analysis.box_integral.partition.measureMathlib.Analysis.BoxIntegral.Partition.Measure

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathbin.Analysis.BoxIntegral.Partition.Additive
-import Mathbin.MeasureTheory.Measure.Lebesgue.Basic
+import Analysis.BoxIntegral.Partition.Additive
+import MeasureTheory.Measure.Lebesgue.Basic
 
 #align_import analysis.box_integral.partition.measure from "leanprover-community/mathlib"@"36938f775671ff28bea1c0310f1608e4afbb22e0"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.box_integral.partition.measure
-! leanprover-community/mathlib commit 36938f775671ff28bea1c0310f1608e4afbb22e0
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.BoxIntegral.Partition.Additive
 import Mathbin.MeasureTheory.Measure.Lebesgue.Basic
 
+#align_import analysis.box_integral.partition.measure from "leanprover-community/mathlib"@"36938f775671ff28bea1c0310f1608e4afbb22e0"
+
 /-!
 # Box-additive functions defined by measures
 
Diff
@@ -48,13 +48,17 @@ namespace Box
 
 variable (I : Box ι)
 
+#print BoxIntegral.Box.measure_Icc_lt_top /-
 theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
   show μ (Icc I.lower I.upper) < ∞ from I.isCompact_Icc.measure_lt_top
 #align box_integral.box.measure_Icc_lt_top BoxIntegral.Box.measure_Icc_lt_top
+-/
 
+#print BoxIntegral.Box.measure_coe_lt_top /-
 theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I < ∞ :=
   (measure_mono <| coe_subset_Icc).trans_lt (I.measure_Icc_lt_top μ)
 #align box_integral.box.measure_coe_lt_top BoxIntegral.Box.measure_coe_lt_top
+-/
 
 section Countable
 
@@ -66,9 +70,11 @@ theorem measurableSet_coe : MeasurableSet (I : Set (ι → ℝ)) := by rw [coe_e
 #align box_integral.box.measurable_set_coe BoxIntegral.Box.measurableSet_coe
 -/
 
+#print BoxIntegral.Box.measurableSet_Icc /-
 theorem measurableSet_Icc : MeasurableSet I.Icc :=
   measurableSet_Icc
 #align box_integral.box.measurable_set_Icc BoxIntegral.Box.measurableSet_Icc
+-/
 
 #print BoxIntegral.Box.measurableSet_Ioo /-
 theorem measurableSet_Ioo : MeasurableSet I.Ioo :=
@@ -143,11 +149,13 @@ theorem volume_apply (I : Box ι) :
 #align box_integral.box.volume_apply BoxIntegral.Box.volume_apply
 -/
 
+#print BoxIntegral.Box.volume_face_mul /-
 theorem volume_face_mul {n} (i : Fin (n + 1)) (I : Box (Fin (n + 1))) :
     (∏ j, ((I.face i).upper j - (I.face i).lower j)) * (I.upper i - I.lower i) =
       ∏ j, (I.upper j - I.lower j) :=
   by simp only [face_lower, face_upper, (· ∘ ·), Fin.prod_univ_succAbove _ i, mul_comm]
 #align box_integral.box.volume_face_mul BoxIntegral.Box.volume_face_mul
+-/
 
 end Box
 
@@ -161,10 +169,12 @@ protected def volume {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] : 
 #align box_integral.box_additive_map.volume BoxIntegral.BoxAdditiveMap.volume
 -/
 
+#print BoxIntegral.BoxAdditiveMap.volume_apply /-
 theorem volume_apply {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] (I : Box ι) (x : E) :
     BoxAdditiveMap.volume I x = (∏ j, (I.upper j - I.lower j)) • x :=
   congr_arg₂ (· • ·) I.volume_apply rfl
 #align box_integral.box_additive_map.volume_apply BoxIntegral.BoxAdditiveMap.volume_apply
+-/
 
 end BoxAdditiveMap
 
Diff
@@ -138,14 +138,14 @@ namespace Box
 #print BoxIntegral.Box.volume_apply /-
 @[simp]
 theorem volume_apply (I : Box ι) :
-    (volume : Measure (ι → ℝ)).toBoxAdditive I = ∏ i, I.upper i - I.lower i := by
+    (volume : Measure (ι → ℝ)).toBoxAdditive I = ∏ i, (I.upper i - I.lower i) := by
   rw [measure.to_box_additive_apply, coe_eq_pi, Real.volume_pi_Ioc_toReal I.lower_le_upper]
 #align box_integral.box.volume_apply BoxIntegral.Box.volume_apply
 -/
 
 theorem volume_face_mul {n} (i : Fin (n + 1)) (I : Box (Fin (n + 1))) :
-    (∏ j, (I.face i).upper j - (I.face i).lower j) * (I.upper i - I.lower i) =
-      ∏ j, I.upper j - I.lower j :=
+    (∏ j, ((I.face i).upper j - (I.face i).lower j)) * (I.upper i - I.lower i) =
+      ∏ j, (I.upper j - I.lower j) :=
   by simp only [face_lower, face_upper, (· ∘ ·), Fin.prod_univ_succAbove _ i, mul_comm]
 #align box_integral.box.volume_face_mul BoxIntegral.Box.volume_face_mul
 
@@ -162,7 +162,7 @@ protected def volume {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] : 
 -/
 
 theorem volume_apply {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] (I : Box ι) (x : E) :
-    BoxAdditiveMap.volume I x = (∏ j, I.upper j - I.lower j) • x :=
+    BoxAdditiveMap.volume I x = (∏ j, (I.upper j - I.lower j)) • x :=
   congr_arg₂ (· • ·) I.volume_apply rfl
 #align box_integral.box_additive_map.volume_apply BoxIntegral.BoxAdditiveMap.volume_apply
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.box_integral.partition.measure
-! leanprover-community/mathlib commit fd5edc43dc4f10b85abfe544b88f82cf13c5f844
+! leanprover-community/mathlib commit 36938f775671ff28bea1c0310f1608e4afbb22e0
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.MeasureTheory.Measure.Lebesgue.Basic
 /-!
 # Box-additive functions defined by measures
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we prove a few simple facts about rectangular boxes, partitions, and measures:
 
 - given a box `I : box ι`, its coercion to `set (ι → ℝ)` and `I.Icc` are measurable sets;
Diff
@@ -57,32 +57,41 @@ section Countable
 
 variable [Countable ι]
 
+#print BoxIntegral.Box.measurableSet_coe /-
 theorem measurableSet_coe : MeasurableSet (I : Set (ι → ℝ)) := by rw [coe_eq_pi];
   exact MeasurableSet.univ_pi fun i => measurableSet_Ioc
 #align box_integral.box.measurable_set_coe BoxIntegral.Box.measurableSet_coe
+-/
 
 theorem measurableSet_Icc : MeasurableSet I.Icc :=
   measurableSet_Icc
 #align box_integral.box.measurable_set_Icc BoxIntegral.Box.measurableSet_Icc
 
+#print BoxIntegral.Box.measurableSet_Ioo /-
 theorem measurableSet_Ioo : MeasurableSet I.Ioo :=
   MeasurableSet.univ_pi fun i => measurableSet_Ioo
 #align box_integral.box.measurable_set_Ioo BoxIntegral.Box.measurableSet_Ioo
+-/
 
 end Countable
 
 variable [Fintype ι]
 
+#print BoxIntegral.Box.coe_ae_eq_Icc /-
 theorem coe_ae_eq_Icc : (I : Set (ι → ℝ)) =ᵐ[volume] I.Icc := by rw [coe_eq_pi];
   exact measure.univ_pi_Ioc_ae_eq_Icc
 #align box_integral.box.coe_ae_eq_Icc BoxIntegral.Box.coe_ae_eq_Icc
+-/
 
+#print BoxIntegral.Box.Ioo_ae_eq_Icc /-
 theorem Ioo_ae_eq_Icc : I.Ioo =ᵐ[volume] I.Icc :=
   Measure.univ_pi_Ioo_ae_eq_Icc
 #align box_integral.box.Ioo_ae_eq_Icc BoxIntegral.Box.Ioo_ae_eq_Icc
+-/
 
 end Box
 
+#print BoxIntegral.Prepartition.measure_iUnion_toReal /-
 theorem Prepartition.measure_iUnion_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
     (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] :
     (μ π.iUnion).toReal = ∑ J in π.boxes, (μ J).toReal :=
@@ -90,6 +99,7 @@ theorem Prepartition.measure_iUnion_toReal [Finite ι] {I : Box ι} (π : Prepar
   erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
   exacts [fun J hJ => J.measurableSet_coe, fun J hJ => (J.measure_coe_lt_top μ).Ne]
 #align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_iUnion_toReal
+-/
 
 end BoxIntegral
 
@@ -101,6 +111,7 @@ namespace MeasureTheory
 
 namespace Measure
 
+#print MeasureTheory.Measure.toBoxAdditive /-
 /-- If `μ` is a locally finite measure on `ℝⁿ`, then `λ J, (μ J).to_real` is a box-additive
 function. -/
 @[simps]
@@ -109,6 +120,7 @@ def toBoxAdditive (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : ι 
   toFun J := (μ J).toReal
   sum_partition_boxes' J hJ π hπ := by rw [← π.measure_Union_to_real, hπ.Union_eq]
 #align measure_theory.measure.to_box_additive MeasureTheory.Measure.toBoxAdditive
+-/
 
 end Measure
 
@@ -120,11 +132,13 @@ open MeasureTheory
 
 namespace Box
 
+#print BoxIntegral.Box.volume_apply /-
 @[simp]
 theorem volume_apply (I : Box ι) :
     (volume : Measure (ι → ℝ)).toBoxAdditive I = ∏ i, I.upper i - I.lower i := by
   rw [measure.to_box_additive_apply, coe_eq_pi, Real.volume_pi_Ioc_toReal I.lower_le_upper]
 #align box_integral.box.volume_apply BoxIntegral.Box.volume_apply
+-/
 
 theorem volume_face_mul {n} (i : Fin (n + 1)) (I : Box (Fin (n + 1))) :
     (∏ j, (I.face i).upper j - (I.face i).lower j) * (I.upper i - I.lower i) =
@@ -136,11 +150,13 @@ end Box
 
 namespace BoxAdditiveMap
 
+#print BoxIntegral.BoxAdditiveMap.volume /-
 /-- Box-additive map sending each box `I` to the continuous linear endomorphism
 `x ↦ (volume I).to_real • x`. -/
 protected def volume {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] : ι →ᵇᵃ E →L[ℝ] E :=
   (volume : Measure (ι → ℝ)).toBoxAdditive.toSMul
 #align box_integral.box_additive_map.volume BoxIntegral.BoxAdditiveMap.volume
+-/
 
 theorem volume_apply {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] (I : Box ι) (x : E) :
     BoxAdditiveMap.volume I x = (∏ j, I.upper j - I.lower j) • x :=
Diff
@@ -45,11 +45,11 @@ namespace Box
 
 variable (I : Box ι)
 
-theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
+theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
   show μ (Icc I.lower I.upper) < ∞ from I.isCompact_Icc.measure_lt_top
 #align box_integral.box.measure_Icc_lt_top BoxIntegral.Box.measure_Icc_lt_top
 
-theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] : μ I < ∞ :=
+theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I < ∞ :=
   (measure_mono <| coe_subset_Icc).trans_lt (I.measure_Icc_lt_top μ)
 #align box_integral.box.measure_coe_lt_top BoxIntegral.Box.measure_coe_lt_top
 
@@ -84,7 +84,7 @@ theorem Ioo_ae_eq_Icc : I.Ioo =ᵐ[volume] I.Icc :=
 end Box
 
 theorem Prepartition.measure_iUnion_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
-    (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] :
+    (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] :
     (μ π.iUnion).toReal = ∑ J in π.boxes, (μ J).toReal :=
   by
   erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
@@ -104,7 +104,7 @@ namespace Measure
 /-- If `μ` is a locally finite measure on `ℝⁿ`, then `λ J, (μ J).to_real` is a box-additive
 function. -/
 @[simps]
-def toBoxAdditive (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] : ι →ᵇᵃ[⊤] ℝ
+def toBoxAdditive (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : ι →ᵇᵃ[⊤] ℝ
     where
   toFun J := (μ J).toReal
   sum_partition_boxes' J hJ π hπ := by rw [← π.measure_Union_to_real, hπ.Union_eq]
Diff
@@ -88,7 +88,7 @@ theorem Prepartition.measure_iUnion_toReal [Finite ι] {I : Box ι} (π : Prepar
     (μ π.iUnion).toReal = ∑ J in π.boxes, (μ J).toReal :=
   by
   erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
-  exacts[fun J hJ => J.measurableSet_coe, fun J hJ => (J.measure_coe_lt_top μ).Ne]
+  exacts [fun J hJ => J.measurableSet_coe, fun J hJ => (J.measure_coe_lt_top μ).Ne]
 #align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_iUnion_toReal
 
 end BoxIntegral
Diff
@@ -33,7 +33,7 @@ open Set
 
 noncomputable section
 
-open ENNReal BigOperators Classical BoxIntegral
+open scoped ENNReal BigOperators Classical BoxIntegral
 
 variable {ι : Type _}
 
Diff
@@ -57,9 +57,7 @@ section Countable
 
 variable [Countable ι]
 
-theorem measurableSet_coe : MeasurableSet (I : Set (ι → ℝ)) :=
-  by
-  rw [coe_eq_pi]
+theorem measurableSet_coe : MeasurableSet (I : Set (ι → ℝ)) := by rw [coe_eq_pi];
   exact MeasurableSet.univ_pi fun i => measurableSet_Ioc
 #align box_integral.box.measurable_set_coe BoxIntegral.Box.measurableSet_coe
 
@@ -75,9 +73,7 @@ end Countable
 
 variable [Fintype ι]
 
-theorem coe_ae_eq_Icc : (I : Set (ι → ℝ)) =ᵐ[volume] I.Icc :=
-  by
-  rw [coe_eq_pi]
+theorem coe_ae_eq_Icc : (I : Set (ι → ℝ)) =ᵐ[volume] I.Icc := by rw [coe_eq_pi];
   exact measure.univ_pi_Ioc_ae_eq_Icc
 #align box_integral.box.coe_ae_eq_Icc BoxIntegral.Box.coe_ae_eq_Icc
 
Diff
@@ -143,7 +143,7 @@ namespace BoxAdditiveMap
 /-- Box-additive map sending each box `I` to the continuous linear endomorphism
 `x ↦ (volume I).to_real • x`. -/
 protected def volume {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] : ι →ᵇᵃ E →L[ℝ] E :=
-  (volume : Measure (ι → ℝ)).toBoxAdditive.toSmul
+  (volume : Measure (ι → ℝ)).toBoxAdditive.toSMul
 #align box_integral.box_additive_map.volume BoxIntegral.BoxAdditiveMap.volume
 
 theorem volume_apply {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] (I : Box ι) (x : E) :
Diff
@@ -4,12 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.box_integral.partition.measure
-! leanprover-community/mathlib commit d003c55042c3cd08aefd1ae9a42ef89441cdaaf3
+! leanprover-community/mathlib commit fd5edc43dc4f10b85abfe544b88f82cf13c5f844
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.BoxIntegral.Partition.Additive
-import Mathbin.MeasureTheory.Measure.Lebesgue
+import Mathbin.MeasureTheory.Measure.Lebesgue.Basic
 
 /-!
 # Box-additive functions defined by measures
Diff
@@ -87,13 +87,13 @@ theorem Ioo_ae_eq_Icc : I.Ioo =ᵐ[volume] I.Icc :=
 
 end Box
 
-theorem Prepartition.measure_unionᵢ_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
+theorem Prepartition.measure_iUnion_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
     (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] :
-    (μ π.unionᵢ).toReal = ∑ J in π.boxes, (μ J).toReal :=
+    (μ π.iUnion).toReal = ∑ J in π.boxes, (μ J).toReal :=
   by
   erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
   exacts[fun J hJ => J.measurableSet_coe, fun J hJ => (J.measure_coe_lt_top μ).Ne]
-#align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_unionᵢ_toReal
+#align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_iUnion_toReal
 
 end BoxIntegral
 
Diff
@@ -45,11 +45,11 @@ namespace Box
 
 variable (I : Box ι)
 
-theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
+theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
   show μ (Icc I.lower I.upper) < ∞ from I.isCompact_Icc.measure_lt_top
 #align box_integral.box.measure_Icc_lt_top BoxIntegral.Box.measure_Icc_lt_top
 
-theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I < ∞ :=
+theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] : μ I < ∞ :=
   (measure_mono <| coe_subset_Icc).trans_lt (I.measure_Icc_lt_top μ)
 #align box_integral.box.measure_coe_lt_top BoxIntegral.Box.measure_coe_lt_top
 
@@ -88,7 +88,7 @@ theorem Ioo_ae_eq_Icc : I.Ioo =ᵐ[volume] I.Icc :=
 end Box
 
 theorem Prepartition.measure_unionᵢ_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
-    (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] :
+    (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] :
     (μ π.unionᵢ).toReal = ∑ J in π.boxes, (μ J).toReal :=
   by
   erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
@@ -108,7 +108,7 @@ namespace Measure
 /-- If `μ` is a locally finite measure on `ℝⁿ`, then `λ J, (μ J).to_real` is a box-additive
 function. -/
 @[simps]
-def toBoxAdditive (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : ι →ᵇᵃ[⊤] ℝ
+def toBoxAdditive (μ : Measure (ι → ℝ)) [LocallyFiniteMeasure μ] : ι →ᵇᵃ[⊤] ℝ
     where
   toFun J := (μ J).toReal
   sum_partition_boxes' J hJ π hπ := by rw [← π.measure_Union_to_real, hπ.Union_eq]
Diff
@@ -87,13 +87,13 @@ theorem Ioo_ae_eq_Icc : I.Ioo =ᵐ[volume] I.Icc :=
 
 end Box
 
-theorem Prepartition.measure_union_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
+theorem Prepartition.measure_unionᵢ_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
     (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] :
     (μ π.unionᵢ).toReal = ∑ J in π.boxes, (μ J).toReal :=
   by
   erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
   exacts[fun J hJ => J.measurableSet_coe, fun J hJ => (J.measure_coe_lt_top μ).Ne]
-#align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_union_toReal
+#align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_unionᵢ_toReal
 
 end BoxIntegral
 
Diff
@@ -50,7 +50,7 @@ theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure 
 #align box_integral.box.measure_Icc_lt_top BoxIntegral.Box.measure_Icc_lt_top
 
 theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I < ∞ :=
-  (measure_mono <| coe_subset_icc).trans_lt (I.measure_Icc_lt_top μ)
+  (measure_mono <| coe_subset_Icc).trans_lt (I.measure_Icc_lt_top μ)
 #align box_integral.box.measure_coe_lt_top BoxIntegral.Box.measure_coe_lt_top
 
 section Countable
Diff
@@ -45,9 +45,9 @@ namespace Box
 
 variable (I : Box ι)
 
-theorem measure_icc_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
+theorem measure_Icc_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I.Icc < ∞ :=
   show μ (Icc I.lower I.upper) < ∞ from I.isCompact_Icc.measure_lt_top
-#align box_integral.box.measure_Icc_lt_top BoxIntegral.Box.measure_icc_lt_top
+#align box_integral.box.measure_Icc_lt_top BoxIntegral.Box.measure_Icc_lt_top
 
 theorem measure_coe_lt_top (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : μ I < ∞ :=
   (measure_mono <| coe_subset_icc).trans_lt (I.measure_Icc_lt_top μ)
@@ -63,27 +63,27 @@ theorem measurableSet_coe : MeasurableSet (I : Set (ι → ℝ)) :=
   exact MeasurableSet.univ_pi fun i => measurableSet_Ioc
 #align box_integral.box.measurable_set_coe BoxIntegral.Box.measurableSet_coe
 
-theorem measurableSet_icc : MeasurableSet I.Icc :=
+theorem measurableSet_Icc : MeasurableSet I.Icc :=
   measurableSet_Icc
-#align box_integral.box.measurable_set_Icc BoxIntegral.Box.measurableSet_icc
+#align box_integral.box.measurable_set_Icc BoxIntegral.Box.measurableSet_Icc
 
-theorem measurableSet_ioo : MeasurableSet I.Ioo :=
+theorem measurableSet_Ioo : MeasurableSet I.Ioo :=
   MeasurableSet.univ_pi fun i => measurableSet_Ioo
-#align box_integral.box.measurable_set_Ioo BoxIntegral.Box.measurableSet_ioo
+#align box_integral.box.measurable_set_Ioo BoxIntegral.Box.measurableSet_Ioo
 
 end Countable
 
 variable [Fintype ι]
 
-theorem coe_ae_eq_icc : (I : Set (ι → ℝ)) =ᵐ[volume] I.Icc :=
+theorem coe_ae_eq_Icc : (I : Set (ι → ℝ)) =ᵐ[volume] I.Icc :=
   by
   rw [coe_eq_pi]
   exact measure.univ_pi_Ioc_ae_eq_Icc
-#align box_integral.box.coe_ae_eq_Icc BoxIntegral.Box.coe_ae_eq_icc
+#align box_integral.box.coe_ae_eq_Icc BoxIntegral.Box.coe_ae_eq_Icc
 
-theorem ioo_ae_eq_icc : I.Ioo =ᵐ[volume] I.Icc :=
+theorem Ioo_ae_eq_Icc : I.Ioo =ᵐ[volume] I.Icc :=
   Measure.univ_pi_Ioo_ae_eq_Icc
-#align box_integral.box.Ioo_ae_eq_Icc BoxIntegral.Box.ioo_ae_eq_icc
+#align box_integral.box.Ioo_ae_eq_Icc BoxIntegral.Box.Ioo_ae_eq_Icc
 
 end Box
 
Diff
@@ -33,7 +33,7 @@ open Set
 
 noncomputable section
 
-open Ennreal BigOperators Classical BoxIntegral
+open ENNReal BigOperators Classical BoxIntegral
 
 variable {ι : Type _}
 
@@ -91,7 +91,7 @@ theorem Prepartition.measure_union_toReal [Finite ι] {I : Box ι} (π : Prepart
     (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] :
     (μ π.unionᵢ).toReal = ∑ J in π.boxes, (μ J).toReal :=
   by
-  erw [← Ennreal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
+  erw [← ENNReal.toReal_sum, π.Union_def, measure_bUnion_finset π.pairwise_disjoint]
   exacts[fun J hJ => J.measurableSet_coe, fun J hJ => (J.measure_coe_lt_top μ).Ne]
 #align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_union_toReal
 

Changes in mathlib4

mathlib3
mathlib4
doc: fix typos in tags header (#11088)

Fix 1 typo, 5 lowercase, 4 header depths

Diff
@@ -20,7 +20,7 @@ In this file we prove a few simple facts about rectangular boxes, partitions, an
 For the last statement, we both prove it as a proposition and define a bundled
 `BoxIntegral.BoxAdditiveMap` function.
 
-### Tags
+## Tags
 
 rectangular box, measure
 -/
chore(Analysis/BoxIntegral): Fintype -> Finite (#10292)
Diff
@@ -93,8 +93,6 @@ end BoxIntegral
 
 open BoxIntegral BoxIntegral.Box
 
-variable [Fintype ι]
-
 namespace MeasureTheory
 
 namespace Measure
@@ -102,7 +100,7 @@ namespace Measure
 /-- If `μ` is a locally finite measure on `ℝⁿ`, then `fun J ↦ (μ J).toReal` is a box-additive
 function. -/
 @[simps]
-def toBoxAdditive (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : ι →ᵇᵃ[⊤] ℝ where
+def toBoxAdditive [Finite ι] (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] : ι →ᵇᵃ[⊤] ℝ where
   toFun J := (μ J).toReal
   sum_partition_boxes' J _ π hπ := by rw [← π.measure_iUnion_toReal, hπ.iUnion_eq]
 #align measure_theory.measure.to_box_additive MeasureTheory.Measure.toBoxAdditive
@@ -117,6 +115,8 @@ open MeasureTheory
 
 namespace Box
 
+variable [Fintype ι]
+
 -- @[simp] -- Porting note: simp normal form is `volume_apply'`
 theorem volume_apply (I : Box ι) :
     (volume : Measure (ι → ℝ)).toBoxAdditive I = ∏ i, (I.upper i - I.lower i) := by
@@ -138,6 +138,8 @@ end Box
 
 namespace BoxAdditiveMap
 
+variable [Fintype ι]
+
 /-- Box-additive map sending each box `I` to the continuous linear endomorphism
 `x ↦ (volume I).toReal • x`. -/
 protected def volume {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] : ι →ᵇᵃ E →L[ℝ] E :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -32,7 +32,7 @@ noncomputable section
 
 open scoped ENNReal BigOperators Classical BoxIntegral
 
-variable {ι : Type _}
+variable {ι : Type*}
 
 namespace BoxIntegral
 
@@ -140,11 +140,11 @@ namespace BoxAdditiveMap
 
 /-- Box-additive map sending each box `I` to the continuous linear endomorphism
 `x ↦ (volume I).toReal • x`. -/
-protected def volume {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] : ι →ᵇᵃ E →L[ℝ] E :=
+protected def volume {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] : ι →ᵇᵃ E →L[ℝ] E :=
   (volume : Measure (ι → ℝ)).toBoxAdditive.toSMul
 #align box_integral.box_additive_map.volume BoxIntegral.BoxAdditiveMap.volume
 
-theorem volume_apply {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] (I : Box ι) (x : E) :
+theorem volume_apply {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] (I : Box ι) (x : E) :
     BoxAdditiveMap.volume I x = (∏ j, (I.upper j - I.lower j)) • x := by
   rw [BoxAdditiveMap.volume, toSMul_apply]
   exact congr_arg₂ (· • ·) I.volume_apply rfl
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.box_integral.partition.measure
-! leanprover-community/mathlib commit fd5edc43dc4f10b85abfe544b88f82cf13c5f844
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.BoxIntegral.Partition.Additive
 import Mathlib.MeasureTheory.Measure.Lebesgue.Basic
 
+#align_import analysis.box_integral.partition.measure from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844"
+
 /-!
 # Box-additive functions defined by measures
 
feat: port Analysis.BoxIntegral.Basic (#4695)

Co-authored-by: Alex J Best <alex.j.best@gmail.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -88,7 +88,7 @@ end Box
 theorem Prepartition.measure_iUnion_toReal [Finite ι] {I : Box ι} (π : Prepartition I)
     (μ : Measure (ι → ℝ)) [IsLocallyFiniteMeasure μ] :
     (μ π.iUnion).toReal = ∑ J in π.boxes, (μ J).toReal := by
-  erw [← ENNReal.toReal_sum, π.iUnion_def, measure_biUnion_finset π.PairwiseDisjoint]
+  erw [← ENNReal.toReal_sum, π.iUnion_def, measure_biUnion_finset π.pairwiseDisjoint]
   exacts [fun J _ => J.measurableSet_coe, fun J _ => (J.measure_coe_lt_top μ).ne]
 #align box_integral.prepartition.measure_Union_to_real BoxIntegral.Prepartition.measure_iUnion_toReal
 
feat: port Analysis.BoxIntegral.Partition.Measure (#4611)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Dependencies 12 + 961

962 files ported (98.8%)
433532 lines ported (98.7%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file