analysis.calculus.diff_cont_on_cl
β·
Mathlib.Analysis.Calculus.DiffContOnCl
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
-import Mathbin.Analysis.Calculus.Deriv.Inv
+import Analysis.Calculus.Deriv.Inv
#align_import analysis.calculus.diff_cont_on_cl from "leanprover-community/mathlib"@"61b5e2755ccb464b68d05a9acf891ae04992d09d"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -104,10 +104,10 @@ protected theorem differentiableAt (h : DiffContOnCl π f s) (hs : IsOpen s) (
#align diff_cont_on_cl.differentiable_at DiffContOnCl.differentiableAt
-/
-#print DiffContOnCl.differentiable_at' /-
-theorem differentiable_at' (h : DiffContOnCl π f s) (hx : s β π x) : DifferentiableAt π f x :=
+#print DiffContOnCl.differentiableAt' /-
+theorem differentiableAt' (h : DiffContOnCl π f s) (hx : s β π x) : DifferentiableAt π f x :=
h.DifferentiableOn.DifferentiableAt hx
-#align diff_cont_on_cl.differentiable_at' DiffContOnCl.differentiable_at'
+#align diff_cont_on_cl.differentiable_at' DiffContOnCl.differentiableAt'
-/
#print DiffContOnCl.mono /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,14 +2,11 @@
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.diff_cont_on_cl
-! leanprover-community/mathlib commit 61b5e2755ccb464b68d05a9acf891ae04992d09d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.Calculus.Deriv.Inv
+#align_import analysis.calculus.diff_cont_on_cl from "leanprover-community/mathlib"@"61b5e2755ccb464b68d05a9acf891ae04992d09d"
+
/-!
# Functions differentiable on a domain and continuous on its closure
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -42,33 +42,46 @@ structure DiffContOnCl (f : E β F) (s : Set E) : Prop where
variable {π}
+#print DifferentiableOn.diffContOnCl /-
theorem DifferentiableOn.diffContOnCl (h : DifferentiableOn π f (closure s)) : DiffContOnCl π f s :=
β¨h.mono subset_closure, h.ContinuousOnβ©
#align differentiable_on.diff_cont_on_cl DifferentiableOn.diffContOnCl
+-/
+#print Differentiable.diffContOnCl /-
theorem Differentiable.diffContOnCl (h : Differentiable π f) : DiffContOnCl π f s :=
β¨h.DifferentiableOn, h.Continuous.ContinuousOnβ©
#align differentiable.diff_cont_on_cl Differentiable.diffContOnCl
+-/
+#print IsClosed.diffContOnCl_iff /-
theorem IsClosed.diffContOnCl_iff (hs : IsClosed s) : DiffContOnCl π f s β DifferentiableOn π f s :=
β¨fun h => h.DifferentiableOn, fun h => β¨h, hs.closure_eq.symm βΈ h.ContinuousOnβ©β©
#align is_closed.diff_cont_on_cl_iff IsClosed.diffContOnCl_iff
+-/
+#print diffContOnCl_univ /-
theorem diffContOnCl_univ : DiffContOnCl π f univ β Differentiable π f :=
isClosed_univ.diffContOnCl_iff.trans differentiableOn_univ
#align diff_cont_on_cl_univ diffContOnCl_univ
+-/
+#print diffContOnCl_const /-
theorem diffContOnCl_const {c : F} : DiffContOnCl π (fun x : E => c) s :=
β¨differentiableOn_const c, continuousOn_constβ©
#align diff_cont_on_cl_const diffContOnCl_const
+-/
namespace DiffContOnCl
+#print DiffContOnCl.comp /-
theorem comp {g : G β E} {t : Set G} (hf : DiffContOnCl π f s) (hg : DiffContOnCl π g t)
(h : MapsTo g t s) : DiffContOnCl π (f β g) t :=
β¨hf.1.comp hg.1 h, hf.2.comp hg.2 <| h.closure_of_continuousOn hg.2β©
#align diff_cont_on_cl.comp DiffContOnCl.comp
+-/
+#print DiffContOnCl.continuousOn_ball /-
theorem continuousOn_ball [NormedSpace β E] {x : E} {r : β} (h : DiffContOnCl π f (ball x r)) :
ContinuousOn f (closedBall x r) :=
by
@@ -78,84 +91,119 @@ theorem continuousOn_ball [NormedSpace β E] {x : E} {r : β} (h : DiffContOnC
Β· rw [β closure_ball x hr]
exact h.continuous_on
#align diff_cont_on_cl.continuous_on_ball DiffContOnCl.continuousOn_ball
+-/
+#print DiffContOnCl.mk_ball /-
theorem mk_ball {x : E} {r : β} (hd : DifferentiableOn π f (ball x r))
(hc : ContinuousOn f (closedBall x r)) : DiffContOnCl π f (ball x r) :=
β¨hd, hc.mono <| closure_ball_subset_closedBallβ©
#align diff_cont_on_cl.mk_ball DiffContOnCl.mk_ball
+-/
+#print DiffContOnCl.differentiableAt /-
protected theorem differentiableAt (h : DiffContOnCl π f s) (hs : IsOpen s) (hx : x β s) :
DifferentiableAt π f x :=
h.DifferentiableOn.DifferentiableAt <| hs.mem_nhds hx
#align diff_cont_on_cl.differentiable_at DiffContOnCl.differentiableAt
+-/
+#print DiffContOnCl.differentiable_at' /-
theorem differentiable_at' (h : DiffContOnCl π f s) (hx : s β π x) : DifferentiableAt π f x :=
h.DifferentiableOn.DifferentiableAt hx
#align diff_cont_on_cl.differentiable_at' DiffContOnCl.differentiable_at'
+-/
+#print DiffContOnCl.mono /-
protected theorem mono (h : DiffContOnCl π f s) (ht : t β s) : DiffContOnCl π f t :=
β¨h.DifferentiableOn.mono ht, h.ContinuousOn.mono (closure_mono ht)β©
#align diff_cont_on_cl.mono DiffContOnCl.mono
+-/
+#print DiffContOnCl.add /-
theorem add (hf : DiffContOnCl π f s) (hg : DiffContOnCl π g s) : DiffContOnCl π (f + g) s :=
β¨hf.1.add hg.1, hf.2.add hg.2β©
#align diff_cont_on_cl.add DiffContOnCl.add
+-/
+#print DiffContOnCl.add_const /-
theorem add_const (hf : DiffContOnCl π f s) (c : F) : DiffContOnCl π (fun x => f x + c) s :=
hf.add diffContOnCl_const
#align diff_cont_on_cl.add_const DiffContOnCl.add_const
+-/
+#print DiffContOnCl.const_add /-
theorem const_add (hf : DiffContOnCl π f s) (c : F) : DiffContOnCl π (fun x => c + f x) s :=
diffContOnCl_const.add hf
#align diff_cont_on_cl.const_add DiffContOnCl.const_add
+-/
+#print DiffContOnCl.neg /-
theorem neg (hf : DiffContOnCl π f s) : DiffContOnCl π (-f) s :=
β¨hf.1.neg, hf.2.negβ©
#align diff_cont_on_cl.neg DiffContOnCl.neg
+-/
+#print DiffContOnCl.sub /-
theorem sub (hf : DiffContOnCl π f s) (hg : DiffContOnCl π g s) : DiffContOnCl π (f - g) s :=
β¨hf.1.sub hg.1, hf.2.sub hg.2β©
#align diff_cont_on_cl.sub DiffContOnCl.sub
+-/
+#print DiffContOnCl.sub_const /-
theorem sub_const (hf : DiffContOnCl π f s) (c : F) : DiffContOnCl π (fun x => f x - c) s :=
hf.sub diffContOnCl_const
#align diff_cont_on_cl.sub_const DiffContOnCl.sub_const
+-/
+#print DiffContOnCl.const_sub /-
theorem const_sub (hf : DiffContOnCl π f s) (c : F) : DiffContOnCl π (fun x => c - f x) s :=
diffContOnCl_const.sub hf
#align diff_cont_on_cl.const_sub DiffContOnCl.const_sub
+-/
+#print DiffContOnCl.const_smul /-
theorem const_smul {R : Type _} [Semiring R] [Module R F] [SMulCommClass π R F]
[ContinuousConstSMul R F] (hf : DiffContOnCl π f s) (c : R) : DiffContOnCl π (c β’ f) s :=
β¨hf.1.const_smul c, hf.2.const_smul cβ©
#align diff_cont_on_cl.const_smul DiffContOnCl.const_smul
+-/
+#print DiffContOnCl.smul /-
theorem smul {π' : Type _} [NontriviallyNormedField π'] [NormedAlgebra π π'] [NormedSpace π' F]
[IsScalarTower π π' F] {c : E β π'} {f : E β F} {s : Set E} (hc : DiffContOnCl π c s)
(hf : DiffContOnCl π f s) : DiffContOnCl π (fun x => c x β’ f x) s :=
β¨hc.1.smul hf.1, hc.2.smul hf.2β©
#align diff_cont_on_cl.smul DiffContOnCl.smul
+-/
+#print DiffContOnCl.smul_const /-
theorem smul_const {π' : Type _} [NontriviallyNormedField π'] [NormedAlgebra π π']
[NormedSpace π' F] [IsScalarTower π π' F] {c : E β π'} {s : Set E} (hc : DiffContOnCl π c s)
(y : F) : DiffContOnCl π (fun x => c x β’ y) s :=
hc.smul diffContOnCl_const
#align diff_cont_on_cl.smul_const DiffContOnCl.smul_const
+-/
+#print DiffContOnCl.inv /-
theorem inv {f : E β π} (hf : DiffContOnCl π f s) (hβ : β x β closure s, f x β 0) :
DiffContOnCl π fβ»ΒΉ s :=
β¨differentiableOn_inv.comp hf.1 fun x hx => hβ _ (subset_closure hx), hf.2.invβ hββ©
#align diff_cont_on_cl.inv DiffContOnCl.inv
+-/
end DiffContOnCl
+#print Differentiable.comp_diffContOnCl /-
theorem Differentiable.comp_diffContOnCl {g : G β E} {t : Set G} (hf : Differentiable π f)
(hg : DiffContOnCl π g t) : DiffContOnCl π (f β g) t :=
hf.DiffContOnCl.comp hg (mapsTo_image _ _)
#align differentiable.comp_diff_cont_on_cl Differentiable.comp_diffContOnCl
+-/
+#print DifferentiableOn.diffContOnCl_ball /-
theorem DifferentiableOn.diffContOnCl_ball {U : Set E} {c : E} {R : β} (hf : DifferentiableOn π f U)
(hc : closedBall c R β U) : DiffContOnCl π f (ball c R) :=
DiffContOnCl.mk_ball (hf.mono (ball_subset_closedBall.trans hc)) (hf.ContinuousOn.mono hc)
#align differentiable_on.diff_cont_on_cl_ball DifferentiableOn.diffContOnCl_ball
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.diff_cont_on_cl
-! leanprover-community/mathlib commit 3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe
+! leanprover-community/mathlib commit 61b5e2755ccb464b68d05a9acf891ae04992d09d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -13,6 +13,9 @@ import Mathbin.Analysis.Calculus.Deriv.Inv
/-!
# Functions differentiable on a domain and continuous on its closure
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
Many theorems in complex analysis assume that a function is complex differentiable on a domain and
is continuous on its closure. In this file we define a predicate `diff_cont_on_cl` that expresses
this property and prove basic facts about this predicate.
@@ -27,6 +30,7 @@ variable (π : Type _) {E F G : Type _} [NontriviallyNormedField π] [Normed
[NormedAddCommGroup F] [NormedSpace π E] [NormedSpace π F] [NormedAddCommGroup G]
[NormedSpace π G] {f g : E β F} {s t : Set E} {x : E}
+#print DiffContOnCl /-
/-- A predicate saying that a function is differentiable on a set and is continuous on its
closure. This is a common assumption in complex analysis. -/
@[protect_proj]
@@ -34,6 +38,7 @@ structure DiffContOnCl (f : E β F) (s : Set E) : Prop where
DifferentiableOn : DifferentiableOn π f s
ContinuousOn : ContinuousOn f (closure s)
#align diff_cont_on_cl DiffContOnCl
+-/
variable {π}
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -21,7 +21,7 @@ this property and prove basic facts about this predicate.
open Set Filter Metric
-open Topology
+open scoped Topology
variable (π : Type _) {E F G : Type _} [NontriviallyNormedField π] [NormedAddCommGroup E]
[NormedAddCommGroup F] [NormedSpace π E] [NormedSpace π F] [NormedAddCommGroup G]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -4,11 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.diff_cont_on_cl
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
-import Mathbin.Analysis.Calculus.Deriv
+import Mathbin.Analysis.Calculus.Deriv.Inv
/-!
# Functions differentiable on a domain and continuous on its closure
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
NormedSpace.Real
(#10206)
This way we don't switch between general normed spaces and real normed spaces back and forth throughout the file.
@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import Mathlib.Analysis.Calculus.Deriv.Inv
+import Mathlib.Analysis.NormedSpace.Real
#align_import analysis.calculus.diff_cont_on_cl from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -20,7 +20,7 @@ open Set Filter Metric
open scoped Topology
-variable (π : Type _) {E F G : Type _} [NontriviallyNormedField π] [NormedAddCommGroup E]
+variable (π : Type*) {E F G : Type*} [NontriviallyNormedField π] [NormedAddCommGroup E]
[NormedAddCommGroup F] [NormedSpace π E] [NormedSpace π F] [NormedAddCommGroup G]
[NormedSpace π G] {f g : E β F} {s t : Set E} {x : E}
@@ -115,18 +115,18 @@ theorem const_sub (hf : DiffContOnCl π f s) (c : F) : DiffContOnCl π (fun
diffContOnCl_const.sub hf
#align diff_cont_on_cl.const_sub DiffContOnCl.const_sub
-theorem const_smul {R : Type _} [Semiring R] [Module R F] [SMulCommClass π R F]
+theorem const_smul {R : Type*} [Semiring R] [Module R F] [SMulCommClass π R F]
[ContinuousConstSMul R F] (hf : DiffContOnCl π f s) (c : R) : DiffContOnCl π (c β’ f) s :=
β¨hf.1.const_smul c, hf.2.const_smul cβ©
#align diff_cont_on_cl.const_smul DiffContOnCl.const_smul
-theorem smul {π' : Type _} [NontriviallyNormedField π'] [NormedAlgebra π π'] [NormedSpace π' F]
+theorem smul {π' : Type*} [NontriviallyNormedField π'] [NormedAlgebra π π'] [NormedSpace π' F]
[IsScalarTower π π' F] {c : E β π'} {f : E β F} {s : Set E} (hc : DiffContOnCl π c s)
(hf : DiffContOnCl π f s) : DiffContOnCl π (fun x => c x β’ f x) s :=
β¨hc.1.smul hf.1, hc.2.smul hf.2β©
#align diff_cont_on_cl.smul DiffContOnCl.smul
-theorem smul_const {π' : Type _} [NontriviallyNormedField π'] [NormedAlgebra π π']
+theorem smul_const {π' : Type*} [NontriviallyNormedField π'] [NormedAlgebra π π']
[NormedSpace π' F] [IsScalarTower π π' F] {c : E β π'} {s : Set E} (hc : DiffContOnCl π c s)
(y : F) : DiffContOnCl π (fun x => c x β’ y) s :=
hc.smul diffContOnCl_const
@@ -79,9 +79,9 @@ protected theorem differentiableAt (h : DiffContOnCl π f s) (hs : IsOpen s) (
h.differentiableOn.differentiableAt <| hs.mem_nhds hx
#align diff_cont_on_cl.differentiable_at DiffContOnCl.differentiableAt
-theorem differentiable_at' (h : DiffContOnCl π f s) (hx : s β π x) : DifferentiableAt π f x :=
+theorem differentiableAt' (h : DiffContOnCl π f s) (hx : s β π x) : DifferentiableAt π f x :=
h.differentiableOn.differentiableAt hx
-#align diff_cont_on_cl.differentiable_at' DiffContOnCl.differentiable_at'
+#align diff_cont_on_cl.differentiable_at' DiffContOnCl.differentiableAt'
protected theorem mono (h : DiffContOnCl π f s) (ht : t β s) : DiffContOnCl π f t :=
β¨h.differentiableOn.mono ht, h.continuousOn.mono (closure_mono ht)β©
@@ -2,14 +2,11 @@
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.diff_cont_on_cl
-! leanprover-community/mathlib commit 3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.Calculus.Deriv.Inv
+#align_import analysis.calculus.diff_cont_on_cl from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe"
+
/-!
# Functions differentiable on a domain and continuous on its closure
@@ -30,8 +30,8 @@ variable (π : Type _) {E F G : Type _} [NontriviallyNormedField π] [Normed
/-- A predicate saying that a function is differentiable on a set and is continuous on its
closure. This is a common assumption in complex analysis. -/
structure DiffContOnCl (f : E β F) (s : Set E) : Prop where
- protected DifferentiableOn : DifferentiableOn π f s
- protected ContinuousOn : ContinuousOn f (closure s)
+ protected differentiableOn : DifferentiableOn π f s
+ protected continuousOn : ContinuousOn f (closure s)
#align diff_cont_on_cl DiffContOnCl
variable {π}
@@ -45,7 +45,7 @@ theorem Differentiable.diffContOnCl (h : Differentiable π f) : DiffContOnCl
#align differentiable.diff_cont_on_cl Differentiable.diffContOnCl
theorem IsClosed.diffContOnCl_iff (hs : IsClosed s) : DiffContOnCl π f s β DifferentiableOn π f s :=
- β¨fun h => h.DifferentiableOn, fun h => β¨h, hs.closure_eq.symm βΈ h.continuousOnβ©β©
+ β¨fun h => h.differentiableOn, fun h => β¨h, hs.closure_eq.symm βΈ h.continuousOnβ©β©
#align is_closed.diff_cont_on_cl_iff IsClosed.diffContOnCl_iff
theorem diffContOnCl_univ : DiffContOnCl π f univ β Differentiable π f :=
@@ -69,7 +69,7 @@ theorem continuousOn_ball [NormedSpace β E] {x : E} {r : β} (h : DiffContOnC
Β· rw [closedBall_zero]
exact continuousOn_singleton f x
Β· rw [β closure_ball x hr]
- exact h.ContinuousOn
+ exact h.continuousOn
#align diff_cont_on_cl.continuous_on_ball DiffContOnCl.continuousOn_ball
theorem mk_ball {x : E} {r : β} (hd : DifferentiableOn π f (ball x r))
@@ -79,15 +79,15 @@ theorem mk_ball {x : E} {r : β} (hd : DifferentiableOn π f (ball x r))
protected theorem differentiableAt (h : DiffContOnCl π f s) (hs : IsOpen s) (hx : x β s) :
DifferentiableAt π f x :=
- h.DifferentiableOn.differentiableAt <| hs.mem_nhds hx
+ h.differentiableOn.differentiableAt <| hs.mem_nhds hx
#align diff_cont_on_cl.differentiable_at DiffContOnCl.differentiableAt
theorem differentiable_at' (h : DiffContOnCl π f s) (hx : s β π x) : DifferentiableAt π f x :=
- h.DifferentiableOn.differentiableAt hx
+ h.differentiableOn.differentiableAt hx
#align diff_cont_on_cl.differentiable_at' DiffContOnCl.differentiable_at'
protected theorem mono (h : DiffContOnCl π f s) (ht : t β s) : DiffContOnCl π f t :=
- β¨h.DifferentiableOn.mono ht, h.ContinuousOn.mono (closure_mono ht)β©
+ β¨h.differentiableOn.mono ht, h.continuousOn.mono (closure_mono ht)β©
#align diff_cont_on_cl.mono DiffContOnCl.mono
theorem add (hf : DiffContOnCl π f s) (hg : DiffContOnCl π g s) : DiffContOnCl π (f + g) s :=
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file