.box.lower_le_upper -> BoxIntegral.Box.lower_le_upper is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_le_upper BoxIntegral.Box.lower_le_upperₓ'. -/
 theorem lower_le_upper : I.lower ≤ I.upper := fun i => (I.lower_lt_upper i).le
 #align box_integral.box.lower_le_upper BoxIntegral.Box.lower_le_upper
 
+#print BoxIntegral.Box.lower_ne_upper /-
 theorem lower_ne_upper (i) : I.lower i ≠ I.upper i :=
   (I.lower_lt_upper i).Ne
 #align box_integral.box.lower_ne_upper BoxIntegral.Box.lower_ne_upper
+-/
 
 instance : Membership (ι → ℝ) (Box ι) :=
   ⟨fun x I => ∀ i, x i ∈ Ioc (I.lower i) (I.upper i)⟩
@@ -99,58 +109,90 @@ instance : Membership (ι → ℝ) (Box ι) :=
 instance : CoeTC (Box ι) (Set <| ι → ℝ) :=
   ⟨fun I => { x | x ∈ I }⟩
 
+/- warning: box_integral.box.mem_mk -> BoxIntegral.Box.mem_mk is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real} {x : ι -> Real} {H : forall (i : ι), LT.lt.{0} Real Real.hasLt (l i) (u i)}, Iff (Membership.Mem.{u1, u1} (ι -> Real) (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasMem.{u1} ι) x (BoxIntegral.Box.mk.{u1} ι l u H)) (forall (i : ι), Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) (x i) (Set.Ioc.{0} Real Real.preorder (l i) (u i)))
+but is expected to have type
+  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real} {x : ι -> Real} {H : forall (i : ι), LT.lt.{0} Real Real.instLTReal (l i) (u i)}, Iff (Membership.mem.{u1, u1} (ι -> Real) (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instMembershipForAllRealBox.{u1} ι) x (BoxIntegral.Box.mk.{u1} ι l u H)) (forall (i : ι), Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) (x i) (Set.Ioc.{0} Real Real.instPreorderReal (l i) (u i)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.mem_mk BoxIntegral.Box.mem_mkₓ'. -/
 @[simp]
 theorem mem_mk {l u x : ι → ℝ} {H} : x ∈ mk l u H ↔ ∀ i, x i ∈ Ioc (l i) (u i) :=
   Iff.rfl
 #align box_integral.box.mem_mk BoxIntegral.Box.mem_mk
 
+#print BoxIntegral.Box.mem_coe /-
 @[simp, norm_cast]
 theorem mem_coe : x ∈ (I : Set (ι → ℝ)) ↔ x ∈ I :=
   Iff.rfl
 #align box_integral.box.mem_coe BoxIntegral.Box.mem_coe
+-/
 
+#print BoxIntegral.Box.mem_def /-
 theorem mem_def : x ∈ I ↔ ∀ i, x i ∈ Ioc (I.lower i) (I.upper i) :=
   Iff.rfl
 #align box_integral.box.mem_def BoxIntegral.Box.mem_def
+-/
 
+#print BoxIntegral.Box.mem_univ_Ioc /-
 theorem mem_univ_Ioc {I : Box ι} : (x ∈ pi univ fun i => Ioc (I.lower i) (I.upper i)) ↔ x ∈ I :=
   mem_univ_pi
 #align box_integral.box.mem_univ_Ioc BoxIntegral.Box.mem_univ_Ioc
+-/
 
+#print BoxIntegral.Box.coe_eq_pi /-
 theorem coe_eq_pi : (I : Set (ι → ℝ)) = pi univ fun i => Ioc (I.lower i) (I.upper i) :=
   Set.ext fun x => mem_univ_Ioc.symm
 #align box_integral.box.coe_eq_pi BoxIntegral.Box.coe_eq_pi
+-/
 
+#print BoxIntegral.Box.upper_mem /-
 @[simp]
 theorem upper_mem : I.upper ∈ I := fun i => right_mem_Ioc.2 <| I.lower_lt_upper i
 #align box_integral.box.upper_mem BoxIntegral.Box.upper_mem
+-/
 
+#print BoxIntegral.Box.exists_mem /-
 theorem exists_mem : ∃ x, x ∈ I :=
   ⟨_, I.upper_mem⟩
 #align box_integral.box.exists_mem BoxIntegral.Box.exists_mem
+-/
 
+#print BoxIntegral.Box.nonempty_coe /-
 theorem nonempty_coe : Set.Nonempty (I : Set (ι → ℝ)) :=
   I.exists_mem
 #align box_integral.box.nonempty_coe BoxIntegral.Box.nonempty_coe
+-/
 
+#print BoxIntegral.Box.coe_ne_empty /-
 @[simp]
 theorem coe_ne_empty : (I : Set (ι → ℝ)) ≠ ∅ :=
   I.nonempty_coe.ne_empty
 #align box_integral.box.coe_ne_empty BoxIntegral.Box.coe_ne_empty
+-/
 
+#print BoxIntegral.Box.empty_ne_coe /-
 @[simp]
 theorem empty_ne_coe : ∅ ≠ (I : Set (ι → ℝ)) :=
   I.coe_ne_empty.symm
 #align box_integral.box.empty_ne_coe BoxIntegral.Box.empty_ne_coe
+-/
 
 instance : LE (Box ι) :=
   ⟨fun I J => ∀ ⦃x⦄, x ∈ I → x ∈ J⟩
 
+#print BoxIntegral.Box.le_def /-
 theorem le_def : I ≤ J ↔ ∀ x ∈ I, x ∈ J :=
   Iff.rfl
 #align box_integral.box.le_def BoxIntegral.Box.le_def
+-/
 
-theorem le_tFAE :
+/- warning: box_integral.box.le_tfae -> BoxIntegral.Box.le_TFAE is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι) (J : BoxIntegral.Box.{u1} ι), List.TFAE (List.cons.{0} Prop (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J)) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.upper.{u1} ι J))) (List.cons.{0} Prop (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J))) (List.nil.{0} Prop)))))
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι) (J : BoxIntegral.Box.{u1} ι), List.TFAE (List.cons.{0} Prop (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J)) (List.cons.{0} Prop (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.upper.{u1} ι J))) (List.cons.{0} Prop (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J))) (List.nil.{0} Prop)))))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.le_tfae BoxIntegral.Box.le_TFAEₓ'. -/
+theorem le_TFAE :
     TFAE
       [I ≤ J, (I : Set (ι → ℝ)) ⊆ J, Icc I.lower I.upper ⊆ Icc J.lower J.upper,
         J.lower ≤ I.lower ∧ I.upper ≤ J.upper] :=
@@ -162,19 +204,28 @@ theorem le_tFAE :
   tfae_have 3 ↔ 4; exact Icc_subset_Icc_iff I.lower_le_upper
   tfae_have 4 → 2; exact fun h x hx i => Ioc_subset_Ioc (h.1 i) (h.2 i) (hx i)
   tfae_finish
-#align box_integral.box.le_tfae BoxIntegral.Box.le_tFAE
+#align box_integral.box.le_tfae BoxIntegral.Box.le_TFAE
 
 variable {I J}
 
+#print BoxIntegral.Box.coe_subset_coe /-
 @[simp, norm_cast]
 theorem coe_subset_coe : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J :=
   Iff.rfl
 #align box_integral.box.coe_subset_coe BoxIntegral.Box.coe_subset_coe
+-/
 
+/- warning: box_integral.box.le_iff_bounds -> BoxIntegral.Box.le_iff_bounds is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.hasLe)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J)))
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (And (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.lower.{u1} ι J) (BoxIntegral.Box.lower.{u1} ι I)) (LE.le.{u1} (ι -> Real) (Pi.hasLe.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instLEReal)) (BoxIntegral.Box.upper.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι J)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_bounds BoxIntegral.Box.le_iff_boundsₓ'. -/
 theorem le_iff_bounds : I ≤ J ↔ J.lower ≤ I.lower ∧ I.upper ≤ J.upper :=
-  (le_tFAE I J).out 0 3
+  (le_TFAE I J).out 0 3
 #align box_integral.box.le_iff_bounds BoxIntegral.Box.le_iff_bounds
 
+#print BoxIntegral.Box.injective_coe /-
 theorem injective_coe : Injective (coe : Box ι → Set (ι → ℝ)) :=
   by
   rintro ⟨l₁, u₁, h₁⟩ ⟨l₂, u₂, h₂⟩ h
@@ -182,17 +233,28 @@ theorem injective_coe : Injective (coe : Box ι → Set (ι → ℝ)) :=
   congr
   exacts[le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
 #align box_integral.box.injective_coe BoxIntegral.Box.injective_coe
+-/
 
+#print BoxIntegral.Box.coe_inj /-
 @[simp, norm_cast]
 theorem coe_inj : (I : Set (ι → ℝ)) = J ↔ I = J :=
   injective_coe.eq_iff
 #align box_integral.box.coe_inj BoxIntegral.Box.coe_inj
+-/
 
+#print BoxIntegral.Box.ext /-
 @[ext]
 theorem ext (H : ∀ x, x ∈ I ↔ x ∈ J) : I = J :=
   injective_coe <| Set.ext H
 #align box_integral.box.ext BoxIntegral.Box.ext
+-/
 
+/- warning: box_integral.box.ne_of_disjoint_coe -> BoxIntegral.Box.ne_of_disjoint_coe is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} (ι -> Real)) (Set.booleanAlgebra.{u1} (ι -> Real)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J)) -> (Ne.{succ u1} (BoxIntegral.Box.{u1} ι) I J)
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (Preorder.toLE.{u1} (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J)) -> (Ne.{succ u1} (BoxIntegral.Box.{u1} ι) I J)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.ne_of_disjoint_coe BoxIntegral.Box.ne_of_disjoint_coeₓ'. -/
 theorem ne_of_disjoint_coe (h : Disjoint (I : Set (ι → ℝ)) J) : I ≠ J :=
   mt coe_inj.2 <| h.Ne I.coe_ne_empty
 #align box_integral.box.ne_of_disjoint_coe BoxIntegral.Box.ne_of_disjoint_coe
@@ -200,43 +262,99 @@ theorem ne_of_disjoint_coe (h : Disjoint (I : Set (ι → ℝ)) J) : I ≠ J :=
 instance : PartialOrder (Box ι) :=
   { PartialOrder.lift (coe : Box ι → Set (ι → ℝ)) injective_coe with le := (· ≤ ·) }
 
+#print BoxIntegral.Box.Icc /-
 /-- Closed box corresponding to `I : box_integral.box ι`. -/
-protected def icc : Box ι ↪o Set (ι → ℝ) :=
-  OrderEmbedding.ofMapLEIff (fun I : Box ι => Icc I.lower I.upper) fun I J => (le_tFAE I J).out 2 0
-#align box_integral.box.Icc BoxIntegral.Box.icc
+protected def Icc : Box ι ↪o Set (ι → ℝ) :=
+  OrderEmbedding.ofMapLEIff (fun I : Box ι => Icc I.lower I.upper) fun I J => (le_TFAE I J).out 2 0
+#align box_integral.box.Icc BoxIntegral.Box.Icc
+-/
 
+/- warning: box_integral.box.Icc_def -> BoxIntegral.Box.icc_def is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (Set.Icc.{u1} (ι -> Real) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_def BoxIntegral.Box.icc_defₓ'. -/
 theorem icc_def : I.Icc = Icc I.lower I.upper :=
   rfl
 #align box_integral.box.Icc_def BoxIntegral.Box.icc_def
 
+/- warning: box_integral.box.upper_mem_Icc -> BoxIntegral.Box.upper_mem_icc is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.upper.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_iccₓ'. -/
 @[simp]
 theorem upper_mem_icc (I : Box ι) : I.upper ∈ I.Icc :=
   right_mem_Icc.2 I.lower_le_upper
 #align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_icc
 
+/- warning: box_integral.box.lower_mem_Icc -> BoxIntegral.Box.lower_mem_icc is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.Mem.{u1, u1} (ι -> Real) (Set.{u1} (ι -> Real)) (Set.hasMem.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Membership.mem.{u1, u1} (ι -> Real) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instMembershipSet.{u1} (ι -> Real)) (BoxIntegral.Box.lower.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_iccₓ'. -/
 @[simp]
 theorem lower_mem_icc (I : Box ι) : I.lower ∈ I.Icc :=
   left_mem_Icc.2 I.lower_le_upper
 #align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_icc
 
+/- warning: box_integral.box.is_compact_Icc -> BoxIntegral.Box.isCompact_icc is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), IsCompact.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_iccₓ'. -/
 protected theorem isCompact_icc (I : Box ι) : IsCompact I.Icc :=
   isCompact_Icc
 #align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_icc
 
+/- warning: box_integral.box.Icc_eq_pi -> BoxIntegral.Box.icc_eq_pi is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} (Set.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (Set.pi.{u1, 0} ι (fun (ᾰ : ι) => Real) (Set.univ.{u1} ι) (fun (i : ι) => Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_piₓ'. -/
 theorem icc_eq_pi : I.Icc = pi univ fun i => Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
 #align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_pi
 
+/- warning: box_integral.box.le_iff_Icc -> BoxIntegral.Box.le_iff_icc is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι) I J) (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) J))
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) I J) (HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) J))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_iccₓ'. -/
 theorem le_iff_icc : I ≤ J ↔ I.Icc ⊆ J.Icc :=
-  (le_tFAE I J).out 0 2
+  (le_TFAE I J).out 0 2
 #align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_icc
 
+/- warning: box_integral.box.antitone_lower -> BoxIntegral.Box.antitone_lower is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}}, Antitone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.lower.{u1} ι I)
+but is expected to have type
+  forall {ι : Type.{u1}}, Antitone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.lower.{u1} ι I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.antitone_lower BoxIntegral.Box.antitone_lowerₓ'. -/
 theorem antitone_lower : Antitone fun I : Box ι => I.lower := fun I J H => (le_iff_bounds.1 H).1
 #align box_integral.box.antitone_lower BoxIntegral.Box.antitone_lower
 
+/- warning: box_integral.box.monotone_upper -> BoxIntegral.Box.monotone_upper is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}}, Monotone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.preorder)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.upper.{u1} ι I)
+but is expected to have type
+  forall {ι : Type.{u1}}, Monotone.{u1, u1} (BoxIntegral.Box.{u1} ι) (ι -> Real) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (Pi.preorder.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (i : ι) => Real.instPreorderReal)) (fun (I : BoxIntegral.Box.{u1} ι) => BoxIntegral.Box.upper.{u1} ι I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upperₓ'. -/
 theorem monotone_upper : Monotone fun I : Box ι => I.upper := fun I J H => (le_iff_bounds.1 H).2
 #align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
 
+/- warning: box_integral.box.coe_subset_Icc -> BoxIntegral.Box.coe_subset_icc is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι}, HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) I) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_iccₓ'. -/
 theorem coe_subset_icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le, fun i => (hx i).2⟩
 #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_icc
 
@@ -269,20 +387,31 @@ In this section we define coercion from `with_bot (box ι)` to `set (ι → ℝ)
 -/
 
 
+/- warning: box_integral.box.with_bot_coe -> BoxIntegral.Box.withBotCoe is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}}, CoeTCₓ.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real))
+but is expected to have type
+  forall {ι : Type.{u1}}, CoeTC.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.with_bot_coe BoxIntegral.Box.withBotCoeₓ'. -/
 instance withBotCoe : CoeTC (WithBot (Box ι)) (Set (ι → ℝ)) :=
   ⟨fun o => o.elim ∅ coe⟩
 #align box_integral.box.with_bot_coe BoxIntegral.Box.withBotCoe
 
+#print BoxIntegral.Box.coe_bot /-
 @[simp, norm_cast]
 theorem coe_bot : ((⊥ : WithBot (Box ι)) : Set (ι → ℝ)) = ∅ :=
   rfl
 #align box_integral.box.coe_bot BoxIntegral.Box.coe_bot
+-/
 
+#print BoxIntegral.Box.coe_coe /-
 @[simp, norm_cast]
 theorem coe_coe : ((I : WithBot (Box ι)) : Set (ι → ℝ)) = I :=
   rfl
 #align box_integral.box.coe_coe BoxIntegral.Box.coe_coe
+-/
 
+#print BoxIntegral.Box.isSome_iff /-
 theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → ℝ)).Nonempty
   | ⊥ => by
     erw [Option.isSome]
@@ -291,12 +420,21 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
     erw [Option.isSome]
     simp [I.nonempty_coe]
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
+-/
 
+#print BoxIntegral.Box.bUnion_coe_eq_coe /-
 theorem bUnion_coe_eq_coe (I : WithBot (Box ι)) :
     (⋃ (J : Box ι) (hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
 #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bUnion_coe_eq_coe
+-/
 
+/- warning: box_integral.box.with_bot_coe_subset_iff -> BoxIntegral.Box.withBotCoe_subset_iff is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toLE.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)))) I J)
+but is expected to have type
+  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J)) (LE.le.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Preorder.toLE.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.preorder.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) I J)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.with_bot_coe_subset_iff BoxIntegral.Box.withBotCoe_subset_iffₓ'. -/
 @[simp, norm_cast]
 theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J :=
   by
@@ -305,18 +443,28 @@ theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ))
   simp
 #align box_integral.box.with_bot_coe_subset_iff BoxIntegral.Box.withBotCoe_subset_iff
 
+#print BoxIntegral.Box.withBotCoe_inj /-
 @[simp, norm_cast]
 theorem withBotCoe_inj {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) = J ↔ I = J := by
   simp only [subset.antisymm_iff, ← le_antisymm_iff, with_bot_coe_subset_iff]
 #align box_integral.box.with_bot_coe_inj BoxIntegral.Box.withBotCoe_inj
+-/
 
+#print BoxIntegral.Box.mk' /-
 /-- Make a `with_bot (box ι)` from a pair of corners `l u : ι → ℝ`. If `l i < u i` for all `i`,
 then the result is `⟨l, u, _⟩ : box ι`, otherwise it is `⊥`. In any case, the result interpreted
 as a set in `ι → ℝ` is the set `{x : ι → ℝ | ∀ i, x i ∈ Ioc (l i) (u i)}`.  -/
 def mk' (l u : ι → ℝ) : WithBot (Box ι) :=
   if h : ∀ i, l i < u i then ↑(⟨l, u, h⟩ : Box ι) else ⊥
 #align box_integral.box.mk' BoxIntegral.Box.mk'
+-/
 
+/- warning: box_integral.box.mk'_eq_bot -> BoxIntegral.Box.mk'_eq_bot is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real}, Iff (Eq.{succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.mk'.{u1} ι l u) (Bot.bot.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasBot.{u1} (BoxIntegral.Box.{u1} ι)))) (Exists.{succ u1} ι (fun (i : ι) => LE.le.{0} Real Real.hasLe (u i) (l i)))
+but is expected to have type
+  forall {ι : Type.{u1}} {l : ι -> Real} {u : ι -> Real}, Iff (Eq.{succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.mk'.{u1} ι l u) (Bot.bot.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.bot.{u1} (BoxIntegral.Box.{u1} ι)))) (Exists.{succ u1} ι (fun (i : ι) => LE.le.{0} Real Real.instLEReal (u i) (l i)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.mk'_eq_bot BoxIntegral.Box.mk'_eq_botₓ'. -/
 @[simp]
 theorem mk'_eq_bot {l u : ι → ℝ} : mk' l u = ⊥ ↔ ∃ i, u i ≤ l i :=
   by
@@ -324,6 +472,7 @@ theorem mk'_eq_bot {l u : ι → ℝ} : mk' l u = ⊥ ↔ ∃ i, u i ≤ l i :=
   split_ifs <;> simpa using h
 #align box_integral.box.mk'_eq_bot BoxIntegral.Box.mk'_eq_bot
 
+#print BoxIntegral.Box.mk'_eq_coe /-
 @[simp]
 theorem mk'_eq_coe {l u : ι → ℝ} : mk' l u = I ↔ l = I.lower ∧ u = I.upper :=
   by
@@ -333,7 +482,9 @@ theorem mk'_eq_coe {l u : ι → ℝ} : mk' l u = I ↔ l = I.lower ∧ u = I.up
     rintro rfl rfl
     exact h hI
 #align box_integral.box.mk'_eq_coe BoxIntegral.Box.mk'_eq_coe
+-/
 
+#print BoxIntegral.Box.coe_mk' /-
 @[simp]
 theorem coe_mk' (l u : ι → ℝ) : (mk' l u : Set (ι → ℝ)) = pi univ fun i => Ioc (l i) (u i) :=
   by
@@ -343,12 +494,19 @@ theorem coe_mk' (l u : ι → ℝ) : (mk' l u : Set (ι → ℝ)) = pi univ fun
     rw [coe_bot, univ_pi_eq_empty]
     exact Ioc_eq_empty hi
 #align box_integral.box.coe_mk' BoxIntegral.Box.coe_mk'
+-/
 
 instance : Inf (WithBot (Box ι)) :=
   ⟨fun I =>
     WithBot.recBotCoe (fun J => ⊥)
       (fun I J => WithBot.recBotCoe ⊥ (fun J => mk' (I.lower ⊔ J.lower) (I.upper ⊓ J.upper)) J) I⟩
 
+/- warning: box_integral.box.coe_inf -> BoxIntegral.Box.coe_inf is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)), Eq.{succ u1} (Set.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) (Inf.inf.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.WithBot.hasInf.{u1} ι) I J)) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.hasInter.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J))
+but is expected to have type
+  forall {ι : Type.{u1}} (I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)), Eq.{succ u1} (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι (Inf.inf.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (BoxIntegral.Box.WithBot.inf.{u1} ι) I J)) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.instInterSet.{u1} (ι -> Real)) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.coe_inf BoxIntegral.Box.coe_infₓ'. -/
 @[simp]
 theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = I ∩ J :=
   by
@@ -377,6 +535,12 @@ instance : Lattice (WithBot (Box ι)) :=
       simp only [← with_bot_coe_subset_iff, coe_inf] at *
       exact subset_inter h₁ h₂ }
 
+/- warning: box_integral.box.disjoint_with_bot_coe -> BoxIntegral.Box.disjoint_withBotCoe is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} (ι -> Real)) (Set.booleanAlgebra.{u1} (ι -> Real)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.withBotCoe.{u1} ι))) J)) (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) I J)
+but is expected to have type
+  forall {ι : Type.{u1}} {I : WithBot.{u1} (BoxIntegral.Box.{u1} ι)} {J : WithBot.{u1} (BoxIntegral.Box.{u1} ι)}, Iff (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (Preorder.toLE.{u1} (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoxIntegral.Box.withBotToSet.{u1} ι I) (BoxIntegral.Box.withBotToSet.{u1} ι J)) (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (Preorder.toLE.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) I J)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoeₓ'. -/
 @[simp, norm_cast]
 theorem disjoint_withBotCoe {I J : WithBot (Box ι)} : Disjoint (I : Set (ι → ℝ)) J ↔ Disjoint I J :=
   by
@@ -384,10 +548,22 @@ theorem disjoint_withBotCoe {I J : WithBot (Box ι)} : Disjoint (I : Set (ι →
   rfl
 #align box_integral.box.disjoint_with_bot_coe BoxIntegral.Box.disjoint_withBotCoe
 
+/- warning: box_integral.box.disjoint_coe -> BoxIntegral.Box.disjoint_coe is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) J)) (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} (ι -> Real)) (Set.booleanAlgebra.{u1} (ι -> Real)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J))
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (Preorder.toLE.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) I) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) J)) (Disjoint.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} (ι -> Real)) (Preorder.toLE.{u1} (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.disjoint_coe BoxIntegral.Box.disjoint_coeₓ'. -/
 theorem disjoint_coe : Disjoint (I : WithBot (Box ι)) J ↔ Disjoint (I : Set (ι → ℝ)) J :=
   disjoint_withBotCoe.symm
 #align box_integral.box.disjoint_coe BoxIntegral.Box.disjoint_coe
 
+/- warning: box_integral.box.not_disjoint_coe_iff_nonempty_inter -> BoxIntegral.Box.not_disjoint_coe_iff_nonempty_inter is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Not (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.hasCoeT.{u1} (BoxIntegral.Box.{u1} ι)))) J))) (Set.Nonempty.{u1} (ι -> Real) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.hasInter.{u1} (ι -> Real)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) I) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (HasLiftT.mk.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (CoeTCₓ.coe.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.Set.hasCoeT.{u1} ι))) J)))
+but is expected to have type
+  forall {ι : Type.{u1}} {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι}, Iff (Not (Disjoint.{u1} (WithBot.{u1} (BoxIntegral.Box.{u1} ι)) (WithBot.partialOrder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (WithBot.orderBot.{u1} (BoxIntegral.Box.{u1} ι) (Preorder.toLE.{u1} (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)))) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) I) (WithBot.some.{u1} (BoxIntegral.Box.{u1} ι) J))) (Set.Nonempty.{u1} (ι -> Real) (Inter.inter.{u1} (Set.{u1} (ι -> Real)) (Set.instInterSet.{u1} (ι -> Real)) (BoxIntegral.Box.toSet.{u1} ι I) (BoxIntegral.Box.toSet.{u1} ι J)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.not_disjoint_coe_iff_nonempty_inter BoxIntegral.Box.not_disjoint_coe_iff_nonempty_interₓ'. -/
 theorem not_disjoint_coe_iff_nonempty_inter :
     ¬Disjoint (I : WithBot (Box ι)) J ↔ (I ∩ J : Set (ι → ℝ)).Nonempty := by
   rw [disjoint_coe, Set.not_disjoint_iff_nonempty_inter]
@@ -398,40 +574,70 @@ theorem not_disjoint_coe_iff_nonempty_inter :
 -/
 
 
+#print BoxIntegral.Box.face /-
 /-- Face of a box in `ℝⁿ⁺¹ = fin (n + 1) → ℝ`: the box in `ℝⁿ = fin n → ℝ` with corners at
 `I.lower ∘ fin.succ_above i` and `I.upper ∘ fin.succ_above i`. -/
 @[simps (config := { simpRhs := true })]
 def face {n} (I : Box (Fin (n + 1))) (i : Fin (n + 1)) : Box (Fin n) :=
   ⟨I.lower ∘ Fin.succAbove i, I.upper ∘ Fin.succAbove i, fun j => I.lower_lt_upper _⟩
 #align box_integral.box.face BoxIntegral.Box.face
+-/
 
+/- warning: box_integral.box.face_mk -> BoxIntegral.Box.face_mk is a dubious translation:
+lean 3 declaration is
+  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), LT.lt.{0} Real Real.hasLt (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real l (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) Real u (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i))) (fun (j : Fin n) => h (coeFn.{1, 1} (OrderEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.hasLe n) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (fun (_x : RelEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) => (Fin n) -> (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (RelEmbedding.hasCoeToFun.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (LE.le.{0} (Fin n) (Fin.hasLe n)) (LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Preorder.toLE.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PartialOrder.toPreorder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Fin.partialOrder (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (Fin.succAbove n i) j)))
+but is expected to have type
+  forall {n : Nat} (l : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (u : (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (h : forall (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), LT.lt.{0} Real Real.instLTReal (l i) (u i)) (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Eq.{1} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.face n (BoxIntegral.Box.mk.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) l u h) i) (BoxIntegral.Box.mk.{0} (Fin n) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real l (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Function.instEmbeddingLikeEmbedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (RelEmbedding.toEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Fin.succAbove n i)))) (Function.comp.{1, 1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) Real u (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Function.instEmbeddingLikeEmbedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (RelEmbedding.toEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Fin.succAbove n i)))) (fun (j : Fin n) => h (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (fun (_x : Fin n) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Fin n) => Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Function.instEmbeddingLikeEmbedding.{1, 1} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (RelEmbedding.toEmbedding.{0, 0} (Fin n) (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : Fin n) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : Fin n) => LE.le.{0} (Fin n) (instLEFin n) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => LE.le.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (instLEFin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (Fin.succAbove n i)) j)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.face_mk BoxIntegral.Box.face_mkₓ'. -/
 @[simp]
 theorem face_mk {n} (l u : Fin (n + 1) → ℝ) (h : ∀ i, l i < u i) (i : Fin (n + 1)) :
     face ⟨l, u, h⟩ i = ⟨l ∘ Fin.succAbove i, u ∘ Fin.succAbove i, fun j => h _⟩ :=
   rfl
 #align box_integral.box.face_mk BoxIntegral.Box.face_mk
 
+#print BoxIntegral.Box.face_mono /-
 @[mono]
 theorem face_mono {n} {I J : Box (Fin (n + 1))} (h : I ≤ J) (i : Fin (n + 1)) :
     face I i ≤ face J i := fun x hx i =>
   Ioc_subset_Ioc ((le_iff_bounds.1 h).1 _) ((le_iff_bounds.1 h).2 _) (hx _)
 #align box_integral.box.face_mono BoxIntegral.Box.face_mono
+-/
 
+/- warning: box_integral.box.monotone_face -> BoxIntegral.Box.monotone_face is a dubious translation:
+lean 3 declaration is
+  forall {n : Nat} (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), Monotone.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.{0} (Fin n)) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.partialOrder.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.partialOrder.{0} (Fin n))) (fun (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => BoxIntegral.Box.face n I i)
+but is expected to have type
+  forall {n : Nat} (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))), Monotone.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.{0} (Fin n)) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instPartialOrderBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (PartialOrder.toPreorder.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instPartialOrderBox.{0} (Fin n))) (fun (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => BoxIntegral.Box.face n I i)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.monotone_face BoxIntegral.Box.monotone_faceₓ'. -/
 theorem monotone_face {n} (i : Fin (n + 1)) : Monotone fun I => face I i := fun I J h =>
   face_mono h i
 #align box_integral.box.monotone_face BoxIntegral.Box.monotone_face
 
+/- warning: box_integral.box.maps_to_insert_nth_face_Icc -> BoxIntegral.Box.mapsTo_insertNth_face_Icc is a dubious translation:
+lean 3 declaration is
+  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) (Fin.insertNth.{0} n (fun {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} => Real) i x) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I))
+but is expected to have type
+  forall {n : Nat} (I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (Set.MapsTo.{0, 0} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) (Fin.insertNth.{0} n (fun (i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin n))) (BoxIntegral.Box.face n I i)) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) I))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Iccₓ'. -/
 theorem mapsTo_insertNth_face_Icc {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i).Icc I.Icc :=
   fun y hy => Fin.insertNth_mem_Icc.2 ⟨hx, hy⟩
 #align box_integral.box.maps_to_insert_nth_face_Icc BoxIntegral.Box.mapsTo_insertNth_face_Icc
 
+#print BoxIntegral.Box.mapsTo_insertNth_face /-
 theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Ioc (I.lower i) (I.upper i)) : MapsTo (i.insertNth x) (I.face i) I := fun y hy => by
   simpa only [mem_coe, mem_def, i.forall_iff_succ_above, hx, Fin.insertNth_apply_same,
     Fin.insertNth_apply_succAbove, true_and_iff]
 #align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
+-/
 
+/- warning: box_integral.box.continuous_on_face_Icc -> BoxIntegral.Box.continuousOn_face_icc is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) => (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) -> (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (BoxIntegral.Box.hasLe.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)) (Set.hasLe.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))} {x : Real}, (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x (Set.Icc.{0} Real Real.preorder (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) => Real) i x)) (coeFn.{1, 1} (OrderEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (BoxIntegral.Box.hasLe.{0} (Fin n)) (Set.hasLe.{0} ((Fin n) -> Real))) (fun (_x : RelEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) => (BoxIntegral.Box.{0} (Fin n)) -> (Set.{0} ((Fin n) -> Real))) (RelEmbedding.hasCoeToFun.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.hasLe.{0} (Fin n))) (LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.hasLe.{0} ((Fin n) -> Real)))) (BoxIntegral.Box.Icc.{0} (Fin n)) (BoxIntegral.Box.face n I i))))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {n : Nat} {f : ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) -> X} {I : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))}, (ContinuousOn.{0, u1} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) (fun (a : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 f (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (_x : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real))) (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => LE.le.{0} (BoxIntegral.Box.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (BoxIntegral.Box.instLEBox.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) => LE.le.{0} (Set.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) (Set.instLESet.{0} ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) I)) -> (forall {i : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))} {x : Real}, (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x (Set.Icc.{0} Real Real.instPreorderReal (BoxIntegral.Box.lower.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i) (BoxIntegral.Box.upper.{0} (Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) I i))) -> (ContinuousOn.{0, u1} ((Fin n) -> Real) X (Pi.topologicalSpace.{0, 0} (Fin n) (fun (j : Fin n) => Real) (fun (a : Fin n) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) _inst_1 (Function.comp.{1, 1, succ u1} ((Fin n) -> Real) ((Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) -> Real) X f (Fin.insertNth.{0} n (fun (ᾰ : Fin (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) => Real) i x)) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (fun (_x : BoxIntegral.Box.{0} (Fin n)) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{0} (Fin n)) => Set.{0} ((Fin n) -> Real)) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real))) (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (Function.instEmbeddingLikeEmbedding.{1, 1} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)))) (RelEmbedding.toEmbedding.{0, 0} (BoxIntegral.Box.{0} (Fin n)) (Set.{0} ((Fin n) -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{0} (Fin n)) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{0} (Fin n)) => LE.le.{0} (BoxIntegral.Box.{0} (Fin n)) (BoxIntegral.Box.instLEBox.{0} (Fin n)) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{0} ((Fin n) -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{0} ((Fin n) -> Real)) => LE.le.{0} (Set.{0} ((Fin n) -> Real)) (Set.instLESet.{0} ((Fin n) -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{0} (Fin n))) (BoxIntegral.Box.face n I i))))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_iccₓ'. -/
 theorem continuousOn_face_icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f I.Icc) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) : ContinuousOn (f ∘ i.insertNth x) (I.face i).Icc :=
@@ -443,21 +649,41 @@ theorem continuousOn_face_icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) →
 -/
 
 
+/- warning: box_integral.box.Ioo -> BoxIntegral.Box.Ioo is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}}, OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))
+but is expected to have type
+  forall {ι : Type.{u1}}, OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real))))))))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo BoxIntegral.Box.Iooₓ'. -/
 /-- The interior of a box. -/
-protected def ioo : Box ι →o Set (ι → ℝ)
+protected def Ioo : Box ι →o Set (ι → ℝ)
     where
   toFun I := pi univ fun i => Ioo (I.lower i) (I.upper i)
   monotone' I J h :=
     pi_mono fun i hi => Ioo_subset_Ioo ((le_iff_bounds.1 h).1 i) ((le_iff_bounds.1 h).2 i)
-#align box_integral.box.Ioo BoxIntegral.Box.ioo
+#align box_integral.box.Ioo BoxIntegral.Box.Ioo
 
+#print BoxIntegral.Box.ioo_subset_coe /-
 theorem ioo_subset_coe (I : Box ι) : I.Ioo ⊆ I := fun x hx i => Ioo_subset_Ioc_self (hx i trivial)
 #align box_integral.box.Ioo_subset_coe BoxIntegral.Box.ioo_subset_coe
+-/
 
+/- warning: box_integral.box.Ioo_subset_Icc -> BoxIntegral.Box.ioo_subset_icc is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_iccₓ'. -/
 protected theorem ioo_subset_icc (I : Box ι) : I.Ioo ⊆ I.Icc :=
   I.ioo_subset_coe.trans coe_subset_icc
 #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_icc
 
+/- warning: box_integral.box.Union_Ioo_of_tendsto -> BoxIntegral.Box.unionᵢ_ioo_of_tendsto is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.unionᵢ.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
+but is expected to have type
+  forall {ι : Type.{u1}} [_inst_1 : Finite.{succ u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : Nat -> (BoxIntegral.Box.{u1} ι)}, (Monotone.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) -> (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) J) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I))) -> (Eq.{succ u1} (Set.{u1} (ι -> Real)) (Set.unionᵢ.{u1, 1} (ι -> Real) Nat (fun (n : Nat) => OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) (J n))) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendstoₓ'. -/
 theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, (J n).Ioo) = I.Ioo :=
@@ -476,6 +702,12 @@ theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
     
 #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendsto
 
+/- warning: box_integral.box.exists_seq_mono_tendsto -> BoxIntegral.Box.exists_seq_mono_tendsto is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} (Set.{u1} (ι -> Real)) (Set.hasSubset.{u1} (ι -> Real)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J n)) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (fun (_x : OrderHom.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (OrderHom.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.completeBooleanAlgebra.{u1} (ι -> Real))))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (coeFn.{succ u1, succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) (fun (_x : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) => Nat -> (BoxIntegral.Box.{u1} ι)) (OrderHom.hasCoeToFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.partialOrder.{u1} ι))) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
+but is expected to have type
+  forall {ι : Type.{u1}} (I : BoxIntegral.Box.{u1} ι), Exists.{succ u1} (OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) (fun (J : OrderHom.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι))) => And (forall (n : Nat), HasSubset.Subset.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (Set.instHasSubsetSet.{u1} (ι -> Real)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J n)) (OrderHom.toFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) (PartialOrder.toPreorder.{u1} (Set.{u1} (ι -> Real)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} (ι -> Real)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} (ι -> Real)) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} (ι -> Real)) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} (ι -> Real)) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} (ι -> Real)) (Set.instCompleteBooleanAlgebraSet.{u1} (ι -> Real)))))))) (BoxIntegral.Box.Ioo.{u1} ι) I)) (And (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.lower.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I))) (Filter.Tendsto.{0, u1} Nat (ι -> Real) (Function.comp.{1, succ u1, succ u1} Nat (BoxIntegral.Box.{u1} ι) (ι -> Real) (BoxIntegral.Box.upper.{u1} ι) (OrderHom.toFun.{0, u1} Nat (BoxIntegral.Box.{u1} ι) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instPartialOrderBox.{u1} ι)) J)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{u1} (ι -> Real) (Pi.topologicalSpace.{u1, 0} ι (fun (ᾰ : ι) => Real) (fun (a : ι) => UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace))) (BoxIntegral.Box.upper.{u1} ι I)))))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.exists_seq_mono_tendsto BoxIntegral.Box.exists_seq_mono_tendstoₓ'. -/
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
       (∀ n, (J n).Icc ⊆ I.Ioo) ∧
@@ -494,13 +726,21 @@ section Distortion
 
 variable [Fintype ι]
 
+#print BoxIntegral.Box.distortion /-
 /-- The distortion of a box `I` is the maximum of the ratios of the lengths of its edges.
 It is defined as the maximum of the ratios
 `nndist I.lower I.upper / nndist (I.lower i) (I.upper i)`. -/
 def distortion (I : Box ι) : ℝ≥0 :=
   Finset.univ.sup fun i : ι => nndist I.lower I.upper / nndist (I.lower i) (I.upper i)
 #align box_integral.box.distortion BoxIntegral.Box.distortion
+-/
 
+/- warning: box_integral.box.distortion_eq_of_sub_eq_div -> BoxIntegral.Box.distortion_eq_of_sub_eq_div is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι} {r : Real}, (forall (i : ι), Eq.{1} Real (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι J i) (BoxIntegral.Box.lower.{u1} ι J i)) r)) -> (Eq.{1} NNReal (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (BoxIntegral.Box.distortion.{u1} ι _inst_1 J))
+but is expected to have type
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] {I : BoxIntegral.Box.{u1} ι} {J : BoxIntegral.Box.{u1} ι} {r : Real}, (forall (i : ι), Eq.{1} Real (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι J i) (BoxIntegral.Box.lower.{u1} ι J i)) r)) -> (Eq.{1} NNReal (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (BoxIntegral.Box.distortion.{u1} ι _inst_1 J))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_divₓ'. -/
 theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
     (h : ∀ i, I.upper i - I.lower i = (J.upper i - J.lower i) / r) : distortion I = distortion J :=
   by
@@ -514,6 +754,12 @@ theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
   simp_rw [NNReal.finset_sup_div, div_div_div_cancel_right _ ((map_ne_zero Real.nnabs).2 this.ne')]
 #align box_integral.box.distortion_eq_of_sub_eq_div BoxIntegral.Box.distortion_eq_of_sub_eq_div
 
+/- warning: box_integral.box.nndist_le_distortion_mul -> BoxIntegral.Box.nndist_le_distortion_mul is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (Distrib.toHasMul.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+but is expected to have type
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (NNDist.nndist.{u1} (ι -> Real) (PseudoMetricSpace.toNNDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} NNReal NNReal NNReal (instHMul.{0} NNReal (CanonicallyOrderedCommSemiring.toMul.{0} NNReal instNNRealCanonicallyOrderedCommSemiring)) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) (NNDist.nndist.{0} Real (PseudoMetricSpace.toNNDist.{0} Real Real.pseudoMetricSpace) (BoxIntegral.Box.lower.{u1} ι I i) (BoxIntegral.Box.upper.{u1} ι I i)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mulₓ'. -/
 theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
     nndist I.lower I.upper ≤ I.distortion * nndist (I.lower i) (I.upper i) :=
   calc
@@ -525,6 +771,12 @@ theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
     
 #align box_integral.box.nndist_le_distortion_mul BoxIntegral.Box.nndist_le_distortion_mul
 
+/- warning: box_integral.box.dist_le_distortion_mul -> BoxIntegral.Box.dist_le_distortion_mul is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} Real Real.hasLe (Dist.dist.{u1} (ι -> Real) (PseudoMetricSpace.toHasDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)))
+but is expected to have type
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι), LE.le.{0} Real Real.instLEReal (Dist.dist.{u1} (ι -> Real) (PseudoMetricSpace.toDist.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace))) (BoxIntegral.Box.lower.{u1} ι I) (BoxIntegral.Box.upper.{u1} ι I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal (BoxIntegral.Box.distortion.{u1} ι _inst_1 I)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i)))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mulₓ'. -/
 theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     dist I.lower I.upper ≤ I.distortion * (I.upper i - I.lower i) :=
   by
@@ -533,6 +785,12 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     neg_sub] using I.nndist_le_distortion_mul i
 #align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
 
+/- warning: box_integral.box.diam_Icc_le_of_distortion_le -> BoxIntegral.Box.diam_icc_le_of_distortion_le is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.hasLe (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (coeFn.{succ u1, succ u1} (OrderEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (BoxIntegral.Box.hasLe.{u1} ι) (Set.hasLe.{u1} (ι -> Real))) (fun (_x : RelEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) => (BoxIntegral.Box.{u1} ι) -> (Set.{u1} (ι -> Real))) (RelEmbedding.hasCoeToFun.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.hasLe.{u1} ι)) (LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.hasLe.{u1} (ι -> Real)))) (BoxIntegral.Box.Icc.{u1} ι) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
+but is expected to have type
+  forall {ι : Type.{u1}} [_inst_1 : Fintype.{u1} ι] (I : BoxIntegral.Box.{u1} ι) (i : ι) {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (BoxIntegral.Box.distortion.{u1} ι _inst_1 I) c) -> (LE.le.{0} Real Real.instLEReal (Metric.diam.{u1} (ι -> Real) (pseudoMetricSpacePi.{u1, 0} ι (fun (ᾰ : ι) => Real) _inst_1 (fun (b : ι) => Real.pseudoMetricSpace)) (FunLike.coe.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (fun (_x : BoxIntegral.Box.{u1} ι) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : BoxIntegral.Box.{u1} ι) => Set.{u1} (ι -> Real)) _x) (EmbeddingLike.toFunLike.{succ u1, succ u1, succ u1} (Function.Embedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real))) (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (Function.instEmbeddingLikeEmbedding.{succ u1, succ u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)))) (RelEmbedding.toEmbedding.{u1, u1} (BoxIntegral.Box.{u1} ι) (Set.{u1} (ι -> Real)) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : BoxIntegral.Box.{u1} ι) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : BoxIntegral.Box.{u1} ι) => LE.le.{u1} (BoxIntegral.Box.{u1} ι) (BoxIntegral.Box.instLEBox.{u1} ι) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : Set.{u1} (ι -> Real)) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : Set.{u1} (ι -> Real)) => LE.le.{u1} (Set.{u1} (ι -> Real)) (Set.instLESet.{u1} (ι -> Real)) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (BoxIntegral.Box.Icc.{u1} ι)) I)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (NNReal.toReal c) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (BoxIntegral.Box.upper.{u1} ι I i) (BoxIntegral.Box.lower.{u1} ι I i))))
+Case conversion may be inaccurate. Consider using '#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_icc_le_of_distortion_leₓ'. -/
 theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam I.Icc ≤ c * (I.upper i - I.lower i) :=
   have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
Diff
@@ -202,7 +202,7 @@ instance : PartialOrder (Box ι) :=
 
 /-- Closed box corresponding to `I : box_integral.box ι`. -/
 protected def icc : Box ι ↪o Set (ι → ℝ) :=
-  OrderEmbedding.ofMapLeIff (fun I : Box ι => Icc I.lower I.upper) fun I J => (le_tFAE I J).out 2 0
+  OrderEmbedding.ofMapLEIff (fun I : Box ι => Icc I.lower I.upper) fun I J => (le_tFAE I J).out 2 0
 #align box_integral.box.Icc BoxIntegral.Box.icc
 
 theorem icc_def : I.Icc = Icc I.lower I.upper :=
Diff
@@ -540,7 +540,7 @@ theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
   diam_le_of_forall_dist_le this fun x hx y hy =>
     calc
       dist x y ≤ dist I.lower I.upper := Real.dist_le_of_mem_pi_Icc hx hy
-      _ ≤ I.distortion * (I.upper i - I.lower i) := I.dist_le_distortion_mul i
+      _ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
       _ ≤ c * (I.upper i - I.lower i) :=
         mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
       
Diff
@@ -247,7 +247,7 @@ theorem coe_subset_icc : ↑I ⊆ I.Icc := fun x hx => ⟨fun i => (hx i).1.le,
 
 /-- `I ⊔ J` is the least box that includes both `I` and `J`. Since `↑I ∪ ↑J` is usually not a box,
 `↑(I ⊔ J)` is larger than `↑I ∪ ↑J`. -/
-instance : HasSup (Box ι) :=
+instance : Sup (Box ι) :=
   ⟨fun I J =>
     ⟨I.lower ⊓ J.lower, I.upper ⊔ J.upper, fun i =>
       (min_le_left _ _).trans_lt <| (I.lower_lt_upper i).trans_le (le_max_left _ _)⟩⟩
@@ -344,7 +344,7 @@ theorem coe_mk' (l u : ι → ℝ) : (mk' l u : Set (ι → ℝ)) = pi univ fun
     exact Ioc_eq_empty hi
 #align box_integral.box.coe_mk' BoxIntegral.Box.coe_mk'
 
-instance : HasInf (WithBot (Box ι)) :=
+instance : Inf (WithBot (Box ι)) :=
   ⟨fun I =>
     WithBot.recBotCoe (fun J => ⊥)
       (fun I J => WithBot.recBotCoe ⊥ (fun J => mk' (I.lower ⊔ J.lower) (I.upper ⊓ J.upper)) J) I⟩

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 3 (#12372)

A PR analogous to #12338 and #12361: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -152,12 +152,15 @@ theorem le_def : I ≤ J ↔ ∀ x ∈ I, x ∈ J := Iff.rfl
 
 theorem le_TFAE : List.TFAE [I ≤ J, (I : Set (ι → ℝ)) ⊆ J,
     Icc I.lower I.upper ⊆ Icc J.lower J.upper, J.lower ≤ I.lower ∧ I.upper ≤ J.upper] := by
-  tfae_have 1 ↔ 2; exact Iff.rfl
+  tfae_have 1 ↔ 2
+  · exact Iff.rfl
   tfae_have 2 → 3
   · intro h
     simpa [coe_eq_pi, closure_pi_set, lower_ne_upper] using closure_mono h
-  tfae_have 3 ↔ 4; exact Icc_subset_Icc_iff I.lower_le_upper
-  tfae_have 4 → 2; exact fun h x hx i ↦ Ioc_subset_Ioc (h.1 i) (h.2 i) (hx i)
+  tfae_have 3 ↔ 4
+  · exact Icc_subset_Icc_iff I.lower_le_upper
+  tfae_have 4 → 2
+  · exact fun h x hx i ↦ Ioc_subset_Ioc (h.1 i) (h.2 i) (hx i)
   tfae_finish
 #align box_integral.box.le_tfae BoxIntegral.Box.le_TFAE
 
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathlib.Data.Set.Intervals.Monotone
+import Mathlib.Order.Interval.Set.Monotone
 import Mathlib.Topology.MetricSpace.Basic
 import Mathlib.Topology.MetricSpace.Bounded
 import Mathlib.Topology.Order.MonotoneConvergence
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -532,7 +532,7 @@ theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
   diam_le_of_forall_dist_le this fun x hx y hy ↦
     calc
       dist x y ≤ dist I.lower I.upper := Real.dist_le_of_mem_pi_Icc hx hy
-      _ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
+      _ ≤ I.distortion * (I.upper i - I.lower i) := I.dist_le_distortion_mul i
       _ ≤ c * (I.upper i - I.lower i) := by gcongr; exact sub_nonneg.2 (I.lower_le_upper i)
 #align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
 
move(Topology/Order): Move anything that doesn't concern algebra (#11610)

Move files from Topology.Algebra.Order to Topology.Order when they do not contain any algebra. Also move Topology.LocalExtr to Topology.Order.LocalExtr.

According to git, the moves are:

  • Mathlib/Topology/{Algebra => }/Order/ExtendFrom.lean
  • Mathlib/Topology/{Algebra => }/Order/ExtrClosure.lean
  • Mathlib/Topology/{Algebra => }/Order/Filter.lean
  • Mathlib/Topology/{Algebra => }/Order/IntermediateValue.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRight.lean
  • Mathlib/Topology/{Algebra => }/Order/LeftRightLim.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneContinuity.lean
  • Mathlib/Topology/{Algebra => }/Order/MonotoneConvergence.lean
  • Mathlib/Topology/{Algebra => }/Order/ProjIcc.lean
  • Mathlib/Topology/{Algebra => }/Order/T5.lean
  • Mathlib/Topology/{ => Order}/LocalExtr.lean
Diff
@@ -4,9 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
 import Mathlib.Data.Set.Intervals.Monotone
-import Mathlib.Topology.Algebra.Order.MonotoneConvergence
-import Mathlib.Topology.MetricSpace.Bounded
 import Mathlib.Topology.MetricSpace.Basic
+import Mathlib.Topology.MetricSpace.Bounded
+import Mathlib.Topology.Order.MonotoneConvergence
 
 #align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 /-!
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -512,7 +512,7 @@ theorem nndist_le_distortion_mul (I : Box ι) (i : ι) :
   calc
     nndist I.lower I.upper =
         nndist I.lower I.upper / nndist (I.lower i) (I.upper i) * nndist (I.lower i) (I.upper i) :=
-      (div_mul_cancel _ <| mt nndist_eq_zero.1 (I.lower_lt_upper i).ne).symm
+      (div_mul_cancel₀ _ <| mt nndist_eq_zero.1 (I.lower_lt_upper i).ne).symm
     _ ≤ I.distortion * nndist (I.lower i) (I.upper i) := by
       apply mul_le_mul_right'
       apply Finset.le_sup (Finset.mem_univ i)
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -56,7 +56,8 @@ open Set Function Metric Filter
 
 noncomputable section
 
-open NNReal Classical Topology
+open scoped Classical
+open NNReal Topology
 
 namespace BoxIntegral
 
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -6,6 +6,7 @@ Authors: Yury Kudryashov
 import Mathlib.Data.Set.Intervals.Monotone
 import Mathlib.Topology.Algebra.Order.MonotoneConvergence
 import Mathlib.Topology.MetricSpace.Bounded
+import Mathlib.Topology.MetricSpace.Basic
 
 #align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 /-!
chore: split MetricSpace.basic (#7920)

This reduces the main file from 3340 to 2220 lines. The remaining file is somewhat entangled, so splitting is less obvious. Help is welcome, though a follow-up PR is probably better :-)

I've kept copyright and authors as they were originally.

Diff
@@ -4,10 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
 import Mathlib.Data.Set.Intervals.Monotone
-import Mathlib.Tactic.GCongr
-import Mathlib.Tactic.TFAE
 import Mathlib.Topology.Algebra.Order.MonotoneConvergence
-import Mathlib.Topology.MetricSpace.Basic
+import Mathlib.Topology.MetricSpace.Bounded
 
 #align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 /-!
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -61,7 +61,7 @@ open NNReal Classical Topology
 
 namespace BoxIntegral
 
-variable {ι : Type _}
+variable {ι : Type*}
 
 /-!
 ### Rectangular box: definition and partial order
@@ -70,7 +70,7 @@ variable {ι : Type _}
 
 /-- A nontrivial rectangular box in `ι → ℝ` with corners `lower` and `upper`. Represents the product
 of half-open intervals `(lower i, upper i]`. -/
-structure Box (ι : Type _) where
+structure Box (ι : Type*) where
   (lower upper : ι → ℝ)
   lower_lt_upper : ∀ i, lower i < upper i
 #align box_integral.box BoxIntegral.Box
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.box_integral.box.basic
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Set.Intervals.Monotone
 import Mathlib.Tactic.GCongr
 import Mathlib.Tactic.TFAE
 import Mathlib.Topology.Algebra.Order.MonotoneConvergence
 import Mathlib.Topology.MetricSpace.Basic
+
+#align_import analysis.box_integral.box.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 /-!
 # Rectangular boxes in `ℝⁿ`
 
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -292,7 +292,7 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 
 theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
-    (⋃ (J : Box ι) (_ : ↑J = I), (J : Set (ι → ℝ))) = I := by
+    ⋃ (J : Box ι) (_ : ↑J = I), (J : Set (ι → ℝ)) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
 #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.biUnion_coe_eq_coe
 
@@ -457,13 +457,13 @@ protected theorem Ioo_subset_Icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
 
 theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
-    (⋃ n, Box.Ioo (J n)) = Box.Ioo I :=
+    ⋃ n, Box.Ioo (J n) = Box.Ioo I :=
   have hl' : ∀ i, Antitone fun n ↦ (J n).lower i :=
     fun i ↦ (monotone_eval i).comp_antitone (antitone_lower.comp_monotone hJ)
   have hu' : ∀ i, Monotone fun n ↦ (J n).upper i :=
     fun i ↦ (monotone_eval i).comp (monotone_upper.comp hJ)
   calc
-    (⋃ n, Box.Ioo (J n)) = pi univ fun i ↦ ⋃ n, Ioo ((J n).lower i) ((J n).upper i) :=
+    ⋃ n, Box.Ioo (J n) = pi univ fun i ↦ ⋃ n, Ioo ((J n).lower i) ((J n).upper i) :=
       iUnion_univ_pi_of_monotone fun i ↦ (hl' i).Ioo (hu' i)
     _ = Box.Ioo I :=
       pi_congr rfl fun i _ ↦
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -178,7 +178,7 @@ theorem injective_coe : Injective ((↑) : Box ι → Set (ι → ℝ)) := by
   rintro ⟨l₁, u₁, h₁⟩ ⟨l₂, u₂, h₂⟩ h
   simp only [Subset.antisymm_iff, coe_subset_coe, le_iff_bounds] at h
   congr
-  exacts[le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
+  exacts [le_antisymm h.2.1 h.1.1, le_antisymm h.1.2 h.2.2]
 #align box_integral.box.injective_coe BoxIntegral.Box.injective_coe
 
 @[simp, norm_cast]
feat: golf using gcongr throughout the library (#4702)

100 sample uses of the new tactic gcongr, added in #3965.

Diff
@@ -9,6 +9,7 @@ Authors: Yury Kudryashov
 ! if you have ported upstream changes.
 -/
 import Mathlib.Data.Set.Intervals.Monotone
+import Mathlib.Tactic.GCongr
 import Mathlib.Tactic.TFAE
 import Mathlib.Topology.Algebra.Order.MonotoneConvergence
 import Mathlib.Topology.MetricSpace.Basic
@@ -535,8 +536,7 @@ theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
     calc
       dist x y ≤ dist I.lower I.upper := Real.dist_le_of_mem_pi_Icc hx hy
       _ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
-      _ ≤ c * (I.upper i - I.lower i) :=
-        mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
+      _ ≤ c * (I.upper i - I.lower i) := by gcongr; exact sub_nonneg.2 (I.lower_le_upper i)
 #align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
 
 end Distortion
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -291,7 +291,7 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 
 theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
-    (⋃ (J : Box ι) (_hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
+    (⋃ (J : Box ι) (_ : ↑J = I), (J : Set (ι → ℝ))) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
 #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.biUnion_coe_eq_coe
 
chore: fix typos (#4518)

I ran codespell Mathlib and got tired halfway through the suggestions.

Diff
@@ -70,7 +70,7 @@ variable {ι : Type _}
 -/
 
 
-/-- A nontrivial rectangular box in `ι → ℝ` with corners `lower` and `upper`. Repesents the product
+/-- A nontrivial rectangular box in `ι → ℝ` with corners `lower` and `upper`. Represents the product
 of half-open intervals `(lower i, upper i]`. -/
 structure Box (ι : Type _) where
   (lower upper : ι → ℝ)
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -290,10 +290,10 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
     simp [I.nonempty_coe]
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 
-theorem bunionᵢ_coe_eq_coe (I : WithBot (Box ι)) :
+theorem biUnion_coe_eq_coe (I : WithBot (Box ι)) :
     (⋃ (J : Box ι) (_hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
-#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bunionᵢ_coe_eq_coe
+#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.biUnion_coe_eq_coe
 
 @[simp, norm_cast]
 theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J := by
@@ -454,7 +454,7 @@ protected theorem Ioo_subset_Icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
   I.Ioo_subset_coe.trans coe_subset_Icc
 #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
 
-theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
+theorem iUnion_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, Box.Ioo (J n)) = Box.Ioo I :=
   have hl' : ∀ i, Antitone fun n ↦ (J n).lower i :=
@@ -463,13 +463,13 @@ theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
     fun i ↦ (monotone_eval i).comp (monotone_upper.comp hJ)
   calc
     (⋃ n, Box.Ioo (J n)) = pi univ fun i ↦ ⋃ n, Ioo ((J n).lower i) ((J n).upper i) :=
-      unionᵢ_univ_pi_of_monotone fun i ↦ (hl' i).Ioo (hu' i)
+      iUnion_univ_pi_of_monotone fun i ↦ (hl' i).Ioo (hu' i)
     _ = Box.Ioo I :=
       pi_congr rfl fun i _ ↦
-        unionᵢ_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
+        iUnion_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
           (isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
           (isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
-#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendsto
+#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.iUnion_Ioo_of_tendsto
 
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -496,8 +496,8 @@ def distortion (I : Box ι) : ℝ≥0 :=
 #align box_integral.box.distortion BoxIntegral.Box.distortion
 
 theorem distortion_eq_of_sub_eq_div {I J : Box ι} {r : ℝ}
-    (h : ∀ i, I.upper i - I.lower i = (J.upper i - J.lower i) / r) : distortion I = distortion J :=
-  by
+    (h : ∀ i, I.upper i - I.lower i = (J.upper i - J.lower i) / r) :
+    distortion I = distortion J := by
   simp only [distortion, nndist_pi_def, Real.nndist_eq', h, map_div₀]
   congr 1 with i
   have : 0 < r := by
chore: tidy various files (#3530)
Diff
@@ -202,30 +202,30 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
   OrderEmbedding.ofMapLEIff (fun I : Box ι ↦ Icc I.lower I.upper) fun I J ↦ (le_TFAE I J).out 2 0
 #align box_integral.box.Icc BoxIntegral.Box.Icc
 
-theorem icc_def : Box.Icc I = Icc I.lower I.upper := rfl
-#align box_integral.box.Icc_def BoxIntegral.Box.icc_def
+theorem Icc_def : Box.Icc I = Icc I.lower I.upper := rfl
+#align box_integral.box.Icc_def BoxIntegral.Box.Icc_def
 
 @[simp]
-theorem upper_mem_icc (I : Box ι) : I.upper ∈ Box.Icc I :=
+theorem upper_mem_Icc (I : Box ι) : I.upper ∈ Box.Icc I :=
   right_mem_Icc.2 I.lower_le_upper
-#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_icc
+#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Icc
 
 @[simp]
-theorem lower_mem_icc (I : Box ι) : I.lower ∈ Box.Icc I :=
+theorem lower_mem_Icc (I : Box ι) : I.lower ∈ Box.Icc I :=
   left_mem_Icc.2 I.lower_le_upper
-#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_icc
+#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Icc
 
-protected theorem isCompact_icc (I : Box ι) : IsCompact (Box.Icc I) :=
+protected theorem isCompact_Icc (I : Box ι) : IsCompact (Box.Icc I) :=
   isCompact_Icc
-#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_icc
+#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Icc
 
-theorem icc_eq_pi : Box.Icc I = pi univ fun i ↦ Icc (I.lower i) (I.upper i) :=
+theorem Icc_eq_pi : Box.Icc I = pi univ fun i ↦ Icc (I.lower i) (I.upper i) :=
   (pi_univ_Icc _ _).symm
-#align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_pi
+#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_pi
 
-theorem le_iff_icc : I ≤ J ↔ Box.Icc I ⊆ Box.Icc J :=
+theorem le_iff_Icc : I ≤ J ↔ Box.Icc I ⊆ Box.Icc J :=
   (le_TFAE I J).out 0 2
-#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_icc
+#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Icc
 
 theorem antitone_lower : Antitone fun I : Box ι ↦ I.lower :=
   fun _ _ H ↦ (le_iff_bounds.1 H).1
@@ -235,9 +235,9 @@ theorem monotone_upper : Monotone fun I : Box ι ↦ I.upper :=
   fun _ _ H ↦ (le_iff_bounds.1 H).2
 #align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
 
-theorem coe_subset_icc : ↑I ⊆ Box.Icc I :=
+theorem coe_subset_Icc : ↑I ⊆ Box.Icc I :=
   fun _ hx ↦ ⟨fun i ↦ (hx i).1.le, fun i ↦ (hx i).2⟩
-#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_icc
+#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
 
 /-!
 ### Supremum of two boxes
@@ -290,10 +290,10 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι → 
     simp [I.nonempty_coe]
 #align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
 
-theorem bUnion_coe_eq_coe (I : WithBot (Box ι)) :
+theorem bunionᵢ_coe_eq_coe (I : WithBot (Box ι)) :
     (⋃ (J : Box ι) (_hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
   induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
-#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bUnion_coe_eq_coe
+#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bunionᵢ_coe_eq_coe
 
 @[simp, norm_cast]
 theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J := by
@@ -345,10 +345,10 @@ instance WithBot.inf : Inf (WithBot (Box ι)) :=
 
 @[simp]
 theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = (I : Set _) ∩ J := by
-  induction I using WithBot.recBotCoe;
+  induction I using WithBot.recBotCoe
   · change ∅ = _
     simp
-  induction J using WithBot.recBotCoe;
+  induction J using WithBot.recBotCoe
   · change ∅ = _
     simp
   change ((mk' _ _ : WithBot (Box ι)) : Set (ι → ℝ)) = _
@@ -427,12 +427,12 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
   exact ⟨hx, hy⟩
 #align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
 
-theorem continuousOn_face_icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
+theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
     {I : Box (Fin (n + 1))} (h : ContinuousOn f (Box.Icc I)) {i : Fin (n + 1)} {x : ℝ}
     (hx : x ∈ Icc (I.lower i) (I.upper i)) :
     ContinuousOn (f ∘ i.insertNth x) (Box.Icc (I.face i)) :=
   h.comp (continuousOn_const.fin_insertNth i continuousOn_id) (I.mapsTo_insertNth_face_Icc hx)
-#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_icc
+#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Icc
 
 /-!
 ### Covering of the interior of a box by a monotone sequence of smaller boxes
@@ -446,15 +446,15 @@ protected def Ioo : Box ι →o Set (ι → ℝ) where
     pi_mono fun i _ ↦ Ioo_subset_Ioo ((le_iff_bounds.1 h).1 i) ((le_iff_bounds.1 h).2 i)
 #align box_integral.box.Ioo BoxIntegral.Box.Ioo
 
-theorem ioo_subset_coe (I : Box ι) : Box.Ioo I ⊆ I :=
+theorem Ioo_subset_coe (I : Box ι) : Box.Ioo I ⊆ I :=
   fun _ hx i ↦ Ioo_subset_Ioc_self (hx i trivial)
-#align box_integral.box.Ioo_subset_coe BoxIntegral.Box.ioo_subset_coe
+#align box_integral.box.Ioo_subset_coe BoxIntegral.Box.Ioo_subset_coe
 
-protected theorem ioo_subset_icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
-  I.ioo_subset_coe.trans coe_subset_icc
-#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_icc
+protected theorem Ioo_subset_Icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
+  I.Ioo_subset_coe.trans coe_subset_Icc
+#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
 
-theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
+theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
     (hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
     (⋃ n, Box.Ioo (J n)) = Box.Ioo I :=
   have hl' : ∀ i, Antitone fun n ↦ (J n).lower i :=
@@ -469,7 +469,7 @@ theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
         unionᵢ_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
           (isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
           (isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
-#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendsto
+#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendsto
 
 theorem exists_seq_mono_tendsto (I : Box ι) :
     ∃ J : ℕ →o Box ι,
@@ -527,7 +527,7 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
     neg_sub] using I.nndist_le_distortion_mul i
 #align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
 
-theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
+theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
     diam (Box.Icc I) ≤ c * (I.upper i - I.lower i) :=
   have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
     mul_nonneg c.coe_nonneg (sub_nonneg.2 <| I.lower_le_upper _)
@@ -537,7 +537,7 @@ theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
       _ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
       _ ≤ c * (I.upper i - I.lower i) :=
         mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
-#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_icc_le_of_distortion_le
+#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
 
 end Distortion
 
feat: port Analysis.BoxIntegral.Box.Basic (#2625)

Co-authored-by: int-y1 <jason_yuen2007@hotmail.com> Co-authored-by: Moritz Firsching <firsching@google.com>

Dependencies 10 + 445

446 files ported (97.8%)
197960 lines ported (97.4%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file