analysis.calculus.fderiv.basic
⟷
Mathlib.Analysis.Calculus.FDeriv.Basic
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
This also corrects some nonsense names produced by to_additive.
@@ -693,7 +693,7 @@ lemma has_fderiv_at_filter.is_O_sub_rev (hf : has_fderiv_at_filter f f' x L) {C}
(λ x', x' - x) =O[L] (λ x', f x' - f x) :=
have (λ x', x' - x) =O[L] (λ x', f' (x' - x)),
from is_O_iff.2 ⟨C, eventually_of_forall $ λ x',
- add_monoid_hom_class.bound_of_antilipschitz f' hf' _⟩,
+ zero_hom_class.bound_of_antilipschitz f' hf' _⟩,
(this.trans (hf.trans_is_O this).right_is_O_add).congr (λ _, rfl) (λ _, sub_add_cancel _ _)
end continuous
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
s
doesn't change anything about derivatives within s
.has_fderiv_within_at.antimono
and has_deriv_within_at.antimono
, use stronger *.mono_of_mem
lemmas instead.(f)deriv_within
by using simp
instead of slit_ifs
: if has_fderiv_within_at f f' s x ↔ has_fderiv_within_at g g' t y
, then fderiv_within f s x = fderiv_within g t y
.@@ -352,23 +352,27 @@ by { simp only [has_fderiv_within_at, nhds_within_univ], refl }
alias has_fderiv_within_at_univ ↔ has_fderiv_within_at.has_fderiv_at_of_univ _
-lemma has_fderiv_within_at_insert {y : E} {g' : E →L[𝕜] F} :
- has_fderiv_within_at g g' (insert y s) x ↔ has_fderiv_within_at g g' s x :=
+lemma has_fderiv_within_at_insert {y : E} :
+ has_fderiv_within_at f f' (insert y s) x ↔ has_fderiv_within_at f f' s x :=
begin
rcases eq_or_ne x y with rfl|h,
{ simp_rw [has_fderiv_within_at, has_fderiv_at_filter],
apply asymptotics.is_o_insert,
- simp only [sub_self, g'.map_zero] },
- refine ⟨λ h, h.mono $ subset_insert y s, λ hg, hg.mono_of_mem _⟩,
+ simp only [sub_self, map_zero] },
+ refine ⟨λ h, h.mono $ subset_insert y s, λ hf, hf.mono_of_mem _⟩,
simp_rw [nhds_within_insert_of_ne h, self_mem_nhds_within]
end
alias has_fderiv_within_at_insert ↔ has_fderiv_within_at.of_insert has_fderiv_within_at.insert'
-lemma has_fderiv_within_at.insert {g' : E →L[𝕜] F} (h : has_fderiv_within_at g g' s x) :
- has_fderiv_within_at g g' (insert x s) x :=
+lemma has_fderiv_within_at.insert (h : has_fderiv_within_at f f' s x) :
+ has_fderiv_within_at f f' (insert x s) x :=
h.insert'
+lemma has_fderiv_within_at_diff_singleton (y : E) :
+ has_fderiv_within_at f f' (s \ {y}) x ↔ has_fderiv_within_at f f' s x :=
+by rw [← has_fderiv_within_at_insert, insert_diff_singleton, has_fderiv_within_at_insert]
+
lemma has_strict_fderiv_at.is_O_sub (hf : has_strict_fderiv_at f f' x) :
(λ p : E × E, f p.1 - f p.2) =O[𝓝 (x, x)] (λ p : E × E, p.1 - p.2) :=
hf.is_O.congr_of_sub.2 (f'.is_O_comp _ _)
@@ -520,7 +524,7 @@ begin
end
lemma differentiable_within_at.mono_of_mem (h : differentiable_within_at 𝕜 f s x) {t : set E}
- (hst : s ∈ nhds_within x t) :
+ (hst : s ∈ 𝓝[t] x) :
differentiable_within_at 𝕜 f t x :=
(h.has_fderiv_within_at.mono_of_mem hst).differentiable_within_at
@@ -530,27 +534,11 @@ by simp only [differentiable_within_at, has_fderiv_within_at_univ, differentiabl
lemma differentiable_within_at_inter (ht : t ∈ 𝓝 x) :
differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x :=
-by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter,
- nhds_within_restrict' s ht]
+by simp only [differentiable_within_at, has_fderiv_within_at_inter ht]
lemma differentiable_within_at_inter' (ht : t ∈ 𝓝[s] x) :
differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x :=
-by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter,
- nhds_within_restrict'' s ht]
-
-lemma differentiable_within_at.antimono (h : differentiable_within_at 𝕜 f s x) (hst : s ⊆ t)
- (hx : s ∈ 𝓝[t] x) :
- differentiable_within_at 𝕜 f t x :=
-by rwa [← differentiable_within_at_inter' hx, inter_eq_self_of_subset_right hst]
-
-lemma has_fderiv_within_at.antimono (h : has_fderiv_within_at f f' s x) (hst : s ⊆ t)
- (hs : unique_diff_within_at 𝕜 s x) (hx : s ∈ 𝓝[t] x) :
- has_fderiv_within_at f f' t x :=
-begin
- have h' : has_fderiv_within_at f _ t x :=
- (h.differentiable_within_at.antimono hst hx).has_fderiv_within_at,
- rwa hs.eq h (h'.mono hst),
-end
+by simp only [differentiable_within_at, has_fderiv_within_at_inter' ht]
lemma differentiable_at.differentiable_within_at
(h : differentiable_at 𝕜 f x) : differentiable_within_at 𝕜 f s x :=
@@ -585,52 +573,30 @@ begin
exact (differentiable_within_at_inter (is_open.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
end
-lemma fderiv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x)
+lemma fderiv_within_of_mem (st : t ∈ 𝓝[s] x) (ht : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f t x) :
fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x :=
-((differentiable_within_at.has_fderiv_within_at h).mono st).fderiv_within ht
+((differentiable_within_at.has_fderiv_within_at h).mono_of_mem st).fderiv_within ht
-lemma fderiv_within_subset' (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x) (hx : s ∈ 𝓝[t] x)
- (h : differentiable_within_at 𝕜 f s x) :
+lemma fderiv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x)
+ (h : differentiable_within_at 𝕜 f t x) :
fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x :=
-fderiv_within_subset st ht (h.antimono st hx)
+fderiv_within_of_mem (nhds_within_mono _ st self_mem_nhds_within) ht h
-@[simp] lemma fderiv_within_univ : fderiv_within 𝕜 f univ = fderiv 𝕜 f :=
-begin
- ext x : 1,
- by_cases h : differentiable_at 𝕜 f x,
- { apply has_fderiv_within_at.fderiv_within _ unique_diff_within_at_univ,
- rw has_fderiv_within_at_univ,
- apply h.has_fderiv_at },
- { have : ¬ differentiable_within_at 𝕜 f univ x,
- { rwa differentiable_within_at_univ },
- rw [fderiv_zero_of_not_differentiable_at h,
- fderiv_within_zero_of_not_differentiable_within_at this] }
-end
-
-lemma fderiv_within_inter (ht : t ∈ 𝓝 x) (hs : unique_diff_within_at 𝕜 s x) :
+lemma fderiv_within_inter (ht : t ∈ 𝓝 x) :
fderiv_within 𝕜 f (s ∩ t) x = fderiv_within 𝕜 f s x :=
-begin
- by_cases h : differentiable_within_at 𝕜 f (s ∩ t) x,
- { apply fderiv_within_subset (inter_subset_left _ _) _ ((differentiable_within_at_inter ht).1 h),
- apply hs.inter ht },
- { have : ¬ differentiable_within_at 𝕜 f s x,
- { rwa ←differentiable_within_at_inter ht },
- rw [fderiv_within_zero_of_not_differentiable_within_at h,
- fderiv_within_zero_of_not_differentiable_within_at this] }
-end
+by simp only [fderiv_within, has_fderiv_within_at_inter ht]
lemma fderiv_within_of_mem_nhds (h : s ∈ 𝓝 x) :
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
-begin
- have : s = univ ∩ s, by simp only [univ_inter],
- rw [this, ← fderiv_within_univ],
- exact fderiv_within_inter h (unique_diff_on_univ _ (mem_univ _))
-end
+by simp only [fderiv, fderiv_within, has_fderiv_at, has_fderiv_within_at, nhds_within_eq_nhds.2 h]
+
+@[simp] lemma fderiv_within_univ : fderiv_within 𝕜 f univ = fderiv 𝕜 f :=
+funext $ λ _, fderiv_within_of_mem_nhds univ_mem
lemma fderiv_within_of_open (hs : is_open s) (hx : x ∈ s) :
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
-fderiv_within_of_mem_nhds (is_open.mem_nhds hs hx)
+fderiv_within_of_mem_nhds (hs.mem_nhds hx)
lemma fderiv_within_eq_fderiv (hs : unique_diff_within_at 𝕜 s x) (h : differentiable_at 𝕜 f x) :
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
@@ -735,6 +701,44 @@ end continuous
section congr
/-! ### congr properties of the derivative -/
+lemma has_fderiv_within_at_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ has_fderiv_within_at f f' s x ↔ has_fderiv_within_at f f' t x :=
+calc has_fderiv_within_at f f' s x ↔ has_fderiv_within_at f f' (s \ {y}) x :
+ (has_fderiv_within_at_diff_singleton _).symm
+... ↔ has_fderiv_within_at f f' (t \ {y}) x :
+ suffices 𝓝[s \ {y}] x = 𝓝[t \ {y}] x, by simp only [has_fderiv_within_at, this],
+ by simpa only [set_eventually_eq_iff_inf_principal, ← nhds_within_inter', diff_eq, inter_comm]
+ using h
+... ↔ has_fderiv_within_at f f' t x : has_fderiv_within_at_diff_singleton _
+
+lemma has_fderiv_within_at_congr_set (h : s =ᶠ[𝓝 x] t) :
+ has_fderiv_within_at f f' s x ↔ has_fderiv_within_at f f' t x :=
+has_fderiv_within_at_congr_set' x $ h.filter_mono inf_le_left
+
+lemma differentiable_within_at_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ differentiable_within_at 𝕜 f s x ↔ differentiable_within_at 𝕜 f t x :=
+exists_congr $ λ _, has_fderiv_within_at_congr_set' _ h
+
+lemma differentiable_within_at_congr_set (h : s =ᶠ[𝓝 x] t) :
+ differentiable_within_at 𝕜 f s x ↔ differentiable_within_at 𝕜 f t x :=
+exists_congr $ λ _, has_fderiv_within_at_congr_set h
+
+lemma fderiv_within_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x :=
+by simp only [fderiv_within, has_fderiv_within_at_congr_set' y h]
+
+lemma fderiv_within_congr_set (h : s =ᶠ[𝓝 x] t) :
+ fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x :=
+fderiv_within_congr_set' x $ h.filter_mono inf_le_left
+
+lemma fderiv_within_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ fderiv_within 𝕜 f s =ᶠ[𝓝 x] fderiv_within 𝕜 f t :=
+(eventually_nhds_nhds_within.2 h).mono $ λ _, fderiv_within_congr_set' y
+
+lemma fderiv_within_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
+ fderiv_within 𝕜 f s =ᶠ[𝓝 x] fderiv_within 𝕜 f t :=
+fderiv_within_eventually_congr_set' x $ h.filter_mono inf_le_left
+
theorem filter.eventually_eq.has_strict_fderiv_at_iff
(h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
has_strict_fderiv_at f₀ f₀' x ↔ has_strict_fderiv_at f₁ f₁' x :=
@@ -783,17 +787,17 @@ theorem filter.eventually_eq.differentiable_within_at_iff_of_mem (h : f₀ =ᶠ[
differentiable_within_at 𝕜 f₀ s x ↔ differentiable_within_at 𝕜 f₁ s x :=
h.differentiable_within_at_iff (h.eq_of_nhds_within hx)
-lemma has_fderiv_within_at.congr_mono (h : has_fderiv_within_at f f' s x) (ht : ∀x ∈ t, f₁ x = f x)
+lemma has_fderiv_within_at.congr_mono (h : has_fderiv_within_at f f' s x) (ht : eq_on f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : has_fderiv_within_at f₁ f' t x :=
has_fderiv_at_filter.congr_of_eventually_eq (h.mono h₁) (filter.mem_inf_of_right ht) hx
-lemma has_fderiv_within_at.congr (h : has_fderiv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x)
+lemma has_fderiv_within_at.congr (h : has_fderiv_within_at f f' s x) (hs : eq_on f₁ f s)
(hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x :=
h.congr_mono hs hx (subset.refl _)
-lemma has_fderiv_within_at.congr' (h : has_fderiv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x)
+lemma has_fderiv_within_at.congr' (h : has_fderiv_within_at f f' s x) (hs : eq_on f₁ f s)
(hx : x ∈ s) : has_fderiv_within_at f₁ f' s x :=
-h.congr hs (hs x hx)
+h.congr hs (hs hx)
lemma has_fderiv_within_at.congr_of_eventually_eq (h : has_fderiv_within_at f f' s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x :=
@@ -804,8 +808,8 @@ lemma has_fderiv_at.congr_of_eventually_eq (h : has_fderiv_at f f' x)
has_fderiv_at_filter.congr_of_eventually_eq h h₁ (mem_of_mem_nhds h₁ : _)
lemma differentiable_within_at.congr_mono (h : differentiable_within_at 𝕜 f s x)
- (ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : differentiable_within_at 𝕜 f₁ t x :=
-(has_fderiv_within_at.congr_mono h.has_fderiv_within_at ht hx h₁).differentiable_within_at
+ (ht : eq_on f₁ f t) (hx : f₁ x = f x) (h₁ : t ⊆ s) : differentiable_within_at 𝕜 f₁ t x :=
+(h.has_fderiv_within_at.congr_mono ht hx h₁).differentiable_within_at
lemma differentiable_within_at.congr (h : differentiable_within_at 𝕜 f s x)
(ht : ∀x ∈ s, f₁ x = f x) (hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x :=
@@ -834,48 +838,39 @@ lemma differentiable_at.congr_of_eventually_eq (h : differentiable_at 𝕜 f x)
hL.differentiable_at_iff.2 h
lemma differentiable_within_at.fderiv_within_congr_mono (h : differentiable_within_at 𝕜 f s x)
- (hs : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : unique_diff_within_at 𝕜 t x) (h₁ : t ⊆ s) :
+ (hs : eq_on f₁ f t) (hx : f₁ x = f x) (hxt : unique_diff_within_at 𝕜 t x) (h₁ : t ⊆ s) :
fderiv_within 𝕜 f₁ t x = fderiv_within 𝕜 f s x :=
(has_fderiv_within_at.congr_mono h.has_fderiv_within_at hs hx h₁).fderiv_within hxt
-lemma filter.eventually_eq.fderiv_within_eq (hs : unique_diff_within_at 𝕜 s x)
- (hL : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
+lemma filter.eventually_eq.fderiv_within_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
-if h : differentiable_within_at 𝕜 f s x
-then has_fderiv_within_at.fderiv_within (h.has_fderiv_within_at.congr_of_eventually_eq hL hx) hs
-else
- have h' : ¬ differentiable_within_at 𝕜 f₁ s x,
- from mt (λ h, h.congr_of_eventually_eq (hL.mono $ λ x, eq.symm) hx.symm) h,
- by rw [fderiv_within_zero_of_not_differentiable_within_at h,
- fderiv_within_zero_of_not_differentiable_within_at h']
-
-lemma filter.eventually_eq.fderiv_within_eq_nhds (hs : unique_diff_within_at 𝕜 s x)
- (hL : f₁ =ᶠ[𝓝 x] f) :
+by simp only [fderiv_within, hs.has_fderiv_within_at_iff hx]
+
+lemma filter.eventually_eq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
+ fderiv_within 𝕜 f₁ t =ᶠ[𝓝[s] x] fderiv_within 𝕜 f t :=
+(eventually_nhds_within_nhds_within.2 hs).mp $ eventually_mem_nhds_within.mono $ λ y hys hs,
+ filter.eventually_eq.fderiv_within_eq (hs.filter_mono $ nhds_within_mono _ ht)
+ (hs.self_of_nhds_within hys)
+
+protected lemma filter.eventually_eq.fderiv_within (hs : f₁ =ᶠ[𝓝[s] x] f) :
+ fderiv_within 𝕜 f₁ s =ᶠ[𝓝[s] x] fderiv_within 𝕜 f s :=
+hs.fderiv_within' subset.rfl
+
+lemma filter.eventually_eq.fderiv_within_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
-(show f₁ =ᶠ[𝓝[s] x] f, from nhds_within_le_nhds hL).fderiv_within_eq hs (mem_of_mem_nhds hL : _)
+(h.filter_mono nhds_within_le_nhds).fderiv_within_eq h.self_of_nhds
-lemma fderiv_within_congr (hs : unique_diff_within_at 𝕜 s x)
- (hL : ∀ y ∈ s, f₁ y = f y) (hx : f₁ x = f x) :
+lemma fderiv_within_congr (hs : eq_on f₁ f s) (hx : f₁ x = f x) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
-begin
- apply filter.eventually_eq.fderiv_within_eq hs _ hx,
- apply mem_of_superset self_mem_nhds_within,
- exact hL
-end
+(hs.eventually_eq.filter_mono inf_le_right).fderiv_within_eq hx
-lemma fderiv_within_congr' (hs : unique_diff_within_at 𝕜 s x)
- (hL : ∀ y ∈ s, f₁ y = f y) (hx : x ∈ s) :
+lemma fderiv_within_congr' (hs : eq_on f₁ f s) (hx : x ∈ s) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
-fderiv_within_congr hs hL (hL x hx)
+fderiv_within_congr hs (hs hx)
-lemma filter.eventually_eq.fderiv_eq (hL : f₁ =ᶠ[𝓝 x] f) :
+lemma filter.eventually_eq.fderiv_eq (h : f₁ =ᶠ[𝓝 x] f) :
fderiv 𝕜 f₁ x = fderiv 𝕜 f x :=
-begin
- have A : f₁ x = f x := hL.eq_of_nhds,
- rw [← fderiv_within_univ, ← fderiv_within_univ],
- rw ← nhds_within_univ at hL,
- exact hL.fderiv_within_eq unique_diff_within_at_univ A
-end
+by rw [← fderiv_within_univ, ← fderiv_within_univ, h.fderiv_within_eq_nhds]
protected lemma filter.eventually_eq.fderiv (h : f₁ =ᶠ[𝓝 x] f) :
fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f :=
@@ -1022,12 +1017,13 @@ variables (𝕜 : Type*) {E F : Type*} [nontrivially_normed_field 𝕜] [normed_
lemma support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
begin
intros x,
- rw [← not_imp_not],
- intro h2x,
- rw [not_mem_tsupport_iff_eventually_eq] at h2x,
- exact nmem_support.mpr (h2x.fderiv_eq.trans $ fderiv_const_apply 0),
+ rw [← not_imp_not, not_mem_tsupport_iff_eventually_eq, nmem_support],
+ exact λ hx, (hx.fderiv_eq.trans $ fderiv_const_apply 0),
end
+lemma tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
+closure_minimal (support_fderiv_subset 𝕜) is_closed_closure
+
lemma has_compact_support.fderiv (hf : has_compact_support f) : has_compact_support (fderiv 𝕜 f) :=
hf.mono' $ support_fderiv_subset 𝕜
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -280,7 +280,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
have : (fun y => f y - f x - f' (y - x)) =o[𝓝[s] x] fun y => y - x := h
have : (fun n => f (x + d n) - f x - f' (x + d n - x)) =o[l] fun n => x + d n - x :=
this.comp_tendsto tendsto_arg
- have : (fun n => f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel']
+ have : (fun n => f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel_left]
have : (fun n => c n • (f (x + d n) - f x - f' (d n))) =o[l] fun n => c n • d n :=
(is_O_refl c l).smul_isLittleO this
have : (fun n => c n • (f (x + d n) - f x - f' (d n))) =o[l] fun n => (1 : ℝ) :=
@@ -380,7 +380,7 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
exact add_nonneg hC₀ ε0.le
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
filter_upwards [is_o_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
- rw [add_sub_cancel'] at hyC
+ rw [add_sub_cancel_left] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -296,7 +296,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
(fun n => c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)) = fun n =>
c n • (f (x + d n) - f x) :=
by ext n; simp [smul_add, smul_sub]
- rwa [this, zero_add] at L3
+ rwa [this, zero_add] at L3
#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
-/
@@ -378,9 +378,9 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
by
refine' le_of_forall_pos_le_add fun ε ε0 => op_norm_le_of_nhds_zero _ _
exact add_nonneg hC₀ ε0.le
- rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
+ rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
filter_upwards [is_o_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
- rw [add_sub_cancel'] at hyC
+ rw [add_sub_cancel'] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
@@ -524,7 +524,7 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDe
(K : ℝ≥0) (hK : ‖f'‖₊ < K) : ∃ s ∈ 𝓝 x, LipschitzOnWith K f s :=
by
have := hf.add_is_O_with (f'.is_O_with_comp _ _) hK
- simp only [sub_add_cancel, is_O_with] at this
+ simp only [sub_add_cancel, is_O_with] at this
rcases exists_nhds_square this with ⟨U, Uo, xU, hU⟩
exact
⟨U, Uo.mem_nhds xU, lipschitzOnWith_iff_norm_sub_le.2 fun x hx y hy => hU (mk_mem_prod hx hy)⟩
@@ -559,7 +559,7 @@ theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α
#print HasFDerivAt.unique /-
theorem HasFDerivAt.unique (h₀ : HasFDerivAt f f₀' x) (h₁ : HasFDerivAt f f₁' x) : f₀' = f₁' :=
by
- rw [← hasFDerivWithinAt_univ] at h₀ h₁
+ rw [← hasFDerivWithinAt_univ] at h₀ h₁
exact unique_diff_within_at_univ.eq h₀ h₁
#align has_fderiv_at.unique HasFDerivAt.unique
-/
@@ -599,7 +599,7 @@ theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' s x) (ht : s
#print HasFDerivWithinAt.hasFDerivAt /-
theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
HasFDerivAt f f' x := by
- rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
+ rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAt
-/
@@ -615,7 +615,7 @@ theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt
HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x :=
by
dsimp only [fderivWithin]
- dsimp only [DifferentiableWithinAt] at h
+ dsimp only [DifferentiableWithinAt] at h
rw [dif_pos h]
exact Classical.choose_spec h
#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
@@ -625,7 +625,7 @@ theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt
theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
HasFDerivAt f (fderiv 𝕜 f x) x := by
dsimp only [fderiv]
- dsimp only [DifferentiableAt] at h
+ dsimp only [DifferentiableAt] at h
rw [dif_pos h]
exact Classical.choose_spec h
#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAt
@@ -686,7 +686,7 @@ theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
as this statement is empty. -/
theorem hasFDerivWithinAt_of_nmem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
by
- simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
+ simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
simp [HasFDerivWithinAt, HasFDerivAtFilter, h, is_o, is_O_with]
#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_nmem_closure
-/
@@ -856,7 +856,7 @@ theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
(hn : 1 < n) : HasFDerivAt f (0 : E →L[𝕜] F) x₀ :=
by
- rw [← nhdsWithin_univ] at h
+ rw [← nhdsWithin_univ] at h
exact (h.has_fderiv_within_at (mem_univ _) hn).hasFDerivAt_of_univ
#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
-/
@@ -891,7 +891,7 @@ theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilte
refine' h.is_O_sub.trans_tendsto (tendsto.mono_left _ hL)
rw [← sub_self x]; exact tendsto_id.sub tendsto_const_nhds
have := tendsto.add this tendsto_const_nhds
- rw [zero_add (f x)] at this
+ rw [zero_add (f x)] at this
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhds
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -1204,20 +1204,20 @@ theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx :
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
-/
-#print Filter.EventuallyEq.fderiv_within' /-
-theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
+#print Filter.EventuallyEq.fderivWithin' /-
+theorem Filter.EventuallyEq.fderivWithin' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
(eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
eventually_mem_nhdsWithin.mono fun y hys hs =>
Filter.EventuallyEq.fderivWithin_eq (hs.filter_mono <| nhdsWithin_mono _ ht)
(hs.self_of_nhdsWithin hys)
-#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
+#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderivWithin'
-/
#print Filter.EventuallyEq.fderivWithin /-
protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
- hs.fderiv_within' Subset.rfl
+ hs.fderivWithin' Subset.rfl
#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -861,18 +861,18 @@ theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀]
#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
-/
-#print HasFDerivWithinAt.isBigO /-
-theorem HasFDerivWithinAt.isBigO {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
+#print HasFDerivWithinAt.isBigO_sub /-
+theorem HasFDerivWithinAt.isBigO_sub {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
(h : HasFDerivWithinAt f f' s x₀) : (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝[s] x₀) x₀)
-#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO
+#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO_sub
-/
-#print HasFDerivAt.isBigO /-
-theorem HasFDerivAt.isBigO {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFDerivAt f f' x₀) :
+#print HasFDerivAt.isBigO_sub /-
+theorem HasFDerivAt.isBigO_sub {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFDerivAt f f' x₀) :
(fun x => f x - f x₀) =O[𝓝 x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝 x₀) x₀)
-#align has_fderiv_at.is_O HasFDerivAt.isBigO
+#align has_fderiv_at.is_O HasFDerivAt.isBigO_sub
-/
end FderivProperties
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -808,10 +808,10 @@ theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
#align fderiv_within_univ fderivWithin_univ
-/
-#print fderivWithin_of_open /-
-theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
+#print fderivWithin_of_isOpen /-
+theorem fderivWithin_of_isOpen (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (hs.mem_nhds hx)
-#align fderiv_within_of_open fderivWithin_of_open
+#align fderiv_within_of_open fderivWithin_of_isOpen
-/
#print fderivWithin_eq_fderiv /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
-import Mathbin.Analysis.Asymptotics.AsymptoticEquivalent
-import Mathbin.Analysis.Calculus.TangentCone
-import Mathbin.Analysis.NormedSpace.BoundedLinearMaps
+import Analysis.Asymptotics.AsymptoticEquivalent
+import Analysis.Calculus.TangentCone
+import Analysis.NormedSpace.BoundedLinearMaps
#align_import analysis.calculus.fderiv.basic from "leanprover-community/mathlib"@"41bef4ae1254365bc190aee63b947674d2977f01"
mathlib commit https://github.com/leanprover-community/mathlib/commit/001ffdc42920050657fd45bd2b8bfbec8eaaeb29
@@ -681,14 +681,14 @@ theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithin
-/
-#print hasFDerivWithinAt_of_not_mem_closure /-
+#print hasFDerivWithinAt_of_nmem_closure /-
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
-theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
+theorem hasFDerivWithinAt_of_nmem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
by
simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
simp [HasFDerivWithinAt, HasFDerivAtFilter, h, is_o, is_O_with]
-#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closure
+#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_nmem_closure
-/
#print DifferentiableWithinAt.mono /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/442a83d738cb208d3600056c489be16900ba701d
@@ -388,15 +388,16 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
-/
-#print HasFDerivAt.le_of_lip /-
+#print HasFDerivAt.le_of_lipschitzOn /-
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/
-theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
- {s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖f'‖ ≤ C :=
+theorem HasFDerivAt.le_of_lipschitzOn {f : E → F} {f' : E →L[𝕜] F} {x₀ : E}
+ (hf : HasFDerivAt f f' x₀) {s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0}
+ (hlip : LipschitzOnWith C f s) : ‖f'‖ ≤ C :=
by
refine' hf.le_of_lip' C.coe_nonneg _
filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
-#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lip
+#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lipschitzOn
-/
#print HasFDerivAtFilter.mono /-
@@ -663,14 +664,14 @@ theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x
#align fderiv_eq fderiv_eq
-/
-#print DifferentiableAt.le_of_lip /-
+#print norm_fderiv_le_of_lipschitzOn /-
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`.
Version using `fderiv`. -/
-theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : DifferentiableAt 𝕜 f x₀) {s : Set E}
- (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖fderiv 𝕜 f x₀‖ ≤ C :=
- hf.HasFDerivAt.le_of_lip hs hlip
-#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
+theorem norm_fderiv_le_of_lipschitzOn {f : E → F} {x₀ : E} (hf : DifferentiableAt 𝕜 f x₀)
+ {s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖fderiv 𝕜 f x₀‖ ≤ C :=
+ hf.HasFDerivAt.le_of_lipschitzOn hs hlip
+#align fderiv_at.le_of_lip norm_fderiv_le_of_lipschitzOn
-/
#print HasFDerivWithinAt.fderivWithin /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -586,11 +586,13 @@ theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
#align has_fderiv_within_at.union HasFDerivWithinAt.union
-/
-#print HasFDerivWithinAt.nhdsWithin /-
-theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
+/- warning: has_fderiv_within_at.nhds_within clashes with has_fderiv_within_at.mono_of_mem -> HasFDerivWithinAt.mono_of_mem
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.mono_of_memₓ'. -/
+#print HasFDerivWithinAt.mono_of_mem /-
+theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
HasFDerivWithinAt f f' t x :=
(hasFDerivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
-#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithin
+#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.mono_of_mem
-/
#print HasFDerivWithinAt.hasFDerivAt /-
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -453,7 +453,7 @@ theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f
#align has_fderiv_within_at_univ hasFDerivWithinAt_univ
-/
-alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
+alias ⟨HasFDerivWithinAt.hasFDerivAt_of_univ, _⟩ := hasFDerivWithinAt_univ
#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
#print hasFDerivWithinAt_insert /-
@@ -469,7 +469,7 @@ theorem hasFDerivWithinAt_insert {y : E} :
#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
-/
-alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
+alias ⟨HasFDerivWithinAt.of_insert, HasFDerivWithinAt.insert'⟩ := hasFDerivWithinAt_insert
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit 41bef4ae1254365bc190aee63b947674d2977f01
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.Asymptotics.AsymptoticEquivalent
import Mathbin.Analysis.Calculus.TangentCone
import Mathbin.Analysis.NormedSpace.BoundedLinearMaps
+#align_import analysis.calculus.fderiv.basic from "leanprover-community/mathlib"@"41bef4ae1254365bc190aee63b947674d2977f01"
+
/-!
# The Fréchet derivative
mathlib commit https://github.com/leanprover-community/mathlib/commit/b01d6eb9d0a308807af54319b264d0994b91774b
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit 3a69562db5a458db8322b190ec8d9a8bbd8a5b14
+! leanprover-community/mathlib commit 41bef4ae1254365bc190aee63b947674d2977f01
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -956,8 +956,7 @@ theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
have : (fun x' => x' - x) =O[L] fun x' => f' (x' - x) :=
- isBigO_iff.2
- ⟨C, eventually_of_forall fun x' => AddMonoidHomClass.bound_of_antilipschitz f' hf' _⟩
+ isBigO_iff.2 ⟨C, eventually_of_forall fun x' => ZeroHomClass.bound_of_antilipschitz f' hf' _⟩
(this.trans (hf.trans_isBigO this).right_isBigO_add).congr (fun _ => rfl) fun _ =>
sub_add_cancel _ _
#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_rev
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -240,21 +240,26 @@ variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
+#print fderivWithin_zero_of_not_differentiableWithinAt /-
theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWithinAt 𝕜 f s x) :
fderivWithin 𝕜 f s x = 0 :=
by
have : ¬∃ f', HasFDerivWithinAt f f' s x := h
simp [fderivWithin, this]
#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAt
+-/
+#print fderiv_zero_of_not_differentiableAt /-
theorem fderiv_zero_of_not_differentiableAt (h : ¬DifferentiableAt 𝕜 f x) : fderiv 𝕜 f x = 0 :=
by
have : ¬∃ f', HasFDerivAt f f' x := h
simp [fderiv, this]
#align fderiv_zero_of_not_differentiable_at fderiv_zero_of_not_differentiableAt
+-/
section DerivativeUniqueness
+#print HasFDerivWithinAt.lim /-
/- In this section, we discuss the uniqueness of the derivative.
We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the
uniqueness of the derivative. -/
@@ -296,7 +301,9 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
by ext n; simp [smul_add, smul_sub]
rwa [this, zero_add] at L3
#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
+-/
+#print HasFDerivWithinAt.unique_on /-
/-- If `f'` and `f₁'` are two derivatives of `f` within `s` at `x`, then they are equal on the
tangent cone to `s` at `x` -/
theorem HasFDerivWithinAt.unique_on (hf : HasFDerivWithinAt f f' s x)
@@ -304,17 +311,22 @@ theorem HasFDerivWithinAt.unique_on (hf : HasFDerivWithinAt f f' s x)
fun y ⟨c, d, dtop, clim, cdlim⟩ =>
tendsto_nhds_unique (hf.lim atTop dtop clim cdlim) (hg.lim atTop dtop clim cdlim)
#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_on
+-/
+#print UniqueDiffWithinAt.eq /-
/-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/
theorem UniqueDiffWithinAt.eq (H : UniqueDiffWithinAt 𝕜 s x) (hf : HasFDerivWithinAt f f' s x)
(hg : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
ContinuousLinearMap.ext_on H.1 (hf.unique_on hg)
#align unique_diff_within_at.eq UniqueDiffWithinAt.eq
+-/
+#print UniqueDiffOn.eq /-
theorem UniqueDiffOn.eq (H : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (h : HasFDerivWithinAt f f' s x)
(h₁ : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
(H x hx).Eq h h₁
#align unique_diff_on.eq UniqueDiffOn.eq
+-/
end DerivativeUniqueness
@@ -323,6 +335,7 @@ section FderivProperties
/-! ### Basic properties of the derivative -/
+#print hasFDerivAtFilter_iff_tendsto /-
theorem hasFDerivAtFilter_iff_tendsto :
HasFDerivAtFilter f f' x L ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) L (𝓝 0) :=
@@ -333,25 +346,33 @@ theorem hasFDerivAtFilter_iff_tendsto :
rw [← is_o_norm_left, ← is_o_norm_right, is_o_iff_tendsto h]
exact tendsto_congr fun _ => div_eq_inv_mul _ _
#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendsto
+-/
+#print hasFDerivWithinAt_iff_tendsto /-
theorem hasFDerivWithinAt_iff_tendsto :
HasFDerivWithinAt f f' s x ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝[s] x) (𝓝 0) :=
hasFDerivAtFilter_iff_tendsto
#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendsto
+-/
+#print hasFDerivAt_iff_tendsto /-
theorem hasFDerivAt_iff_tendsto :
HasFDerivAt f f' x ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝 x) (𝓝 0) :=
hasFDerivAtFilter_iff_tendsto
#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendsto
+-/
+#print hasFDerivAt_iff_isLittleO_nhds_zero /-
theorem hasFDerivAt_iff_isLittleO_nhds_zero :
HasFDerivAt f f' x ↔ (fun h : E => f (x + h) - f x - f' h) =o[𝓝 0] fun h => h :=
by
rw [HasFDerivAt, HasFDerivAtFilter, ← map_add_left_nhds_zero x, is_o_map]
simp [(· ∘ ·)]
#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zero
+-/
+#print HasFDerivAt.le_of_lip' /-
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. This version
only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood of `x`. -/
@@ -368,7 +389,9 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
_ = (C + ε) * ‖y‖ := (add_mul _ _ _).symm
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
+-/
+#print HasFDerivAt.le_of_lip /-
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/
theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
@@ -377,48 +400,66 @@ theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf
refine' hf.le_of_lip' C.coe_nonneg _
filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lip
+-/
+#print HasFDerivAtFilter.mono /-
theorem HasFDerivAtFilter.mono (h : HasFDerivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
HasFDerivAtFilter f f' x L₁ :=
h.mono hst
#align has_fderiv_at_filter.mono HasFDerivAtFilter.mono
+-/
+#print HasFDerivWithinAt.mono_of_mem /-
theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' t x) (hst : t ∈ 𝓝[s] x) :
HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_le_iff.mpr hst
#align has_fderiv_within_at.mono_of_mem HasFDerivWithinAt.mono_of_mem
+-/
+#print HasFDerivWithinAt.mono /-
theorem HasFDerivWithinAt.mono (h : HasFDerivWithinAt f f' t x) (hst : s ⊆ t) :
HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_mono _ hst
#align has_fderiv_within_at.mono HasFDerivWithinAt.mono
+-/
+#print HasFDerivAt.hasFDerivAtFilter /-
theorem HasFDerivAt.hasFDerivAtFilter (h : HasFDerivAt f f' x) (hL : L ≤ 𝓝 x) :
HasFDerivAtFilter f f' x L :=
h.mono hL
#align has_fderiv_at.has_fderiv_at_filter HasFDerivAt.hasFDerivAtFilter
+-/
+#print HasFDerivAt.hasFDerivWithinAt /-
theorem HasFDerivAt.hasFDerivWithinAt (h : HasFDerivAt f f' x) : HasFDerivWithinAt f f' s x :=
h.HasFDerivAtFilter inf_le_left
#align has_fderiv_at.has_fderiv_within_at HasFDerivAt.hasFDerivWithinAt
+-/
+#print HasFDerivWithinAt.differentiableWithinAt /-
theorem HasFDerivWithinAt.differentiableWithinAt (h : HasFDerivWithinAt f f' s x) :
DifferentiableWithinAt 𝕜 f s x :=
⟨f', h⟩
#align has_fderiv_within_at.differentiable_within_at HasFDerivWithinAt.differentiableWithinAt
+-/
+#print HasFDerivAt.differentiableAt /-
theorem HasFDerivAt.differentiableAt (h : HasFDerivAt f f' x) : DifferentiableAt 𝕜 f x :=
⟨f', h⟩
#align has_fderiv_at.differentiable_at HasFDerivAt.differentiableAt
+-/
+#print hasFDerivWithinAt_univ /-
@[simp]
theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f f' x := by
simp only [HasFDerivWithinAt, nhdsWithin_univ]; rfl
#align has_fderiv_within_at_univ hasFDerivWithinAt_univ
+-/
alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
+#print hasFDerivWithinAt_insert /-
theorem hasFDerivWithinAt_insert {y : E} :
HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x :=
by
@@ -429,42 +470,56 @@ theorem hasFDerivWithinAt_insert {y : E} :
refine' ⟨fun h => h.mono <| subset_insert y s, fun hf => hf.mono_of_mem _⟩
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
+-/
alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
+#print HasFDerivWithinAt.insert /-
theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt f f' s x) :
HasFDerivWithinAt f f' (insert x s) x :=
h.insert'
#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
+-/
+#print hasFDerivWithinAt_diff_singleton /-
theorem hasFDerivWithinAt_diff_singleton (y : E) :
HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' s x := by
rw [← hasFDerivWithinAt_insert, insert_diff_singleton, hasFDerivWithinAt_insert]
#align has_fderiv_within_at_diff_singleton hasFDerivWithinAt_diff_singleton
+-/
+#print HasStrictFDerivAt.isBigO_sub /-
theorem HasStrictFDerivAt.isBigO_sub (hf : HasStrictFDerivAt f f' x) :
(fun p : E × E => f p.1 - f p.2) =O[𝓝 (x, x)] fun p : E × E => p.1 - p.2 :=
hf.IsBigO.congr_of_sub.2 (f'.isBigO_comp _ _)
#align has_strict_fderiv_at.is_O_sub HasStrictFDerivAt.isBigO_sub
+-/
+#print HasFDerivAtFilter.isBigO_sub /-
theorem HasFDerivAtFilter.isBigO_sub (h : HasFDerivAtFilter f f' x L) :
(fun x' => f x' - f x) =O[L] fun x' => x' - x :=
h.IsBigO.congr_of_sub.2 (f'.isBigO_sub _ _)
#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_sub
+-/
+#print HasStrictFDerivAt.hasFDerivAt /-
protected theorem HasStrictFDerivAt.hasFDerivAt (hf : HasStrictFDerivAt f f' x) :
HasFDerivAt f f' x := by
rw [HasFDerivAt, HasFDerivAtFilter, is_o_iff]
exact fun c hc => tendsto_id.prod_mk_nhds tendsto_const_nhds (is_o_iff.1 hf hc)
#align has_strict_fderiv_at.has_fderiv_at HasStrictFDerivAt.hasFDerivAt
+-/
+#print HasStrictFDerivAt.differentiableAt /-
protected theorem HasStrictFDerivAt.differentiableAt (hf : HasStrictFDerivAt f f' x) :
DifferentiableAt 𝕜 f x :=
hf.HasFDerivAt.DifferentiableAt
#align has_strict_fderiv_at.differentiable_at HasStrictFDerivAt.differentiableAt
+-/
+#print HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt /-
/-- If `f` is strictly differentiable at `x` with derivative `f'` and `K > ‖f'‖₊`, then `f` is
`K`-Lipschitz in a neighborhood of `x`. -/
theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDerivAt f f' x)
@@ -476,7 +531,9 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDe
exact
⟨U, Uo.mem_nhds xU, lipschitzOnWith_iff_norm_sub_le.2 fun x hx y hy => hU (mk_mem_prod hx hy)⟩
#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt
+-/
+#print HasStrictFDerivAt.exists_lipschitzOnWith /-
/-- If `f` is strictly differentiable at `x` with derivative `f'`, then `f` is Lipschitz in a
neighborhood of `x`. See also `has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt` for a
more precise statement. -/
@@ -484,7 +541,9 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith (hf : HasStrictFDerivAt f f' x)
∃ K, ∃ s ∈ 𝓝 x, LipschitzOnWith K f s :=
(exists_gt _).imp hf.exists_lipschitzOnWith_of_nnnorm_lt
#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWith
+-/
+#print HasFDerivAt.lim /-
/-- Directional derivative agrees with `has_fderiv`. -/
theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α → 𝕜} {l : Filter α}
(hc : Tendsto (fun n => ‖c n‖) l atTop) :
@@ -497,45 +556,61 @@ theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α
dsimp only
rw [← mul_smul, mul_inv_cancel hy, one_smul]
#align has_fderiv_at.lim HasFDerivAt.lim
+-/
+#print HasFDerivAt.unique /-
theorem HasFDerivAt.unique (h₀ : HasFDerivAt f f₀' x) (h₁ : HasFDerivAt f f₁' x) : f₀' = f₁' :=
by
rw [← hasFDerivWithinAt_univ] at h₀ h₁
exact unique_diff_within_at_univ.eq h₀ h₁
#align has_fderiv_at.unique HasFDerivAt.unique
+-/
+#print hasFDerivWithinAt_inter' /-
theorem hasFDerivWithinAt_inter' (h : t ∈ 𝓝[s] x) :
HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x := by
simp [HasFDerivWithinAt, nhdsWithin_restrict'' s h]
#align has_fderiv_within_at_inter' hasFDerivWithinAt_inter'
+-/
+#print hasFDerivWithinAt_inter /-
theorem hasFDerivWithinAt_inter (h : t ∈ 𝓝 x) :
HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x := by
simp [HasFDerivWithinAt, nhdsWithin_restrict' s h]
#align has_fderiv_within_at_inter hasFDerivWithinAt_inter
+-/
+#print HasFDerivWithinAt.union /-
theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
(ht : HasFDerivWithinAt f f' t x) : HasFDerivWithinAt f f' (s ∪ t) x :=
by
simp only [HasFDerivWithinAt, nhdsWithin_union]
exact hs.sup ht
#align has_fderiv_within_at.union HasFDerivWithinAt.union
+-/
+#print HasFDerivWithinAt.nhdsWithin /-
theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
HasFDerivWithinAt f f' t x :=
(hasFDerivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithin
+-/
+#print HasFDerivWithinAt.hasFDerivAt /-
theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
HasFDerivAt f f' x := by
rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAt
+-/
+#print DifferentiableWithinAt.differentiableAt /-
theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜 f s x)
(hs : s ∈ 𝓝 x) : DifferentiableAt 𝕜 f x :=
h.imp fun f' hf' => hf'.HasFDerivAt hs
#align differentiable_within_at.differentiable_at DifferentiableWithinAt.differentiableAt
+-/
+#print DifferentiableWithinAt.hasFDerivWithinAt /-
theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x :=
by
@@ -544,7 +619,9 @@ theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt
rw [dif_pos h]
exact Classical.choose_spec h
#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
+-/
+#print DifferentiableAt.hasFDerivAt /-
theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
HasFDerivAt f (fderiv 𝕜 f x) x := by
dsimp only [fderiv]
@@ -552,30 +629,42 @@ theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
rw [dif_pos h]
exact Classical.choose_spec h
#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAt
+-/
+#print DifferentiableOn.hasFDerivAt /-
theorem DifferentiableOn.hasFDerivAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
HasFDerivAt f (fderiv 𝕜 f x) x :=
((h x (mem_of_mem_nhds hs)).DifferentiableAt hs).HasFDerivAt
#align differentiable_on.has_fderiv_at DifferentiableOn.hasFDerivAt
+-/
+#print DifferentiableOn.differentiableAt /-
theorem DifferentiableOn.differentiableAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
DifferentiableAt 𝕜 f x :=
(h.HasFDerivAt hs).DifferentiableAt
#align differentiable_on.differentiable_at DifferentiableOn.differentiableAt
+-/
+#print DifferentiableOn.eventually_differentiableAt /-
theorem DifferentiableOn.eventually_differentiableAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
∀ᶠ y in 𝓝 x, DifferentiableAt 𝕜 f y :=
(eventually_eventually_nhds.2 hs).mono fun y => h.DifferentiableAt
#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAt
+-/
+#print HasFDerivAt.fderiv /-
theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' := by ext;
rw [h.unique h.differentiable_at.has_fderiv_at]
#align has_fderiv_at.fderiv HasFDerivAt.fderiv
+-/
+#print fderiv_eq /-
theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x) : fderiv 𝕜 f = f' :=
funext fun x => (h x).fderiv
#align fderiv_eq fderiv_eq
+-/
+#print DifferentiableAt.le_of_lip /-
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`.
Version using `fderiv`. -/
@@ -583,12 +672,16 @@ theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : Differentiable
(hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖fderiv 𝕜 f x₀‖ ≤ C :=
hf.HasFDerivAt.le_of_lip hs hlip
#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
+-/
+#print HasFDerivWithinAt.fderivWithin /-
theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = f' :=
(hxs.Eq h h.DifferentiableWithinAt.HasFDerivWithinAt).symm
#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithin
+-/
+#print hasFDerivWithinAt_of_not_mem_closure /-
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
@@ -596,59 +689,83 @@ theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWi
simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
simp [HasFDerivWithinAt, HasFDerivAtFilter, h, is_o, is_O_with]
#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closure
+-/
+#print DifferentiableWithinAt.mono /-
theorem DifferentiableWithinAt.mono (h : DifferentiableWithinAt 𝕜 f t x) (st : s ⊆ t) :
DifferentiableWithinAt 𝕜 f s x := by
rcases h with ⟨f', hf'⟩
exact ⟨f', hf'.mono st⟩
#align differentiable_within_at.mono DifferentiableWithinAt.mono
+-/
+#print DifferentiableWithinAt.mono_of_mem /-
theorem DifferentiableWithinAt.mono_of_mem (h : DifferentiableWithinAt 𝕜 f s x) {t : Set E}
(hst : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x :=
(h.HasFDerivWithinAt.mono_of_mem hst).DifferentiableWithinAt
#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_mem
+-/
+#print differentiableWithinAt_univ /-
theorem differentiableWithinAt_univ : DifferentiableWithinAt 𝕜 f univ x ↔ DifferentiableAt 𝕜 f x :=
by simp only [DifferentiableWithinAt, hasFDerivWithinAt_univ, DifferentiableAt]
#align differentiable_within_at_univ differentiableWithinAt_univ
+-/
+#print differentiableWithinAt_inter /-
theorem differentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter ht]
#align differentiable_within_at_inter differentiableWithinAt_inter
+-/
+#print differentiableWithinAt_inter' /-
theorem differentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter' ht]
#align differentiable_within_at_inter' differentiableWithinAt_inter'
+-/
+#print DifferentiableAt.differentiableWithinAt /-
theorem DifferentiableAt.differentiableWithinAt (h : DifferentiableAt 𝕜 f x) :
DifferentiableWithinAt 𝕜 f s x :=
(differentiableWithinAt_univ.2 h).mono (subset_univ _)
#align differentiable_at.differentiable_within_at DifferentiableAt.differentiableWithinAt
+-/
+#print Differentiable.differentiableAt /-
theorem Differentiable.differentiableAt (h : Differentiable 𝕜 f) : DifferentiableAt 𝕜 f x :=
h x
#align differentiable.differentiable_at Differentiable.differentiableAt
+-/
+#print DifferentiableAt.fderivWithin /-
theorem DifferentiableAt.fderivWithin (h : DifferentiableAt 𝕜 f x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
h.HasFDerivAt.HasFDerivWithinAt.fderivWithin hxs
#align differentiable_at.fderiv_within DifferentiableAt.fderivWithin
+-/
+#print DifferentiableOn.mono /-
theorem DifferentiableOn.mono (h : DifferentiableOn 𝕜 f t) (st : s ⊆ t) : DifferentiableOn 𝕜 f s :=
fun x hx => (h x (st hx)).mono st
#align differentiable_on.mono DifferentiableOn.mono
+-/
+#print differentiableOn_univ /-
theorem differentiableOn_univ : DifferentiableOn 𝕜 f univ ↔ Differentiable 𝕜 f := by
simp only [DifferentiableOn, Differentiable, differentiableWithinAt_univ, mem_univ,
forall_true_left]
#align differentiable_on_univ differentiableOn_univ
+-/
+#print Differentiable.differentiableOn /-
theorem Differentiable.differentiableOn (h : Differentiable 𝕜 f) : DifferentiableOn 𝕜 f s :=
(differentiableOn_univ.2 h).mono (subset_univ _)
#align differentiable.differentiable_on Differentiable.differentiableOn
+-/
+#print differentiableOn_of_locally_differentiableOn /-
theorem differentiableOn_of_locally_differentiableOn
(h : ∀ x ∈ s, ∃ u, IsOpen u ∧ x ∈ u ∧ DifferentiableOn 𝕜 f (s ∩ u)) : DifferentiableOn 𝕜 f s :=
by
@@ -656,40 +773,55 @@ theorem differentiableOn_of_locally_differentiableOn
rcases h x xs with ⟨t, t_open, xt, ht⟩
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
+-/
+#print fderivWithin_of_mem /-
theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
((DifferentiableWithinAt.hasFDerivWithinAt h).mono_of_mem st).fderivWithin ht
#align fderiv_within_of_mem fderivWithin_of_mem
+-/
+#print fderivWithin_subset /-
theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_of_mem (nhdsWithin_mono _ st self_mem_nhdsWithin) ht h
#align fderiv_within_subset fderivWithin_subset
+-/
+#print fderivWithin_inter /-
theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hasFDerivWithinAt_inter ht]
#align fderiv_within_inter fderivWithin_inter
+-/
+#print fderivWithin_of_mem_nhds /-
theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
+-/
+#print fderivWithin_univ /-
@[simp]
theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
funext fun _ => fderivWithin_of_mem_nhds univ_mem
#align fderiv_within_univ fderivWithin_univ
+-/
+#print fderivWithin_of_open /-
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (hs.mem_nhds hx)
#align fderiv_within_of_open fderivWithin_of_open
+-/
+#print fderivWithin_eq_fderiv /-
theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : DifferentiableAt 𝕜 f x) :
fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
by
rw [← fderivWithin_univ]
exact fderivWithin_subset (subset_univ _) hs h.differentiable_within_at
#align fderiv_within_eq_fderiv fderivWithin_eq_fderiv
+-/
#print fderiv_mem_iff /-
theorem fderiv_mem_iff {f : E → F} {s : Set (E →L[𝕜] F)} {x : E} :
@@ -699,6 +831,7 @@ theorem fderiv_mem_iff {f : E → F} {s : Set (E →L[𝕜] F)} {x : E} :
#align fderiv_mem_iff fderiv_mem_iff
-/
+#print fderivWithin_mem_iff /-
theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)} {x : E} :
fderivWithin 𝕜 f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ fderivWithin 𝕜 f t x ∈ s ∨
@@ -707,7 +840,9 @@ theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)
by_cases hx : DifferentiableWithinAt 𝕜 f t x <;>
simp [fderivWithin_zero_of_not_differentiableWithinAt, *]
#align fderiv_within_mem_iff fderivWithin_mem_iff
+-/
+#print Asymptotics.IsBigO.hasFDerivWithinAt /-
theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
(h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n) (hx₀ : x₀ ∈ s) (hn : 1 < n) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) s x₀ := by
@@ -715,23 +850,30 @@ theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
h.eq_zero_of_norm_pow_within hx₀ <| zero_lt_one.trans hn, zero_apply, sub_zero,
h.trans_is_o ((is_o_pow_sub_sub x₀ hn).mono nhdsWithin_le_nhds)]
#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAt
+-/
+#print Asymptotics.IsBigO.hasFDerivAt /-
theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
(hn : 1 < n) : HasFDerivAt f (0 : E →L[𝕜] F) x₀ :=
by
rw [← nhdsWithin_univ] at h
exact (h.has_fderiv_within_at (mem_univ _) hn).hasFDerivAt_of_univ
#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
+-/
+#print HasFDerivWithinAt.isBigO /-
theorem HasFDerivWithinAt.isBigO {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
(h : HasFDerivWithinAt f f' s x₀) : (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝[s] x₀) x₀)
#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO
+-/
+#print HasFDerivAt.isBigO /-
theorem HasFDerivAt.isBigO {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFDerivAt f f' x₀) :
(fun x => f x - f x₀) =O[𝓝 x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝 x₀) x₀)
#align has_fderiv_at.is_O HasFDerivAt.isBigO
+-/
end FderivProperties
@@ -740,6 +882,7 @@ section Continuous
/-! ### Deducing continuity from differentiability -/
+#print HasFDerivAtFilter.tendsto_nhds /-
theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilter f f' x L) :
Tendsto f L (𝓝 (f x)) :=
by
@@ -751,47 +894,65 @@ theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilte
rw [zero_add (f x)] at this
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhds
+-/
+#print HasFDerivWithinAt.continuousWithinAt /-
theorem HasFDerivWithinAt.continuousWithinAt (h : HasFDerivWithinAt f f' s x) :
ContinuousWithinAt f s x :=
HasFDerivAtFilter.tendsto_nhds inf_le_left h
#align has_fderiv_within_at.continuous_within_at HasFDerivWithinAt.continuousWithinAt
+-/
+#print HasFDerivAt.continuousAt /-
theorem HasFDerivAt.continuousAt (h : HasFDerivAt f f' x) : ContinuousAt f x :=
HasFDerivAtFilter.tendsto_nhds le_rfl h
#align has_fderiv_at.continuous_at HasFDerivAt.continuousAt
+-/
+#print DifferentiableWithinAt.continuousWithinAt /-
theorem DifferentiableWithinAt.continuousWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
ContinuousWithinAt f s x :=
let ⟨f', hf'⟩ := h
hf'.ContinuousWithinAt
#align differentiable_within_at.continuous_within_at DifferentiableWithinAt.continuousWithinAt
+-/
+#print DifferentiableAt.continuousAt /-
theorem DifferentiableAt.continuousAt (h : DifferentiableAt 𝕜 f x) : ContinuousAt f x :=
let ⟨f', hf'⟩ := h
hf'.ContinuousAt
#align differentiable_at.continuous_at DifferentiableAt.continuousAt
+-/
+#print DifferentiableOn.continuousOn /-
theorem DifferentiableOn.continuousOn (h : DifferentiableOn 𝕜 f s) : ContinuousOn f s := fun x hx =>
(h x hx).ContinuousWithinAt
#align differentiable_on.continuous_on DifferentiableOn.continuousOn
+-/
+#print Differentiable.continuous /-
theorem Differentiable.continuous (h : Differentiable 𝕜 f) : Continuous f :=
continuous_iff_continuousAt.2 fun x => (h x).ContinuousAt
#align differentiable.continuous Differentiable.continuous
+-/
+#print HasStrictFDerivAt.continuousAt /-
protected theorem HasStrictFDerivAt.continuousAt (hf : HasStrictFDerivAt f f' x) :
ContinuousAt f x :=
hf.HasFDerivAt.ContinuousAt
#align has_strict_fderiv_at.continuous_at HasStrictFDerivAt.continuousAt
+-/
+#print HasStrictFDerivAt.isBigO_sub_rev /-
theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
(hf : HasStrictFDerivAt f (f' : E →L[𝕜] F) x) :
(fun p : E × E => p.1 - p.2) =O[𝓝 (x, x)] fun p : E × E => f p.1 - f p.2 :=
((f'.isBigO_comp_rev _ _).trans (hf.trans_isBigO (f'.isBigO_comp_rev _ _)).right_isBigO_add).congr
(fun _ => rfl) fun _ => sub_add_cancel _ _
#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_rev
+-/
+#print HasFDerivAtFilter.isBigO_sub_rev /-
theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
have : (fun x' => x' - x) =O[L] fun x' => f' (x' - x) :=
@@ -800,6 +961,7 @@ theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(this.trans (hf.trans_isBigO this).right_isBigO_add).congr (fun _ => rfl) fun _ =>
sub_add_cancel _ _
#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_rev
+-/
end Continuous
@@ -808,6 +970,7 @@ section congr
/-! ### congr properties of the derivative -/
+#print hasFDerivWithinAt_congr_set' /-
theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
calc
@@ -820,41 +983,57 @@ theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
inter_comm] using h
_ ↔ HasFDerivWithinAt f f' t x := hasFDerivWithinAt_diff_singleton _
#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'
+-/
+#print hasFDerivWithinAt_congr_set /-
theorem hasFDerivWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
hasFDerivWithinAt_congr_set' x <| h.filter_mono inf_le_left
#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_set
+-/
+#print differentiableWithinAt_congr_set' /-
theorem differentiableWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
exists_congr fun _ => hasFDerivWithinAt_congr_set' _ h
#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'
+-/
+#print differentiableWithinAt_congr_set /-
theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
exists_congr fun _ => hasFDerivWithinAt_congr_set h
#align differentiable_within_at_congr_set differentiableWithinAt_congr_set
+-/
+#print fderivWithin_congr_set' /-
theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
#align fderiv_within_congr_set' fderivWithin_congr_set'
+-/
+#print fderivWithin_congr_set /-
theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_congr_set' x <| h.filter_mono inf_le_left
#align fderiv_within_congr_set fderivWithin_congr_set
+-/
+#print fderivWithin_eventually_congr_set' /-
theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
(eventually_nhds_nhdsWithin.2 h).mono fun _ => fderivWithin_congr_set' y
#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'
+-/
+#print fderivWithin_eventually_congr_set /-
theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
fderivWithin_eventually_congr_set' x <| h.filter_mono inf_le_left
#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_set
+-/
+#print Filter.EventuallyEq.hasStrictFDerivAt_iff /-
theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x :=
by
@@ -862,123 +1041,171 @@ theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (
rintro p ⟨hp₁, hp₂⟩
simp only [*]
#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iff
+-/
+#print HasStrictFDerivAt.congr_of_eventuallyEq /-
theorem HasStrictFDerivAt.congr_of_eventuallyEq (h : HasStrictFDerivAt f f' x) (h₁ : f =ᶠ[𝓝 x] f₁) :
HasStrictFDerivAt f₁ f' x :=
(h₁.hasStrictFDerivAt_iff fun _ => rfl).1 h
#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEq
+-/
+#print Filter.EventuallyEq.hasFDerivAtFilter_iff /-
theorem Filter.EventuallyEq.hasFDerivAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x)
(h₁ : ∀ x, f₀' x = f₁' x) : HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L :=
isLittleO_congr (h₀.mono fun y hy => by simp only [hy, h₁, hx])
(eventually_of_forall fun _ => rfl)
#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iff
+-/
+#print HasFDerivAtFilter.congr_of_eventuallyEq /-
theorem HasFDerivAtFilter.congr_of_eventuallyEq (h : HasFDerivAtFilter f f' x L) (hL : f₁ =ᶠ[L] f)
(hx : f₁ x = f x) : HasFDerivAtFilter f₁ f' x L :=
(hL.hasFDerivAtFilter_iff hx fun _ => rfl).2 h
#align has_fderiv_at_filter.congr_of_eventually_eq HasFDerivAtFilter.congr_of_eventuallyEq
+-/
+#print Filter.EventuallyEq.hasFDerivAt_iff /-
theorem Filter.EventuallyEq.hasFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
HasFDerivAt f₀ f' x ↔ HasFDerivAt f₁ f' x :=
h.hasFDerivAtFilter_iff h.eq_of_nhds fun _ => rfl
#align filter.eventually_eq.has_fderiv_at_iff Filter.EventuallyEq.hasFDerivAt_iff
+-/
+#print Filter.EventuallyEq.differentiableAt_iff /-
theorem Filter.EventuallyEq.differentiableAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
DifferentiableAt 𝕜 f₀ x ↔ DifferentiableAt 𝕜 f₁ x :=
exists_congr fun f' => h.hasFDerivAt_iff
#align filter.eventually_eq.differentiable_at_iff Filter.EventuallyEq.differentiableAt_iff
+-/
+#print Filter.EventuallyEq.hasFDerivWithinAt_iff /-
theorem Filter.EventuallyEq.hasFDerivWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
HasFDerivWithinAt f₀ f' s x ↔ HasFDerivWithinAt f₁ f' s x :=
h.hasFDerivAtFilter_iff hx fun _ => rfl
#align filter.eventually_eq.has_fderiv_within_at_iff Filter.EventuallyEq.hasFDerivWithinAt_iff
+-/
+#print Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem /-
theorem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
HasFDerivWithinAt f₀ f' s x ↔ HasFDerivWithinAt f₁ f' s x :=
h.hasFDerivWithinAt_iff (h.eq_of_nhdsWithin hx)
#align filter.eventually_eq.has_fderiv_within_at_iff_of_mem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem
+-/
+#print Filter.EventuallyEq.differentiableWithinAt_iff /-
theorem Filter.EventuallyEq.differentiableWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
DifferentiableWithinAt 𝕜 f₀ s x ↔ DifferentiableWithinAt 𝕜 f₁ s x :=
exists_congr fun f' => h.hasFDerivWithinAt_iff hx
#align filter.eventually_eq.differentiable_within_at_iff Filter.EventuallyEq.differentiableWithinAt_iff
+-/
+#print Filter.EventuallyEq.differentiableWithinAt_iff_of_mem /-
theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
DifferentiableWithinAt 𝕜 f₀ s x ↔ DifferentiableWithinAt 𝕜 f₁ s x :=
h.differentiableWithinAt_iff (h.eq_of_nhdsWithin hx)
#align filter.eventually_eq.differentiable_within_at_iff_of_mem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem
+-/
+#print HasFDerivWithinAt.congr_mono /-
theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFDerivWithinAt f₁ f' t x :=
HasFDerivAtFilter.congr_of_eventuallyEq (h.mono h₁) (Filter.mem_inf_of_right ht) hx
#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_mono
+-/
+#print HasFDerivWithinAt.congr /-
theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s)
(hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
h.congr_mono hs hx (Subset.refl _)
#align has_fderiv_within_at.congr HasFDerivWithinAt.congr
+-/
+#print HasFDerivWithinAt.congr' /-
theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s) (hx : x ∈ s) :
HasFDerivWithinAt f₁ f' s x :=
h.congr hs (hs hx)
#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'
+-/
+#print HasFDerivWithinAt.congr_of_eventuallyEq /-
theorem HasFDerivWithinAt.congr_of_eventuallyEq (h : HasFDerivWithinAt f f' s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
HasFDerivAtFilter.congr_of_eventuallyEq h h₁ hx
#align has_fderiv_within_at.congr_of_eventually_eq HasFDerivWithinAt.congr_of_eventuallyEq
+-/
+#print HasFDerivAt.congr_of_eventuallyEq /-
theorem HasFDerivAt.congr_of_eventuallyEq (h : HasFDerivAt f f' x) (h₁ : f₁ =ᶠ[𝓝 x] f) :
HasFDerivAt f₁ f' x :=
HasFDerivAtFilter.congr_of_eventuallyEq h h₁ (mem_of_mem_nhds h₁ : _)
#align has_fderiv_at.congr_of_eventually_eq HasFDerivAt.congr_of_eventuallyEq
+-/
+#print DifferentiableWithinAt.congr_mono /-
theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
(h.HasFDerivWithinAt.congr_mono ht hx h₁).DifferentiableWithinAt
#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_mono
+-/
+#print DifferentiableWithinAt.congr /-
theorem DifferentiableWithinAt.congr (h : DifferentiableWithinAt 𝕜 f s x) (ht : ∀ x ∈ s, f₁ x = f x)
(hx : f₁ x = f x) : DifferentiableWithinAt 𝕜 f₁ s x :=
DifferentiableWithinAt.congr_mono h ht hx (Subset.refl _)
#align differentiable_within_at.congr DifferentiableWithinAt.congr
+-/
+#print DifferentiableWithinAt.congr_of_eventuallyEq /-
theorem DifferentiableWithinAt.congr_of_eventuallyEq (h : DifferentiableWithinAt 𝕜 f s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : DifferentiableWithinAt 𝕜 f₁ s x :=
(h.HasFDerivWithinAt.congr_of_eventuallyEq h₁ hx).DifferentiableWithinAt
#align differentiable_within_at.congr_of_eventually_eq DifferentiableWithinAt.congr_of_eventuallyEq
+-/
+#print DifferentiableOn.congr_mono /-
theorem DifferentiableOn.congr_mono (h : DifferentiableOn 𝕜 f s) (h' : ∀ x ∈ t, f₁ x = f x)
(h₁ : t ⊆ s) : DifferentiableOn 𝕜 f₁ t := fun x hx => (h x (h₁ hx)).congr_mono h' (h' x hx) h₁
#align differentiable_on.congr_mono DifferentiableOn.congr_mono
+-/
+#print DifferentiableOn.congr /-
theorem DifferentiableOn.congr (h : DifferentiableOn 𝕜 f s) (h' : ∀ x ∈ s, f₁ x = f x) :
DifferentiableOn 𝕜 f₁ s := fun x hx => (h x hx).congr h' (h' x hx)
#align differentiable_on.congr DifferentiableOn.congr
+-/
+#print differentiableOn_congr /-
theorem differentiableOn_congr (h' : ∀ x ∈ s, f₁ x = f x) :
DifferentiableOn 𝕜 f₁ s ↔ DifferentiableOn 𝕜 f s :=
⟨fun h => DifferentiableOn.congr h fun y hy => (h' y hy).symm, fun h =>
DifferentiableOn.congr h h'⟩
#align differentiable_on_congr differentiableOn_congr
+-/
+#print DifferentiableAt.congr_of_eventuallyEq /-
theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (hL : f₁ =ᶠ[𝓝 x] f) :
DifferentiableAt 𝕜 f₁ x :=
hL.differentiableAt_iff.2 h
#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEq
+-/
+#print DifferentiableWithinAt.fderivWithin_congr_mono /-
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
(hs : EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
fderivWithin 𝕜 f₁ t x = fderivWithin 𝕜 f s x :=
(HasFDerivWithinAt.congr_mono h.HasFDerivWithinAt hs hx h₁).fderivWithin hxt
#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_mono
+-/
+#print Filter.EventuallyEq.fderivWithin_eq /-
theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hs.has_fderiv_within_at_iff hx]
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
+-/
+#print Filter.EventuallyEq.fderiv_within' /-
theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
(eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
@@ -986,34 +1213,47 @@ theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t
Filter.EventuallyEq.fderivWithin_eq (hs.filter_mono <| nhdsWithin_mono _ ht)
(hs.self_of_nhdsWithin hys)
#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
+-/
+#print Filter.EventuallyEq.fderivWithin /-
protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
hs.fderiv_within' Subset.rfl
#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
+-/
+#print Filter.EventuallyEq.fderivWithin_eq_nhds /-
theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
(h.filter_mono nhdsWithin_le_nhds).fderivWithin_eq h.self_of_nhds
#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhds
+-/
+#print fderivWithin_congr /-
theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
(hs.EventuallyEq.filter_mono inf_le_right).fderivWithin_eq hx
#align fderiv_within_congr fderivWithin_congr
+-/
+#print fderivWithin_congr' /-
theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
fderivWithin_congr hs (hs hx)
#align fderiv_within_congr' fderivWithin_congr'
+-/
+#print Filter.EventuallyEq.fderiv_eq /-
theorem Filter.EventuallyEq.fderiv_eq (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := by
rw [← fderivWithin_univ, ← fderivWithin_univ, h.fderiv_within_eq_nhds]
#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eq
+-/
+#print Filter.EventuallyEq.fderiv /-
protected theorem Filter.EventuallyEq.fderiv (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f :=
h.eventuallyEq_nhds.mono fun x h => h.fderiv_eq
#align filter.eventually_eq.fderiv Filter.EventuallyEq.fderiv
+-/
end congr
@@ -1022,9 +1262,11 @@ section id
/-! ### Derivative of the identity -/
+#print hasStrictFDerivAt_id /-
theorem hasStrictFDerivAt_id (x : E) : HasStrictFDerivAt id (id 𝕜 E) x :=
(isLittleO_zero _ _).congr_left <| by simp
#align has_strict_fderiv_at_id hasStrictFDerivAt_id
+-/
#print hasFDerivAtFilter_id /-
theorem hasFDerivAtFilter_id (x : E) (L : Filter E) : HasFDerivAtFilter id (id 𝕜 E) x L :=
@@ -1038,35 +1280,49 @@ theorem hasFDerivWithinAt_id (x : E) (s : Set E) : HasFDerivWithinAt id (id 𝕜
#align has_fderiv_within_at_id hasFDerivWithinAt_id
-/
+#print hasFDerivAt_id /-
theorem hasFDerivAt_id (x : E) : HasFDerivAt id (id 𝕜 E) x :=
hasFDerivAtFilter_id _ _
#align has_fderiv_at_id hasFDerivAt_id
+-/
+#print differentiableAt_id /-
@[simp]
theorem differentiableAt_id : DifferentiableAt 𝕜 id x :=
(hasFDerivAt_id x).DifferentiableAt
#align differentiable_at_id differentiableAt_id
+-/
+#print differentiableAt_id' /-
@[simp]
theorem differentiableAt_id' : DifferentiableAt 𝕜 (fun x => x) x :=
(hasFDerivAt_id x).DifferentiableAt
#align differentiable_at_id' differentiableAt_id'
+-/
+#print differentiableWithinAt_id /-
theorem differentiableWithinAt_id : DifferentiableWithinAt 𝕜 id s x :=
differentiableAt_id.DifferentiableWithinAt
#align differentiable_within_at_id differentiableWithinAt_id
+-/
+#print differentiable_id /-
@[simp]
theorem differentiable_id : Differentiable 𝕜 (id : E → E) := fun x => differentiableAt_id
#align differentiable_id differentiable_id
+-/
+#print differentiable_id' /-
@[simp]
theorem differentiable_id' : Differentiable 𝕜 fun x : E => x := fun x => differentiableAt_id
#align differentiable_id' differentiable_id'
+-/
+#print differentiableOn_id /-
theorem differentiableOn_id : DifferentiableOn 𝕜 id s :=
differentiable_id.DifferentiableOn
#align differentiable_on_id differentiableOn_id
+-/
#print fderiv_id /-
theorem fderiv_id : fderiv 𝕜 id x = id 𝕜 E :=
@@ -1081,16 +1337,20 @@ theorem fderiv_id' : fderiv 𝕜 (fun x : E => x) x = ContinuousLinearMap.id
#align fderiv_id' fderiv_id'
-/
+#print fderivWithin_id /-
theorem fderivWithin_id (hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 id s x = id 𝕜 E :=
by
rw [DifferentiableAt.fderivWithin differentiableAt_id hxs]
exact fderiv_id
#align fderiv_within_id fderivWithin_id
+-/
+#print fderivWithin_id' /-
theorem fderivWithin_id' (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun x : E => x) s x = ContinuousLinearMap.id 𝕜 E :=
fderivWithin_id hxs
#align fderiv_within_id' fderivWithin_id'
+-/
end id
@@ -1099,87 +1359,121 @@ section Const
/-! ### derivative of a constant function -/
+#print hasStrictFDerivAt_const /-
theorem hasStrictFDerivAt_const (c : F) (x : E) :
HasStrictFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
#align has_strict_fderiv_at_const hasStrictFDerivAt_const
+-/
+#print hasFDerivAtFilter_const /-
theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
HasFDerivAtFilter (fun x => c) (0 : E →L[𝕜] F) x L :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
#align has_fderiv_at_filter_const hasFDerivAtFilter_const
+-/
+#print hasFDerivWithinAt_const /-
theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
HasFDerivWithinAt (fun x => c) (0 : E →L[𝕜] F) s x :=
hasFDerivAtFilter_const _ _ _
#align has_fderiv_within_at_const hasFDerivWithinAt_const
+-/
+#print hasFDerivAt_const /-
theorem hasFDerivAt_const (c : F) (x : E) : HasFDerivAt (fun x => c) (0 : E →L[𝕜] F) x :=
hasFDerivAtFilter_const _ _ _
#align has_fderiv_at_const hasFDerivAt_const
+-/
+#print differentiableAt_const /-
@[simp]
theorem differentiableAt_const (c : F) : DifferentiableAt 𝕜 (fun x => c) x :=
⟨0, hasFDerivAt_const c x⟩
#align differentiable_at_const differentiableAt_const
+-/
+#print differentiableWithinAt_const /-
theorem differentiableWithinAt_const (c : F) : DifferentiableWithinAt 𝕜 (fun x => c) s x :=
DifferentiableAt.differentiableWithinAt (differentiableAt_const _)
#align differentiable_within_at_const differentiableWithinAt_const
+-/
+#print fderiv_const_apply /-
theorem fderiv_const_apply (c : F) : fderiv 𝕜 (fun y => c) x = 0 :=
HasFDerivAt.fderiv (hasFDerivAt_const c x)
#align fderiv_const_apply fderiv_const_apply
+-/
+#print fderiv_const /-
@[simp]
theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 := by ext m; rw [fderiv_const_apply];
rfl
#align fderiv_const fderiv_const
+-/
+#print fderivWithin_const_apply /-
theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun y => c) s x = 0 :=
by
rw [DifferentiableAt.fderivWithin (differentiableAt_const _) hxs]
exact fderiv_const_apply _
#align fderiv_within_const_apply fderivWithin_const_apply
+-/
+#print differentiable_const /-
@[simp]
theorem differentiable_const (c : F) : Differentiable 𝕜 fun x : E => c := fun x =>
differentiableAt_const _
#align differentiable_const differentiable_const
+-/
+#print differentiableOn_const /-
theorem differentiableOn_const (c : F) : DifferentiableOn 𝕜 (fun x => c) s :=
(differentiable_const _).DifferentiableOn
#align differentiable_on_const differentiableOn_const
+-/
+#print hasFDerivWithinAt_singleton /-
theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) {x} x := by
simp only [HasFDerivWithinAt, nhdsWithin_singleton, HasFDerivAtFilter, is_o_pure,
ContinuousLinearMap.zero_apply, sub_self]
#align has_fderiv_within_at_singleton hasFDerivWithinAt_singleton
+-/
+#print hasFDerivAt_of_subsingleton /-
theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
by
rw [← hasFDerivWithinAt_univ, subsingleton_univ.eq_singleton_of_mem (mem_univ x)]
exact hasFDerivWithinAt_singleton f x
#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingleton
+-/
+#print differentiableOn_empty /-
theorem differentiableOn_empty : DifferentiableOn 𝕜 f ∅ := fun x => False.elim
#align differentiable_on_empty differentiableOn_empty
+-/
+#print differentiableOn_singleton /-
theorem differentiableOn_singleton : DifferentiableOn 𝕜 f {x} :=
forall_eq.2 (hasFDerivWithinAt_singleton f x).DifferentiableWithinAt
#align differentiable_on_singleton differentiableOn_singleton
+-/
+#print Set.Subsingleton.differentiableOn /-
theorem Set.Subsingleton.differentiableOn (hs : s.Subsingleton) : DifferentiableOn 𝕜 f s :=
hs.inductionOn differentiableOn_empty fun x => differentiableOn_singleton
#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOn
+-/
+#print hasFDerivAt_zero_of_eventually_const /-
theorem hasFDerivAt_zero_of_eventually_const (c : F) (hf : f =ᶠ[𝓝 x] fun y => c) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
(hasFDerivAt_const _ _).congr_of_eventuallyEq hf
#align has_fderiv_at_zero_of_eventually_const hasFDerivAt_zero_of_eventually_const
+-/
end Const
@@ -1195,20 +1489,26 @@ open Function
variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F}
+#print support_fderiv_subset /-
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
by
intro x
rw [← not_imp_not, not_mem_tsupport_iff_eventuallyEq, nmem_support]
exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
#align support_fderiv_subset support_fderiv_subset
+-/
+#print tsupport_fderiv_subset /-
theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
closure_minimal (support_fderiv_subset 𝕜) isClosed_closure
#align tsupport_fderiv_subset tsupport_fderiv_subset
+-/
+#print HasCompactSupport.fderiv /-
theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) : HasCompactSupport (fderiv 𝕜 f) :=
hf.mono' <| support_fderiv_subset 𝕜
#align has_compact_support.fderiv HasCompactSupport.fderiv
+-/
end Support
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -367,7 +367,6 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
_ = (C + ε) * ‖y‖ := (add_mul _ _ _).symm
-
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
@@ -820,7 +819,6 @@ theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
simpa only [set_eventually_eq_iff_inf_principal, ← nhdsWithin_inter', diff_eq,
inter_comm] using h
_ ↔ HasFDerivWithinAt f f' t x := hasFDerivWithinAt_diff_singleton _
-
#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'
theorem hasFDerivWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -361,7 +361,7 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
refine' le_of_forall_pos_le_add fun ε ε0 => op_norm_le_of_nhds_zero _ _
exact add_nonneg hC₀ ε0.le
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
- filter_upwards [is_o_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip]with y hy hyC
+ filter_upwards [is_o_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
rw [add_sub_cancel'] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
@@ -376,7 +376,7 @@ theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf
{s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖f'‖ ≤ C :=
by
refine' hf.le_of_lip' C.coe_nonneg _
- filter_upwards [hs]with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
+ filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lip
theorem HasFDerivAtFilter.mono (h : HasFDerivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -294,7 +294,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
(fun n => c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)) = fun n =>
c n • (f (x + d n) - f x) :=
by ext n; simp [smul_add, smul_sub]
- rwa [this, zero_add] at L3
+ rwa [this, zero_add] at L3
#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
/-- If `f'` and `f₁'` are two derivatives of `f` within `s` at `x`, then they are equal on the
@@ -360,9 +360,9 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
by
refine' le_of_forall_pos_le_add fun ε ε0 => op_norm_le_of_nhds_zero _ _
exact add_nonneg hC₀ ε0.le
- rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
+ rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
filter_upwards [is_o_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip]with y hy hyC
- rw [add_sub_cancel'] at hyC
+ rw [add_sub_cancel'] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
@@ -472,7 +472,7 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDe
(K : ℝ≥0) (hK : ‖f'‖₊ < K) : ∃ s ∈ 𝓝 x, LipschitzOnWith K f s :=
by
have := hf.add_is_O_with (f'.is_O_with_comp _ _) hK
- simp only [sub_add_cancel, is_O_with] at this
+ simp only [sub_add_cancel, is_O_with] at this
rcases exists_nhds_square this with ⟨U, Uo, xU, hU⟩
exact
⟨U, Uo.mem_nhds xU, lipschitzOnWith_iff_norm_sub_le.2 fun x hx y hy => hU (mk_mem_prod hx hy)⟩
@@ -501,7 +501,7 @@ theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α
theorem HasFDerivAt.unique (h₀ : HasFDerivAt f f₀' x) (h₁ : HasFDerivAt f f₁' x) : f₀' = f₁' :=
by
- rw [← hasFDerivWithinAt_univ] at h₀ h₁
+ rw [← hasFDerivWithinAt_univ] at h₀ h₁
exact unique_diff_within_at_univ.eq h₀ h₁
#align has_fderiv_at.unique HasFDerivAt.unique
@@ -529,7 +529,7 @@ theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s
theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
HasFDerivAt f f' x := by
- rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
+ rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAt
theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜 f s x)
@@ -541,7 +541,7 @@ theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt
HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x :=
by
dsimp only [fderivWithin]
- dsimp only [DifferentiableWithinAt] at h
+ dsimp only [DifferentiableWithinAt] at h
rw [dif_pos h]
exact Classical.choose_spec h
#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
@@ -549,7 +549,7 @@ theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt
theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
HasFDerivAt f (fderiv 𝕜 f x) x := by
dsimp only [fderiv]
- dsimp only [DifferentiableAt] at h
+ dsimp only [DifferentiableAt] at h
rw [dif_pos h]
exact Classical.choose_spec h
#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAt
@@ -594,7 +594,7 @@ theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
as this statement is empty. -/
theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
by
- simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
+ simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
simp [HasFDerivWithinAt, HasFDerivAtFilter, h, is_o, is_O_with]
#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closure
@@ -720,7 +720,7 @@ theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
(hn : 1 < n) : HasFDerivAt f (0 : E →L[𝕜] F) x₀ :=
by
- rw [← nhdsWithin_univ] at h
+ rw [← nhdsWithin_univ] at h
exact (h.has_fderiv_within_at (mem_univ _) hn).hasFDerivAt_of_univ
#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
@@ -749,7 +749,7 @@ theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilte
refine' h.is_O_sub.trans_tendsto (tendsto.mono_left _ hL)
rw [← sub_self x]; exact tendsto_id.sub tendsto_const_nhds
have := tendsto.add this tendsto_const_nhds
- rw [zero_add (f x)] at this
+ rw [zero_add (f x)] at this
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhds
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -125,7 +125,7 @@ derivative, differentiable, Fréchet, calculus
open Filter Asymptotics ContinuousLinearMap Set Metric
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Topology Classical NNReal Filter Asymptotics ENNReal
noncomputable section
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -240,9 +240,6 @@ variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
-/- warning: fderiv_within_zero_of_not_differentiable_within_at -> fderivWithin_zero_of_not_differentiableWithinAt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAtₓ'. -/
theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWithinAt 𝕜 f s x) :
fderivWithin 𝕜 f s x = 0 :=
by
@@ -250,9 +247,6 @@ theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWit
simp [fderivWithin, this]
#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAt
-/- warning: fderiv_zero_of_not_differentiable_at -> fderiv_zero_of_not_differentiableAt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_zero_of_not_differentiable_at fderiv_zero_of_not_differentiableAtₓ'. -/
theorem fderiv_zero_of_not_differentiableAt (h : ¬DifferentiableAt 𝕜 f x) : fderiv 𝕜 f x = 0 :=
by
have : ¬∃ f', HasFDerivAt f f' x := h
@@ -261,9 +255,6 @@ theorem fderiv_zero_of_not_differentiableAt (h : ¬DifferentiableAt 𝕜 f x) :
section DerivativeUniqueness
-/- warning: has_fderiv_within_at.lim -> HasFDerivWithinAt.lim is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.lim HasFDerivWithinAt.limₓ'. -/
/- In this section, we discuss the uniqueness of the derivative.
We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the
uniqueness of the derivative. -/
@@ -306,9 +297,6 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
rwa [this, zero_add] at L3
#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
-/- warning: has_fderiv_within_at.unique_on -> HasFDerivWithinAt.unique_on is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_onₓ'. -/
/-- If `f'` and `f₁'` are two derivatives of `f` within `s` at `x`, then they are equal on the
tangent cone to `s` at `x` -/
theorem HasFDerivWithinAt.unique_on (hf : HasFDerivWithinAt f f' s x)
@@ -317,18 +305,12 @@ theorem HasFDerivWithinAt.unique_on (hf : HasFDerivWithinAt f f' s x)
tendsto_nhds_unique (hf.lim atTop dtop clim cdlim) (hg.lim atTop dtop clim cdlim)
#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_on
-/- warning: unique_diff_within_at.eq -> UniqueDiffWithinAt.eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align unique_diff_within_at.eq UniqueDiffWithinAt.eqₓ'. -/
/-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/
theorem UniqueDiffWithinAt.eq (H : UniqueDiffWithinAt 𝕜 s x) (hf : HasFDerivWithinAt f f' s x)
(hg : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
ContinuousLinearMap.ext_on H.1 (hf.unique_on hg)
#align unique_diff_within_at.eq UniqueDiffWithinAt.eq
-/- warning: unique_diff_on.eq -> UniqueDiffOn.eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align unique_diff_on.eq UniqueDiffOn.eqₓ'. -/
theorem UniqueDiffOn.eq (H : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (h : HasFDerivWithinAt f f' s x)
(h₁ : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
(H x hx).Eq h h₁
@@ -341,9 +323,6 @@ section FderivProperties
/-! ### Basic properties of the derivative -/
-/- warning: has_fderiv_at_filter_iff_tendsto -> hasFDerivAtFilter_iff_tendsto is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendstoₓ'. -/
theorem hasFDerivAtFilter_iff_tendsto :
HasFDerivAtFilter f f' x L ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) L (𝓝 0) :=
@@ -355,26 +334,17 @@ theorem hasFDerivAtFilter_iff_tendsto :
exact tendsto_congr fun _ => div_eq_inv_mul _ _
#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendsto
-/- warning: has_fderiv_within_at_iff_tendsto -> hasFDerivWithinAt_iff_tendsto is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendstoₓ'. -/
theorem hasFDerivWithinAt_iff_tendsto :
HasFDerivWithinAt f f' s x ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝[s] x) (𝓝 0) :=
hasFDerivAtFilter_iff_tendsto
#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendsto
-/- warning: has_fderiv_at_iff_tendsto -> hasFDerivAt_iff_tendsto is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendstoₓ'. -/
theorem hasFDerivAt_iff_tendsto :
HasFDerivAt f f' x ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝 x) (𝓝 0) :=
hasFDerivAtFilter_iff_tendsto
#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendsto
-/- warning: has_fderiv_at_iff_is_o_nhds_zero -> hasFDerivAt_iff_isLittleO_nhds_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zeroₓ'. -/
theorem hasFDerivAt_iff_isLittleO_nhds_zero :
HasFDerivAt f f' x ↔ (fun h : E => f (x + h) - f x - f' h) =o[𝓝 0] fun h => h :=
by
@@ -382,9 +352,6 @@ theorem hasFDerivAt_iff_isLittleO_nhds_zero :
simp [(· ∘ ·)]
#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zero
-/- warning: has_fderiv_at.le_of_lip' -> HasFDerivAt.le_of_lip' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'ₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. This version
only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood of `x`. -/
@@ -403,9 +370,6 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
-/- warning: has_fderiv_at.le_of_lip -> HasFDerivAt.le_of_lip is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lipₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/
theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
@@ -415,107 +379,47 @@ theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf
filter_upwards [hs]with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lip
-/- warning: has_fderiv_at_filter.mono -> HasFDerivAtFilter.mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L₁ : Filter.{u2} E} {L₂ : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₂) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toHasLe.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.partialOrder.{u2} E))) L₁ L₂) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₁)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L₁ : Filter.{u2} E} {L₂ : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₂) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toLE.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.instPartialOrderFilter.{u2} E))) L₁ L₂) -> (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₁)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.mono HasFDerivAtFilter.monoₓ'. -/
theorem HasFDerivAtFilter.mono (h : HasFDerivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
HasFDerivAtFilter f f' x L₁ :=
h.mono hst
#align has_fderiv_at_filter.mono HasFDerivAtFilter.mono
-/- warning: has_fderiv_within_at.mono_of_mem -> HasFDerivWithinAt.mono_of_mem is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.mono_of_mem HasFDerivWithinAt.mono_of_memₓ'. -/
theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' t x) (hst : t ∈ 𝓝[s] x) :
HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_le_iff.mpr hst
#align has_fderiv_within_at.mono_of_mem HasFDerivWithinAt.mono_of_mem
-/- warning: has_fderiv_within_at.mono -> HasFDerivWithinAt.mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.mono HasFDerivWithinAt.monoₓ'. -/
theorem HasFDerivWithinAt.mono (h : HasFDerivWithinAt f f' t x) (hst : s ⊆ t) :
HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_mono _ hst
#align has_fderiv_within_at.mono HasFDerivWithinAt.mono
-/- warning: has_fderiv_at.has_fderiv_at_filter -> HasFDerivAt.hasFDerivAtFilter is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toHasLe.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.partialOrder.{u2} E))) L (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toLE.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.instPartialOrderFilter.{u2} E))) L (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.has_fderiv_at_filter HasFDerivAt.hasFDerivAtFilterₓ'. -/
theorem HasFDerivAt.hasFDerivAtFilter (h : HasFDerivAt f f' x) (hL : L ≤ 𝓝 x) :
HasFDerivAtFilter f f' x L :=
h.mono hL
#align has_fderiv_at.has_fderiv_at_filter HasFDerivAt.hasFDerivAtFilter
-/- warning: has_fderiv_at.has_fderiv_within_at -> HasFDerivAt.hasFDerivWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.has_fderiv_within_at HasFDerivAt.hasFDerivWithinAtₓ'. -/
theorem HasFDerivAt.hasFDerivWithinAt (h : HasFDerivAt f f' x) : HasFDerivWithinAt f f' s x :=
h.HasFDerivAtFilter inf_le_left
#align has_fderiv_at.has_fderiv_within_at HasFDerivAt.hasFDerivWithinAt
-/- warning: has_fderiv_within_at.differentiable_within_at -> HasFDerivWithinAt.differentiableWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.differentiable_within_at HasFDerivWithinAt.differentiableWithinAtₓ'. -/
theorem HasFDerivWithinAt.differentiableWithinAt (h : HasFDerivWithinAt f f' s x) :
DifferentiableWithinAt 𝕜 f s x :=
⟨f', h⟩
#align has_fderiv_within_at.differentiable_within_at HasFDerivWithinAt.differentiableWithinAt
-/- warning: has_fderiv_at.differentiable_at -> HasFDerivAt.differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.differentiable_at HasFDerivAt.differentiableAtₓ'. -/
theorem HasFDerivAt.differentiableAt (h : HasFDerivAt f f' x) : DifferentiableAt 𝕜 f x :=
⟨f', h⟩
#align has_fderiv_at.differentiable_at HasFDerivAt.differentiableAt
-/- warning: has_fderiv_within_at_univ -> hasFDerivWithinAt_univ is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_univ hasFDerivWithinAt_univₓ'. -/
@[simp]
theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f f' x := by
simp only [HasFDerivWithinAt, nhdsWithin_univ]; rfl
#align has_fderiv_within_at_univ hasFDerivWithinAt_univ
-/- warning: has_fderiv_within_at.has_fderiv_at_of_univ -> HasFDerivWithinAt.hasFDerivAt_of_univ is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univₓ'. -/
alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
-/- warning: has_fderiv_within_at_insert -> hasFDerivWithinAt_insert is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_insert hasFDerivWithinAt_insertₓ'. -/
theorem hasFDerivWithinAt_insert {y : E} :
HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x :=
by
@@ -527,92 +431,41 @@ theorem hasFDerivWithinAt_insert {y : E} :
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
-/- warning: has_fderiv_within_at.of_insert -> HasFDerivWithinAt.of_insert is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insertₓ'. -/
-/- warning: has_fderiv_within_at.insert' -> HasFDerivWithinAt.insert' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'ₓ'. -/
alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
-/- warning: has_fderiv_within_at.insert -> HasFDerivWithinAt.insert is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) x s) x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) x s) x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert HasFDerivWithinAt.insertₓ'. -/
theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt f f' s x) :
HasFDerivWithinAt f f' (insert x s) x :=
h.insert'
#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
-/- warning: has_fderiv_within_at_diff_singleton -> hasFDerivWithinAt_diff_singleton is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} (y : E), Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (SDiff.sdiff.{u2} (Set.{u2} E) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) s (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y)) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} (y : E), Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (SDiff.sdiff.{u2} (Set.{u2} E) (Set.instSDiffSet.{u2} E) s (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.instSingletonSet.{u2} E) y)) x) (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_diff_singleton hasFDerivWithinAt_diff_singletonₓ'. -/
theorem hasFDerivWithinAt_diff_singleton (y : E) :
HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' s x := by
rw [← hasFDerivWithinAt_insert, insert_diff_singleton, hasFDerivWithinAt_insert]
#align has_fderiv_within_at_diff_singleton hasFDerivWithinAt_diff_singleton
-/- warning: has_strict_fderiv_at.is_O_sub -> HasStrictFDerivAt.isBigO_sub is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Asymptotics.IsBigO.{u2, u3, u2} (Prod.{u2, u2} E E) F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} (Prod.{u2, u2} E E) (Prod.topologicalSpace.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Asymptotics.IsBigO.{u2, u1, u2} (Prod.{u2, u2} E E) F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) (nhds.{u2} (Prod.{u2, u2} E E) (instTopologicalSpaceProd.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)))
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.is_O_sub HasStrictFDerivAt.isBigO_subₓ'. -/
theorem HasStrictFDerivAt.isBigO_sub (hf : HasStrictFDerivAt f f' x) :
(fun p : E × E => f p.1 - f p.2) =O[𝓝 (x, x)] fun p : E × E => p.1 - p.2 :=
hf.IsBigO.congr_of_sub.2 (f'.isBigO_comp _ _)
#align has_strict_fderiv_at.is_O_sub HasStrictFDerivAt.isBigO_sub
-/- warning: has_fderiv_at_filter.is_O_sub -> HasFDerivAtFilter.isBigO_sub is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Asymptotics.IsBigO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) L (fun (x' : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Asymptotics.IsBigO.{u2, u1, u2} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) L (fun (x' : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_subₓ'. -/
theorem HasFDerivAtFilter.isBigO_sub (h : HasFDerivAtFilter f f' x L) :
(fun x' => f x' - f x) =O[L] fun x' => x' - x :=
h.IsBigO.congr_of_sub.2 (f'.isBigO_sub _ _)
#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_sub
-/- warning: has_strict_fderiv_at.has_fderiv_at -> HasStrictFDerivAt.hasFDerivAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.has_fderiv_at HasStrictFDerivAt.hasFDerivAtₓ'. -/
protected theorem HasStrictFDerivAt.hasFDerivAt (hf : HasStrictFDerivAt f f' x) :
HasFDerivAt f f' x := by
rw [HasFDerivAt, HasFDerivAtFilter, is_o_iff]
exact fun c hc => tendsto_id.prod_mk_nhds tendsto_const_nhds (is_o_iff.1 hf hc)
#align has_strict_fderiv_at.has_fderiv_at HasStrictFDerivAt.hasFDerivAt
-/- warning: has_strict_fderiv_at.differentiable_at -> HasStrictFDerivAt.differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.differentiable_at HasStrictFDerivAt.differentiableAtₓ'. -/
protected theorem HasStrictFDerivAt.differentiableAt (hf : HasStrictFDerivAt f f' x) :
DifferentiableAt 𝕜 f x :=
hf.HasFDerivAt.DifferentiableAt
#align has_strict_fderiv_at.differentiable_at HasStrictFDerivAt.differentiableAt
-/- warning: has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt -> HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_ltₓ'. -/
/-- If `f` is strictly differentiable at `x` with derivative `f'` and `K > ‖f'‖₊`, then `f` is
`K`-Lipschitz in a neighborhood of `x`. -/
theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDerivAt f f' x)
@@ -625,12 +478,6 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDe
⟨U, Uo.mem_nhds xU, lipschitzOnWith_iff_norm_sub_le.2 fun x hx y hy => hU (mk_mem_prod hx hy)⟩
#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt
-/- warning: has_strict_fderiv_at.exists_lipschitz_on_with -> HasStrictFDerivAt.exists_lipschitzOnWith is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Exists.{1} NNReal (fun (K : NNReal) => Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) => LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) K f s))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Exists.{1} NNReal (fun (K : NNReal) => Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) K f s))))
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWithₓ'. -/
/-- If `f` is strictly differentiable at `x` with derivative `f'`, then `f` is Lipschitz in a
neighborhood of `x`. See also `has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt` for a
more precise statement. -/
@@ -639,9 +486,6 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith (hf : HasStrictFDerivAt f f' x)
(exists_gt _).imp hf.exists_lipschitzOnWith_of_nnnorm_lt
#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWith
-/- warning: has_fderiv_at.lim -> HasFDerivAt.lim is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.lim HasFDerivAt.limₓ'. -/
/-- Directional derivative agrees with `has_fderiv`. -/
theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α → 𝕜} {l : Filter α}
(hc : Tendsto (fun n => ‖c n‖) l atTop) :
@@ -655,43 +499,22 @@ theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α
rw [← mul_smul, mul_inv_cancel hy, one_smul]
#align has_fderiv_at.lim HasFDerivAt.lim
-/- warning: has_fderiv_at.unique -> HasFDerivAt.unique is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.unique HasFDerivAt.uniqueₓ'. -/
theorem HasFDerivAt.unique (h₀ : HasFDerivAt f f₀' x) (h₁ : HasFDerivAt f f₁' x) : f₀' = f₁' :=
by
rw [← hasFDerivWithinAt_univ] at h₀ h₁
exact unique_diff_within_at_univ.eq h₀ h₁
#align has_fderiv_at.unique HasFDerivAt.unique
-/- warning: has_fderiv_within_at_inter' -> hasFDerivWithinAt_inter' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s)) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_inter' hasFDerivWithinAt_inter'ₓ'. -/
theorem hasFDerivWithinAt_inter' (h : t ∈ 𝓝[s] x) :
HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x := by
simp [HasFDerivWithinAt, nhdsWithin_restrict'' s h]
#align has_fderiv_within_at_inter' hasFDerivWithinAt_inter'
-/- warning: has_fderiv_within_at_inter -> hasFDerivWithinAt_inter is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_inter hasFDerivWithinAt_interₓ'. -/
theorem hasFDerivWithinAt_inter (h : t ∈ 𝓝 x) :
HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x := by
simp [HasFDerivWithinAt, nhdsWithin_restrict' s h]
#align has_fderiv_within_at_inter hasFDerivWithinAt_inter
-/- warning: has_fderiv_within_at.union -> HasFDerivWithinAt.union is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) s t) x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Union.union.{u2} (Set.{u2} E) (Set.instUnionSet.{u2} E) s t) x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.union HasFDerivWithinAt.unionₓ'. -/
theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
(ht : HasFDerivWithinAt f f' t x) : HasFDerivWithinAt f f' (s ∪ t) x :=
by
@@ -699,45 +522,21 @@ theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
exact hs.sup ht
#align has_fderiv_within_at.union HasFDerivWithinAt.union
-/- warning: has_fderiv_within_at.nhds_within -> HasFDerivWithinAt.nhdsWithin is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithinₓ'. -/
theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
HasFDerivWithinAt f f' t x :=
(hasFDerivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithin
-/- warning: has_fderiv_within_at.has_fderiv_at -> HasFDerivWithinAt.hasFDerivAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAtₓ'. -/
theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
HasFDerivAt f f' x := by
rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAt
-/- warning: differentiable_within_at.differentiable_at -> DifferentiableWithinAt.differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.differentiable_at DifferentiableWithinAt.differentiableAtₓ'. -/
theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜 f s x)
(hs : s ∈ 𝓝 x) : DifferentiableAt 𝕜 f x :=
h.imp fun f' hf' => hf'.HasFDerivAt hs
#align differentiable_within_at.differentiable_at DifferentiableWithinAt.differentiableAt
-/- warning: differentiable_within_at.has_fderiv_within_at -> DifferentiableWithinAt.hasFDerivWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAtₓ'. -/
theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x :=
by
@@ -747,12 +546,6 @@ theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt
exact Classical.choose_spec h
#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
-/- warning: differentiable_at.has_fderiv_at -> DifferentiableAt.hasFDerivAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAtₓ'. -/
theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
HasFDerivAt f (fderiv 𝕜 f x) x := by
dsimp only [fderiv]
@@ -761,56 +554,29 @@ theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
exact Classical.choose_spec h
#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAt
-/- warning: differentiable_on.has_fderiv_at -> DifferentiableOn.hasFDerivAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.has_fderiv_at DifferentiableOn.hasFDerivAtₓ'. -/
theorem DifferentiableOn.hasFDerivAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
HasFDerivAt f (fderiv 𝕜 f x) x :=
((h x (mem_of_mem_nhds hs)).DifferentiableAt hs).HasFDerivAt
#align differentiable_on.has_fderiv_at DifferentiableOn.hasFDerivAt
-/- warning: differentiable_on.differentiable_at -> DifferentiableOn.differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.differentiable_at DifferentiableOn.differentiableAtₓ'. -/
theorem DifferentiableOn.differentiableAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
DifferentiableAt 𝕜 f x :=
(h.HasFDerivAt hs).DifferentiableAt
#align differentiable_on.differentiable_at DifferentiableOn.differentiableAt
-/- warning: differentiable_on.eventually_differentiable_at -> DifferentiableOn.eventually_differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Filter.Eventually.{u2} E (fun (y : E) => DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Filter.Eventually.{u2} E (fun (y : E) => DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x))
-Case conversion may be inaccurate. Consider using '#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAtₓ'. -/
theorem DifferentiableOn.eventually_differentiableAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
∀ᶠ y in 𝓝 x, DifferentiableAt 𝕜 f y :=
(eventually_eventually_nhds.2 hs).mono fun y => h.DifferentiableAt
#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAt
-/- warning: has_fderiv_at.fderiv -> HasFDerivAt.fderiv is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fderiv HasFDerivAt.fderivₓ'. -/
theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' := by ext;
rw [h.unique h.differentiable_at.has_fderiv_at]
#align has_fderiv_at.fderiv HasFDerivAt.fderiv
-/- warning: fderiv_eq -> fderiv_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_eq fderiv_eqₓ'. -/
theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x) : fderiv 𝕜 f = f' :=
funext fun x => (h x).fderiv
#align fderiv_eq fderiv_eq
-/- warning: fderiv_at.le_of_lip -> DifferentiableAt.le_of_lip is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_at.le_of_lip DifferentiableAt.le_of_lipₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`.
Version using `fderiv`. -/
@@ -819,20 +585,11 @@ theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : Differentiable
hf.HasFDerivAt.le_of_lip hs hlip
#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
-/- warning: has_fderiv_within_at.fderiv_within -> HasFDerivWithinAt.fderivWithin is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithinₓ'. -/
theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = f' :=
(hxs.Eq h h.DifferentiableWithinAt.HasFDerivWithinAt).symm
#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithin
-/- warning: has_fderiv_within_at_of_not_mem_closure -> hasFDerivWithinAt_of_not_mem_closure is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (Not (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x (closure.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s))) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (Not (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (closure.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s))) -> (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closureₓ'. -/
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
@@ -841,127 +598,58 @@ theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWi
simp [HasFDerivWithinAt, HasFDerivAtFilter, h, is_o, is_O_with]
#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closure
-/- warning: differentiable_within_at.mono -> DifferentiableWithinAt.mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.mono DifferentiableWithinAt.monoₓ'. -/
theorem DifferentiableWithinAt.mono (h : DifferentiableWithinAt 𝕜 f t x) (st : s ⊆ t) :
DifferentiableWithinAt 𝕜 f s x := by
rcases h with ⟨f', hf'⟩
exact ⟨f', hf'.mono st⟩
#align differentiable_within_at.mono DifferentiableWithinAt.mono
-/- warning: differentiable_within_at.mono_of_mem -> DifferentiableWithinAt.mono_of_mem is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall {t : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_memₓ'. -/
theorem DifferentiableWithinAt.mono_of_mem (h : DifferentiableWithinAt 𝕜 f s x) {t : Set E}
(hst : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x :=
(h.HasFDerivWithinAt.mono_of_mem hst).DifferentiableWithinAt
#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_mem
-/- warning: differentiable_within_at_univ -> differentiableWithinAt_univ is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E) x) (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, Iff (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E) x) (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_univ differentiableWithinAt_univₓ'. -/
theorem differentiableWithinAt_univ : DifferentiableWithinAt 𝕜 f univ x ↔ DifferentiableAt 𝕜 f x :=
by simp only [DifferentiableWithinAt, hasFDerivWithinAt_univ, DifferentiableAt]
#align differentiable_within_at_univ differentiableWithinAt_univ
-/- warning: differentiable_within_at_inter -> differentiableWithinAt_inter is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_inter differentiableWithinAt_interₓ'. -/
theorem differentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter ht]
#align differentiable_within_at_inter differentiableWithinAt_inter
-/- warning: differentiable_within_at_inter' -> differentiableWithinAt_inter' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s)) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_inter' differentiableWithinAt_inter'ₓ'. -/
theorem differentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter' ht]
#align differentiable_within_at_inter' differentiableWithinAt_inter'
-/- warning: differentiable_at.differentiable_within_at -> DifferentiableAt.differentiableWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.differentiable_within_at DifferentiableAt.differentiableWithinAtₓ'. -/
theorem DifferentiableAt.differentiableWithinAt (h : DifferentiableAt 𝕜 f x) :
DifferentiableWithinAt 𝕜 f s x :=
(differentiableWithinAt_univ.2 h).mono (subset_univ _)
#align differentiable_at.differentiable_within_at DifferentiableAt.differentiableWithinAt
-/- warning: differentiable.differentiable_at -> Differentiable.differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
-Case conversion may be inaccurate. Consider using '#align differentiable.differentiable_at Differentiable.differentiableAtₓ'. -/
theorem Differentiable.differentiableAt (h : Differentiable 𝕜 f) : DifferentiableAt 𝕜 f x :=
h x
#align differentiable.differentiable_at Differentiable.differentiableAt
-/- warning: differentiable_at.fderiv_within -> DifferentiableAt.fderivWithin is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within DifferentiableAt.fderivWithinₓ'. -/
theorem DifferentiableAt.fderivWithin (h : DifferentiableAt 𝕜 f x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
h.HasFDerivAt.HasFDerivWithinAt.fderivWithin hxs
#align differentiable_at.fderiv_within DifferentiableAt.fderivWithin
-/- warning: differentiable_on.mono -> DifferentiableOn.mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.mono DifferentiableOn.monoₓ'. -/
theorem DifferentiableOn.mono (h : DifferentiableOn 𝕜 f t) (st : s ⊆ t) : DifferentiableOn 𝕜 f s :=
fun x hx => (h x (st hx)).mono st
#align differentiable_on.mono DifferentiableOn.mono
-/- warning: differentiable_on_univ -> differentiableOn_univ is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, Iff (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F}, Iff (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align differentiable_on_univ differentiableOn_univₓ'. -/
theorem differentiableOn_univ : DifferentiableOn 𝕜 f univ ↔ Differentiable 𝕜 f := by
simp only [DifferentiableOn, Differentiable, differentiableWithinAt_univ, mem_univ,
forall_true_left]
#align differentiable_on_univ differentiableOn_univ
-/- warning: differentiable.differentiable_on -> Differentiable.differentiableOn is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-Case conversion may be inaccurate. Consider using '#align differentiable.differentiable_on Differentiable.differentiableOnₓ'. -/
theorem Differentiable.differentiableOn (h : Differentiable 𝕜 f) : DifferentiableOn 𝕜 f s :=
(differentiableOn_univ.2 h).mono (subset_univ _)
#align differentiable.differentiable_on Differentiable.differentiableOn
-/- warning: differentiable_on_of_locally_differentiable_on -> differentiableOn_of_locally_differentiableOn is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Exists.{succ u2} (Set.{u2} E) (fun (u : Set.{u2} E) => And (IsOpen.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) u) (And (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x u) (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s u)))))) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u3} E}, (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Exists.{succ u3} (Set.{u3} E) (fun (u : Set.{u3} E) => And (IsOpen.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) u) (And (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x u) (DifferentiableOn.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s u)))))) -> (DifferentiableOn.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOnₓ'. -/
theorem differentiableOn_of_locally_differentiableOn
(h : ∀ x ∈ s, ∃ u, IsOpen u ∧ x ∈ u ∧ DifferentiableOn 𝕜 f (s ∩ u)) : DifferentiableOn 𝕜 f s :=
by
@@ -970,57 +658,33 @@ theorem differentiableOn_of_locally_differentiableOn
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
-/- warning: fderiv_within_of_mem -> fderivWithin_of_mem is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem fderivWithin_of_memₓ'. -/
theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
((DifferentiableWithinAt.hasFDerivWithinAt h).mono_of_mem st).fderivWithin ht
#align fderiv_within_of_mem fderivWithin_of_mem
-/- warning: fderiv_within_subset -> fderivWithin_subset is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_subset fderivWithin_subsetₓ'. -/
theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_of_mem (nhdsWithin_mono _ st self_mem_nhdsWithin) ht h
#align fderiv_within_subset fderivWithin_subset
-/- warning: fderiv_within_inter -> fderivWithin_inter is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_inter fderivWithin_interₓ'. -/
theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hasFDerivWithinAt_inter ht]
#align fderiv_within_inter fderivWithin_inter
-/- warning: fderiv_within_of_mem_nhds -> fderivWithin_of_mem_nhds is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhdsₓ'. -/
theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
-/- warning: fderiv_within_univ -> fderivWithin_univ is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, Eq.{max (succ u3) (succ u2)} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u3} E)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align fderiv_within_univ fderivWithin_univₓ'. -/
@[simp]
theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
funext fun _ => fderivWithin_of_mem_nhds univ_mem
#align fderiv_within_univ fderivWithin_univ
-/- warning: fderiv_within_of_open -> fderivWithin_of_open is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_of_open fderivWithin_of_openₓ'. -/
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (hs.mem_nhds hx)
#align fderiv_within_of_open fderivWithin_of_open
-/- warning: fderiv_within_eq_fderiv -> fderivWithin_eq_fderiv is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_eq_fderiv fderivWithin_eq_fderivₓ'. -/
theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : DifferentiableAt 𝕜 f x) :
fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
by
@@ -1036,9 +700,6 @@ theorem fderiv_mem_iff {f : E → F} {s : Set (E →L[𝕜] F)} {x : E} :
#align fderiv_mem_iff fderiv_mem_iff
-/
-/- warning: fderiv_within_mem_iff -> fderivWithin_mem_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_mem_iff fderivWithin_mem_iffₓ'. -/
theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)} {x : E} :
fderivWithin 𝕜 f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ fderivWithin 𝕜 f t x ∈ s ∨
@@ -1048,9 +709,6 @@ theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)
simp [fderivWithin_zero_of_not_differentiableWithinAt, *]
#align fderiv_within_mem_iff fderivWithin_mem_iff
-/- warning: asymptotics.is_O.has_fderiv_within_at -> Asymptotics.IsBigO.hasFDerivWithinAt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAtₓ'. -/
theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
(h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n) (hx₀ : x₀ ∈ s) (hn : 1 < n) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) s x₀ := by
@@ -1059,9 +717,6 @@ theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
h.trans_is_o ((is_o_pow_sub_sub x₀ hn).mono nhdsWithin_le_nhds)]
#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAt
-/- warning: asymptotics.is_O.has_fderiv_at -> Asymptotics.IsBigO.hasFDerivAt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAtₓ'. -/
theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
(hn : 1 < n) : HasFDerivAt f (0 : E →L[𝕜] F) x₀ :=
by
@@ -1069,23 +724,11 @@ theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀]
exact (h.has_fderiv_within_at (mem_univ _) hn).hasFDerivAt_of_univ
#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
-/- warning: has_fderiv_within_at.is_O -> HasFDerivWithinAt.isBigO is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {x₀ : E} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x₀) -> (Asymptotics.IsBigO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀ s) (fun (x : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u3} E} {x₀ : E} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x₀) -> (Asymptotics.IsBigO.{u3, u1, u3} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u3} E _inst_2) (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x₀ s) (fun (x : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))) x x₀))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigOₓ'. -/
theorem HasFDerivWithinAt.isBigO {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
(h : HasFDerivWithinAt f f' s x₀) : (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝[s] x₀) x₀)
#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO
-/- warning: has_fderiv_at.is_O -> HasFDerivAt.isBigO is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x₀ : E} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (Asymptotics.IsBigO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀) (fun (x : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x₀ : E} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (Asymptotics.IsBigO.{u2, u1, u2} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀) (fun (x : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.is_O HasFDerivAt.isBigOₓ'. -/
theorem HasFDerivAt.isBigO {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFDerivAt f f' x₀) :
(fun x => f x - f x₀) =O[𝓝 x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝 x₀) x₀)
@@ -1098,12 +741,6 @@ section Continuous
/-! ### Deducing continuity from differentiability -/
-/- warning: has_fderiv_at_filter.tendsto_nhds -> HasFDerivAtFilter.tendsto_nhds is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (LE.le.{u2} (Filter.{u2} E) (Preorder.toHasLe.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.partialOrder.{u2} E))) L (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u2, u3} E F f L (nhds.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (f x)))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E}, (LE.le.{u3} (Filter.{u3} E) (Preorder.toLE.{u3} (Filter.{u3} E) (PartialOrder.toPreorder.{u3} (Filter.{u3} E) (Filter.instPartialOrderFilter.{u3} E))) L (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u3, u1} E F f L (nhds.{u1} F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (f x)))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhdsₓ'. -/
theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilter f f' x L) :
Tendsto f L (𝓝 (f x)) :=
by
@@ -1116,84 +753,39 @@ theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilte
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhds
-/- warning: has_fderiv_within_at.continuous_within_at -> HasFDerivWithinAt.continuousWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (ContinuousWithinAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (ContinuousWithinAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.continuous_within_at HasFDerivWithinAt.continuousWithinAtₓ'. -/
theorem HasFDerivWithinAt.continuousWithinAt (h : HasFDerivWithinAt f f' s x) :
ContinuousWithinAt f s x :=
HasFDerivAtFilter.tendsto_nhds inf_le_left h
#align has_fderiv_within_at.continuous_within_at HasFDerivWithinAt.continuousWithinAt
-/- warning: has_fderiv_at.continuous_at -> HasFDerivAt.continuousAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.continuous_at HasFDerivAt.continuousAtₓ'. -/
theorem HasFDerivAt.continuousAt (h : HasFDerivAt f f' x) : ContinuousAt f x :=
HasFDerivAtFilter.tendsto_nhds le_rfl h
#align has_fderiv_at.continuous_at HasFDerivAt.continuousAt
-/- warning: differentiable_within_at.continuous_within_at -> DifferentiableWithinAt.continuousWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (ContinuousWithinAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (ContinuousWithinAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.continuous_within_at DifferentiableWithinAt.continuousWithinAtₓ'. -/
theorem DifferentiableWithinAt.continuousWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
ContinuousWithinAt f s x :=
let ⟨f', hf'⟩ := h
hf'.ContinuousWithinAt
#align differentiable_within_at.continuous_within_at DifferentiableWithinAt.continuousWithinAt
-/- warning: differentiable_at.continuous_at -> DifferentiableAt.continuousAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (ContinuousAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (ContinuousAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.continuous_at DifferentiableAt.continuousAtₓ'. -/
theorem DifferentiableAt.continuousAt (h : DifferentiableAt 𝕜 f x) : ContinuousAt f x :=
let ⟨f', hf'⟩ := h
hf'.ContinuousAt
#align differentiable_at.continuous_at DifferentiableAt.continuousAt
-/- warning: differentiable_on.continuous_on -> DifferentiableOn.continuousOn is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (ContinuousOn.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f s)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (ContinuousOn.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.continuous_on DifferentiableOn.continuousOnₓ'. -/
theorem DifferentiableOn.continuousOn (h : DifferentiableOn 𝕜 f s) : ContinuousOn f s := fun x hx =>
(h x hx).ContinuousWithinAt
#align differentiable_on.continuous_on DifferentiableOn.continuousOn
-/- warning: differentiable.continuous -> Differentiable.continuous is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Continuous.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F}, (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Continuous.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f)
-Case conversion may be inaccurate. Consider using '#align differentiable.continuous Differentiable.continuousₓ'. -/
theorem Differentiable.continuous (h : Differentiable 𝕜 f) : Continuous f :=
continuous_iff_continuousAt.2 fun x => (h x).ContinuousAt
#align differentiable.continuous Differentiable.continuous
-/- warning: has_strict_fderiv_at.continuous_at -> HasStrictFDerivAt.continuousAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f x)
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.continuous_at HasStrictFDerivAt.continuousAtₓ'. -/
protected theorem HasStrictFDerivAt.continuousAt (hf : HasStrictFDerivAt f f' x) :
ContinuousAt f x :=
hf.HasFDerivAt.ContinuousAt
#align has_strict_fderiv_at.continuous_at HasStrictFDerivAt.continuousAt
-/- warning: has_strict_fderiv_at.is_O_sub_rev -> HasStrictFDerivAt.isBigO_sub_rev is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_revₓ'. -/
theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
(hf : HasStrictFDerivAt f (f' : E →L[𝕜] F) x) :
(fun p : E × E => p.1 - p.2) =O[𝓝 (x, x)] fun p : E × E => f p.1 - f p.2 :=
@@ -1201,9 +793,6 @@ theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
(fun _ => rfl) fun _ => sub_add_cancel _ _
#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_rev
-/- warning: has_fderiv_at_filter.is_O_sub_rev -> HasFDerivAtFilter.isBigO_sub_rev is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_revₓ'. -/
theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
have : (fun x' => x' - x) =O[L] fun x' => f' (x' - x) :=
@@ -1220,12 +809,6 @@ section congr
/-! ### congr properties of the derivative -/
-/- warning: has_fderiv_within_at_congr_set' -> hasFDerivWithinAt_congr_set' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'ₓ'. -/
theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
calc
@@ -1240,73 +823,40 @@ theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'
-/- warning: has_fderiv_within_at_congr_set -> hasFDerivWithinAt_congr_set is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_setₓ'. -/
theorem hasFDerivWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
hasFDerivWithinAt_congr_set' x <| h.filter_mono inf_le_left
#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_set
-/- warning: differentiable_within_at_congr_set' -> differentiableWithinAt_congr_set' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'ₓ'. -/
theorem differentiableWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
exists_congr fun _ => hasFDerivWithinAt_congr_set' _ h
#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'
-/- warning: differentiable_within_at_congr_set -> differentiableWithinAt_congr_set is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_congr_set differentiableWithinAt_congr_setₓ'. -/
theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
exists_congr fun _ => hasFDerivWithinAt_congr_set h
#align differentiable_within_at_congr_set differentiableWithinAt_congr_set
-/- warning: fderiv_within_congr_set' -> fderivWithin_congr_set' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_congr_set' fderivWithin_congr_set'ₓ'. -/
theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
#align fderiv_within_congr_set' fderivWithin_congr_set'
-/- warning: fderiv_within_congr_set -> fderivWithin_congr_set is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_congr_set fderivWithin_congr_setₓ'. -/
theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_congr_set' x <| h.filter_mono inf_le_left
#align fderiv_within_congr_set fderivWithin_congr_set
-/- warning: fderiv_within_eventually_congr_set' -> fderivWithin_eventually_congr_set' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'ₓ'. -/
theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
(eventually_nhds_nhdsWithin.2 h).mono fun _ => fderivWithin_congr_set' y
#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'
-/- warning: fderiv_within_eventually_congr_set -> fderivWithin_eventually_congr_set is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_setₓ'. -/
theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
fderivWithin_eventually_congr_set' x <| h.filter_mono inf_le_left
#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_set
-/- warning: filter.eventually_eq.has_strict_fderiv_at_iff -> Filter.EventuallyEq.hasStrictFDerivAt_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iffₓ'. -/
theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x :=
by
@@ -1315,254 +865,122 @@ theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (
simp only [*]
#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iff
-/- warning: has_strict_fderiv_at.congr_of_eventually_eq -> HasStrictFDerivAt.congr_of_eventuallyEq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f f₁) -> (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f f₁) -> (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEqₓ'. -/
theorem HasStrictFDerivAt.congr_of_eventuallyEq (h : HasStrictFDerivAt f f' x) (h₁ : f =ᶠ[𝓝 x] f₁) :
HasStrictFDerivAt f₁ f' x :=
(h₁.hasStrictFDerivAt_iff fun _ => rfl).1 h
#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEq
-/- warning: filter.eventually_eq.has_fderiv_at_filter_iff -> Filter.EventuallyEq.hasFDerivAtFilter_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iffₓ'. -/
theorem Filter.EventuallyEq.hasFDerivAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x)
(h₁ : ∀ x, f₀' x = f₁' x) : HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L :=
isLittleO_congr (h₀.mono fun y hy => by simp only [hy, h₁, hx])
(eventually_of_forall fun _ => rfl)
#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iff
-/- warning: has_fderiv_at_filter.congr_of_eventually_eq -> HasFDerivAtFilter.congr_of_eventuallyEq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.EventuallyEq.{u2, u3} E F L f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x L)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.EventuallyEq.{u2, u1} E F L f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x L)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.congr_of_eventually_eq HasFDerivAtFilter.congr_of_eventuallyEqₓ'. -/
theorem HasFDerivAtFilter.congr_of_eventuallyEq (h : HasFDerivAtFilter f f' x L) (hL : f₁ =ᶠ[L] f)
(hx : f₁ x = f x) : HasFDerivAtFilter f₁ f' x L :=
(hL.hasFDerivAtFilter_iff hx fun _ => rfl).2 h
#align has_fderiv_at_filter.congr_of_eventually_eq HasFDerivAtFilter.congr_of_eventuallyEq
-/- warning: filter.eventually_eq.has_fderiv_at_iff -> Filter.EventuallyEq.hasFDerivAt_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (Iff (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' x) (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₀ f₁) -> (Iff (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' x) (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_at_iff Filter.EventuallyEq.hasFDerivAt_iffₓ'. -/
theorem Filter.EventuallyEq.hasFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
HasFDerivAt f₀ f' x ↔ HasFDerivAt f₁ f' x :=
h.hasFDerivAtFilter_iff h.eq_of_nhds fun _ => rfl
#align filter.eventually_eq.has_fderiv_at_iff Filter.EventuallyEq.hasFDerivAt_iff
-/- warning: filter.eventually_eq.differentiable_at_iff -> Filter.EventuallyEq.differentiableAt_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (Iff (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ x) (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₀ f₁) -> (Iff (DifferentiableAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ x) (DifferentiableAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.differentiable_at_iff Filter.EventuallyEq.differentiableAt_iffₓ'. -/
theorem Filter.EventuallyEq.differentiableAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
DifferentiableAt 𝕜 f₀ x ↔ DifferentiableAt 𝕜 f₁ x :=
exists_congr fun f' => h.hasFDerivAt_iff
#align filter.eventually_eq.differentiable_at_iff Filter.EventuallyEq.differentiableAt_iff
-/- warning: filter.eventually_eq.has_fderiv_within_at_iff -> Filter.EventuallyEq.hasFDerivWithinAt_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u3} F (f₀ x) (f₁ x)) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u2} F (f₀ x) (f₁ x)) -> (Iff (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_within_at_iff Filter.EventuallyEq.hasFDerivWithinAt_iffₓ'. -/
theorem Filter.EventuallyEq.hasFDerivWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
HasFDerivWithinAt f₀ f' s x ↔ HasFDerivWithinAt f₁ f' s x :=
h.hasFDerivAtFilter_iff hx fun _ => rfl
#align filter.eventually_eq.has_fderiv_within_at_iff Filter.EventuallyEq.hasFDerivWithinAt_iff
-/- warning: filter.eventually_eq.has_fderiv_within_at_iff_of_mem -> Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Iff (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_within_at_iff_of_mem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_memₓ'. -/
theorem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
HasFDerivWithinAt f₀ f' s x ↔ HasFDerivWithinAt f₁ f' s x :=
h.hasFDerivWithinAt_iff (h.eq_of_nhdsWithin hx)
#align filter.eventually_eq.has_fderiv_within_at_iff_of_mem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem
-/- warning: filter.eventually_eq.differentiable_within_at_iff -> Filter.EventuallyEq.differentiableWithinAt_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u3} F (f₀ x) (f₁ x)) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u2} F (f₀ x) (f₁ x)) -> (Iff (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.differentiable_within_at_iff Filter.EventuallyEq.differentiableWithinAt_iffₓ'. -/
theorem Filter.EventuallyEq.differentiableWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
DifferentiableWithinAt 𝕜 f₀ s x ↔ DifferentiableWithinAt 𝕜 f₁ s x :=
exists_congr fun f' => h.hasFDerivWithinAt_iff hx
#align filter.eventually_eq.differentiable_within_at_iff Filter.EventuallyEq.differentiableWithinAt_iff
-/- warning: filter.eventually_eq.differentiable_within_at_iff_of_mem -> Filter.EventuallyEq.differentiableWithinAt_iff_of_mem is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Iff (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.differentiable_within_at_iff_of_mem Filter.EventuallyEq.differentiableWithinAt_iff_of_memₓ'. -/
theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
DifferentiableWithinAt 𝕜 f₀ s x ↔ DifferentiableWithinAt 𝕜 f₁ s x :=
h.differentiableWithinAt_iff (h.eq_of_nhdsWithin hx)
#align filter.eventually_eq.differentiable_within_at_iff_of_mem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem
-/- warning: has_fderiv_within_at.congr_mono -> HasFDerivWithinAt.congr_mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u1} E F f₁ f t) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_monoₓ'. -/
theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFDerivWithinAt f₁ f' t x :=
HasFDerivAtFilter.congr_of_eventuallyEq (h.mono h₁) (Filter.mem_inf_of_right ht) hx
#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_mono
-/- warning: has_fderiv_within_at.congr -> HasFDerivWithinAt.congr is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f s) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u1} E F f₁ f s) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr HasFDerivWithinAt.congrₓ'. -/
theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s)
(hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
h.congr_mono hs hx (Subset.refl _)
#align has_fderiv_within_at.congr HasFDerivWithinAt.congr
-/- warning: has_fderiv_within_at.congr' -> HasFDerivWithinAt.congr' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u1} E F f₁ f s) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'ₓ'. -/
theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s) (hx : x ∈ s) :
HasFDerivWithinAt f₁ f' s x :=
h.congr hs (hs hx)
#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'
-/- warning: has_fderiv_within_at.congr_of_eventually_eq -> HasFDerivWithinAt.congr_of_eventuallyEq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr_of_eventually_eq HasFDerivWithinAt.congr_of_eventuallyEqₓ'. -/
theorem HasFDerivWithinAt.congr_of_eventuallyEq (h : HasFDerivWithinAt f f' s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
HasFDerivAtFilter.congr_of_eventuallyEq h h₁ hx
#align has_fderiv_within_at.congr_of_eventually_eq HasFDerivWithinAt.congr_of_eventuallyEq
-/- warning: has_fderiv_at.congr_of_eventually_eq -> HasFDerivAt.congr_of_eventuallyEq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.congr_of_eventually_eq HasFDerivAt.congr_of_eventuallyEqₓ'. -/
theorem HasFDerivAt.congr_of_eventuallyEq (h : HasFDerivAt f f' x) (h₁ : f₁ =ᶠ[𝓝 x] f) :
HasFDerivAt f₁ f' x :=
HasFDerivAtFilter.congr_of_eventuallyEq h h₁ (mem_of_mem_nhds h₁ : _)
#align has_fderiv_at.congr_of_eventually_eq HasFDerivAt.congr_of_eventuallyEq
-/- warning: differentiable_within_at.congr_mono -> DifferentiableWithinAt.congr_mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u1} E F f₁ f t) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_monoₓ'. -/
theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
(h.HasFDerivWithinAt.congr_mono ht hx h₁).DifferentiableWithinAt
#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_mono
-/- warning: differentiable_within_at.congr -> DifferentiableWithinAt.congr is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr DifferentiableWithinAt.congrₓ'. -/
theorem DifferentiableWithinAt.congr (h : DifferentiableWithinAt 𝕜 f s x) (ht : ∀ x ∈ s, f₁ x = f x)
(hx : f₁ x = f x) : DifferentiableWithinAt 𝕜 f₁ s x :=
DifferentiableWithinAt.congr_mono h ht hx (Subset.refl _)
#align differentiable_within_at.congr DifferentiableWithinAt.congr
-/- warning: differentiable_within_at.congr_of_eventually_eq -> DifferentiableWithinAt.congr_of_eventuallyEq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr_of_eventually_eq DifferentiableWithinAt.congr_of_eventuallyEqₓ'. -/
theorem DifferentiableWithinAt.congr_of_eventuallyEq (h : DifferentiableWithinAt 𝕜 f s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : DifferentiableWithinAt 𝕜 f₁ s x :=
(h.HasFDerivWithinAt.congr_of_eventuallyEq h₁ hx).DifferentiableWithinAt
#align differentiable_within_at.congr_of_eventually_eq DifferentiableWithinAt.congr_of_eventuallyEq
-/- warning: differentiable_on.congr_mono -> DifferentiableOn.congr_mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.congr_mono DifferentiableOn.congr_monoₓ'. -/
theorem DifferentiableOn.congr_mono (h : DifferentiableOn 𝕜 f s) (h' : ∀ x ∈ t, f₁ x = f x)
(h₁ : t ⊆ s) : DifferentiableOn 𝕜 f₁ t := fun x hx => (h x (h₁ hx)).congr_mono h' (h' x hx) h₁
#align differentiable_on.congr_mono DifferentiableOn.congr_mono
-/- warning: differentiable_on.congr -> DifferentiableOn.congr is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.congr DifferentiableOn.congrₓ'. -/
theorem DifferentiableOn.congr (h : DifferentiableOn 𝕜 f s) (h' : ∀ x ∈ s, f₁ x = f x) :
DifferentiableOn 𝕜 f₁ s := fun x hx => (h x hx).congr h' (h' x hx)
#align differentiable_on.congr DifferentiableOn.congr
-/- warning: differentiable_on_congr -> differentiableOn_congr is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E}, (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Iff (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u3} E}, (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{succ u2} F (f₁ x) (f x))) -> (Iff (DifferentiableOn.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (DifferentiableOn.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
-Case conversion may be inaccurate. Consider using '#align differentiable_on_congr differentiableOn_congrₓ'. -/
theorem differentiableOn_congr (h' : ∀ x ∈ s, f₁ x = f x) :
DifferentiableOn 𝕜 f₁ s ↔ DifferentiableOn 𝕜 f s :=
⟨fun h => DifferentiableOn.congr h fun y hy => (h' y hy).symm, fun h =>
DifferentiableOn.congr h h'⟩
#align differentiable_on_congr differentiableOn_congr
-/- warning: differentiable_at.congr_of_eventually_eq -> DifferentiableAt.congr_of_eventuallyEq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEqₓ'. -/
theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (hL : f₁ =ᶠ[𝓝 x] f) :
DifferentiableAt 𝕜 f₁ x :=
hL.differentiableAt_iff.2 h
#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEq
-/- warning: differentiable_within_at.fderiv_within_congr_mono -> DifferentiableWithinAt.fderivWithin_congr_mono is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_monoₓ'. -/
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
(hs : EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
fderivWithin 𝕜 f₁ t x = fderivWithin 𝕜 f s x :=
(HasFDerivWithinAt.congr_mono h.HasFDerivWithinAt hs hx h₁).fderivWithin hxt
#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_mono
-/- warning: filter.eventually_eq.fderiv_within_eq -> Filter.EventuallyEq.fderivWithin_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eqₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hs.has_fderiv_within_at_iff hx]
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
-/- warning: filter.eventually_eq.fderiv_within' -> Filter.EventuallyEq.fderiv_within' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'ₓ'. -/
theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
(eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
@@ -1571,48 +989,30 @@ theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t
(hs.self_of_nhdsWithin hys)
#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
-/- warning: filter.eventually_eq.fderiv_within -> Filter.EventuallyEq.fderivWithin is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithinₓ'. -/
protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
hs.fderiv_within' Subset.rfl
#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
-/- warning: filter.eventually_eq.fderiv_within_eq_nhds -> Filter.EventuallyEq.fderivWithin_eq_nhds is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhdsₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
(h.filter_mono nhdsWithin_le_nhds).fderivWithin_eq h.self_of_nhds
#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhds
-/- warning: fderiv_within_congr -> fderivWithin_congr is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_congr fderivWithin_congrₓ'. -/
theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
(hs.EventuallyEq.filter_mono inf_le_right).fderivWithin_eq hx
#align fderiv_within_congr fderivWithin_congr
-/- warning: fderiv_within_congr' -> fderivWithin_congr' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_congr' fderivWithin_congr'ₓ'. -/
theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
fderivWithin_congr hs (hs hx)
#align fderiv_within_congr' fderivWithin_congr'
-/- warning: filter.eventually_eq.fderiv_eq -> Filter.EventuallyEq.fderiv_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eqₓ'. -/
theorem Filter.EventuallyEq.fderiv_eq (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := by
rw [← fderivWithin_univ, ← fderivWithin_univ, h.fderiv_within_eq_nhds]
#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eq
-/- warning: filter.eventually_eq.fderiv -> Filter.EventuallyEq.fderiv is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv Filter.EventuallyEq.fderivₓ'. -/
protected theorem Filter.EventuallyEq.fderiv (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f :=
h.eventuallyEq_nhds.mono fun x h => h.fderiv_eq
#align filter.eventually_eq.fderiv Filter.EventuallyEq.fderiv
@@ -1624,12 +1024,6 @@ section id
/-! ### Derivative of the identity -/
-/- warning: has_strict_fderiv_at_id -> hasStrictFDerivAt_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] (x : E), HasStrictFDerivAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), HasStrictFDerivAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) x
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_id hasStrictFDerivAt_idₓ'. -/
theorem hasStrictFDerivAt_id (x : E) : HasStrictFDerivAt id (id 𝕜 E) x :=
(isLittleO_zero _ _).congr_left <| by simp
#align has_strict_fderiv_at_id hasStrictFDerivAt_id
@@ -1646,74 +1040,32 @@ theorem hasFDerivWithinAt_id (x : E) (s : Set E) : HasFDerivWithinAt id (id 𝕜
#align has_fderiv_within_at_id hasFDerivWithinAt_id
-/
-/- warning: has_fderiv_at_id -> hasFDerivAt_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] (x : E), HasFDerivAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), HasFDerivAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) x
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_id hasFDerivAt_idₓ'. -/
theorem hasFDerivAt_id (x : E) : HasFDerivAt id (id 𝕜 E) x :=
hasFDerivAtFilter_id _ _
#align has_fderiv_at_id hasFDerivAt_id
-/- warning: differentiable_at_id -> differentiableAt_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, DifferentiableAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, DifferentiableAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) x
-Case conversion may be inaccurate. Consider using '#align differentiable_at_id differentiableAt_idₓ'. -/
@[simp]
theorem differentiableAt_id : DifferentiableAt 𝕜 id x :=
(hasFDerivAt_id x).DifferentiableAt
#align differentiable_at_id differentiableAt_id
-/- warning: differentiable_at_id' -> differentiableAt_id' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, DifferentiableAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, DifferentiableAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) x
-Case conversion may be inaccurate. Consider using '#align differentiable_at_id' differentiableAt_id'ₓ'. -/
@[simp]
theorem differentiableAt_id' : DifferentiableAt 𝕜 (fun x => x) x :=
(hasFDerivAt_id x).DifferentiableAt
#align differentiable_at_id' differentiableAt_id'
-/- warning: differentiable_within_at_id -> differentiableWithinAt_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E}, DifferentiableWithinAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) s x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E}, DifferentiableWithinAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) s x
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_id differentiableWithinAt_idₓ'. -/
theorem differentiableWithinAt_id : DifferentiableWithinAt 𝕜 id s x :=
differentiableAt_id.DifferentiableWithinAt
#align differentiable_within_at_id differentiableWithinAt_id
-/- warning: differentiable_id -> differentiable_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)], Differentiable.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E)
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)], Differentiable.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E)
-Case conversion may be inaccurate. Consider using '#align differentiable_id differentiable_idₓ'. -/
@[simp]
theorem differentiable_id : Differentiable 𝕜 (id : E → E) := fun x => differentiableAt_id
#align differentiable_id differentiable_id
-/- warning: differentiable_id' -> differentiable_id' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)], Differentiable.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x)
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)], Differentiable.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x)
-Case conversion may be inaccurate. Consider using '#align differentiable_id' differentiable_id'ₓ'. -/
@[simp]
theorem differentiable_id' : Differentiable 𝕜 fun x : E => x := fun x => differentiableAt_id
#align differentiable_id' differentiable_id'
-/- warning: differentiable_on_id -> differentiableOn_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E}, DifferentiableOn.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) s
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {s : Set.{u1} E}, DifferentiableOn.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) s
-Case conversion may be inaccurate. Consider using '#align differentiable_on_id differentiableOn_idₓ'. -/
theorem differentiableOn_id : DifferentiableOn 𝕜 id s :=
differentiable_id.DifferentiableOn
#align differentiable_on_id differentiableOn_id
@@ -1731,24 +1083,12 @@ theorem fderiv_id' : fderiv 𝕜 (fun x : E => x) x = ContinuousLinearMap.id
#align fderiv_id' fderiv_id'
-/
-/- warning: fderiv_within_id -> fderivWithin_id is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) s x) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E}, (UniqueDiffWithinAt.{u2, u1} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (fderivWithin.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) s x) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align fderiv_within_id fderivWithin_idₓ'. -/
theorem fderivWithin_id (hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 id s x = id 𝕜 E :=
by
rw [DifferentiableAt.fderivWithin differentiableAt_id hxs]
exact fderiv_id
#align fderiv_within_id fderivWithin_id
-/- warning: fderiv_within_id' -> fderivWithin_id' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) s x) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E}, (UniqueDiffWithinAt.{u2, u1} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (fderivWithin.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) s x) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align fderiv_within_id' fderivWithin_id'ₓ'. -/
theorem fderivWithin_id' (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun x : E => x) s x = ContinuousLinearMap.id 𝕜 E :=
fderivWithin_id hxs
@@ -1761,76 +1101,43 @@ section Const
/-! ### derivative of a constant function -/
-/- warning: has_strict_fderiv_at_const -> hasStrictFDerivAt_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_const hasStrictFDerivAt_constₓ'. -/
theorem hasStrictFDerivAt_const (c : F) (x : E) :
HasStrictFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
#align has_strict_fderiv_at_const hasStrictFDerivAt_const
-/- warning: has_fderiv_at_filter_const -> hasFDerivAtFilter_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_const hasFDerivAtFilter_constₓ'. -/
theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
HasFDerivAtFilter (fun x => c) (0 : E →L[𝕜] F) x L :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
#align has_fderiv_at_filter_const hasFDerivAtFilter_const
-/- warning: has_fderiv_within_at_const -> hasFDerivWithinAt_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_const hasFDerivWithinAt_constₓ'. -/
theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
HasFDerivWithinAt (fun x => c) (0 : E →L[𝕜] F) s x :=
hasFDerivAtFilter_const _ _ _
#align has_fderiv_within_at_const hasFDerivWithinAt_const
-/- warning: has_fderiv_at_const -> hasFDerivAt_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_const hasFDerivAt_constₓ'. -/
theorem hasFDerivAt_const (c : F) (x : E) : HasFDerivAt (fun x => c) (0 : E →L[𝕜] F) x :=
hasFDerivAtFilter_const _ _ _
#align has_fderiv_at_const hasFDerivAt_const
-/- warning: differentiable_at_const -> differentiableAt_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} (c : F), DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) x
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {x : E} (c : F), DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) x
-Case conversion may be inaccurate. Consider using '#align differentiable_at_const differentiableAt_constₓ'. -/
@[simp]
theorem differentiableAt_const (c : F) : DifferentiableAt 𝕜 (fun x => c) x :=
⟨0, hasFDerivAt_const c x⟩
#align differentiable_at_const differentiableAt_const
-/- warning: differentiable_within_at_const -> differentiableWithinAt_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s x
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s x
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_const differentiableWithinAt_constₓ'. -/
theorem differentiableWithinAt_const (c : F) : DifferentiableWithinAt 𝕜 (fun x => c) s x :=
DifferentiableAt.differentiableWithinAt (differentiableAt_const _)
#align differentiable_within_at_const differentiableWithinAt_const
-/- warning: fderiv_const_apply -> fderiv_const_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_const_apply fderiv_const_applyₓ'. -/
theorem fderiv_const_apply (c : F) : fderiv 𝕜 (fun y => c) x = 0 :=
HasFDerivAt.fderiv (hasFDerivAt_const c x)
#align fderiv_const_apply fderiv_const_apply
-/- warning: fderiv_const -> fderiv_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_const fderiv_constₓ'. -/
@[simp]
theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 := by ext m; rw [fderiv_const_apply];
rfl
#align fderiv_const fderiv_const
-/- warning: fderiv_within_const_apply -> fderivWithin_const_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_const_apply fderivWithin_const_applyₓ'. -/
theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun y => c) s x = 0 :=
by
@@ -1838,39 +1145,21 @@ theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
exact fderiv_const_apply _
#align fderiv_within_const_apply fderivWithin_const_apply
-/- warning: differentiable_const -> differentiable_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F), Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F), Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c)
-Case conversion may be inaccurate. Consider using '#align differentiable_const differentiable_constₓ'. -/
@[simp]
theorem differentiable_const (c : F) : Differentiable 𝕜 fun x : E => c := fun x =>
differentiableAt_const _
#align differentiable_const differentiable_const
-/- warning: differentiable_on_const -> differentiableOn_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {s : Set.{u2} E} (c : F), DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {s : Set.{u2} E} (c : F), DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s
-Case conversion may be inaccurate. Consider using '#align differentiable_on_const differentiableOn_constₓ'. -/
theorem differentiableOn_const (c : F) : DifferentiableOn 𝕜 (fun x => c) s :=
(differentiable_const _).DifferentiableOn
#align differentiable_on_const differentiableOn_const
-/- warning: has_fderiv_within_at_singleton -> hasFDerivWithinAt_singleton is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_singleton hasFDerivWithinAt_singletonₓ'. -/
theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) {x} x := by
simp only [HasFDerivWithinAt, nhdsWithin_singleton, HasFDerivAtFilter, is_o_pure,
ContinuousLinearMap.zero_apply, sub_self]
#align has_fderiv_within_at_singleton hasFDerivWithinAt_singleton
-/- warning: has_fderiv_at_of_subsingleton -> hasFDerivAt_of_subsingleton is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingletonₓ'. -/
theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
by
@@ -1878,38 +1167,17 @@ theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
exact hasFDerivWithinAt_singleton f x
#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingleton
-/- warning: differentiable_on_empty -> differentiableOn_empty is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.hasEmptyc.{u2} E))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F}, DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.instEmptyCollectionSet.{u2} E))
-Case conversion may be inaccurate. Consider using '#align differentiable_on_empty differentiableOn_emptyₓ'. -/
theorem differentiableOn_empty : DifferentiableOn 𝕜 f ∅ := fun x => False.elim
#align differentiable_on_empty differentiableOn_empty
-/- warning: differentiable_on_singleton -> differentiableOn_singleton is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.instSingletonSet.{u2} E) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_on_singleton differentiableOn_singletonₓ'. -/
theorem differentiableOn_singleton : DifferentiableOn 𝕜 f {x} :=
forall_eq.2 (hasFDerivWithinAt_singleton f x).DifferentiableWithinAt
#align differentiable_on_singleton differentiableOn_singleton
-/- warning: set.subsingleton.differentiable_on -> Set.Subsingleton.differentiableOn is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (Set.Subsingleton.{u2} E s) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u3} E}, (Set.Subsingleton.{u3} E s) -> (DifferentiableOn.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
-Case conversion may be inaccurate. Consider using '#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOnₓ'. -/
theorem Set.Subsingleton.differentiableOn (hs : s.Subsingleton) : DifferentiableOn 𝕜 f s :=
hs.inductionOn differentiableOn_empty fun x => differentiableOn_singleton
#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOn
-/- warning: has_fderiv_at_zero_of_eventually_const -> hasFDerivAt_zero_of_eventually_const is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_zero_of_eventually_const hasFDerivAt_zero_of_eventually_constₓ'. -/
theorem hasFDerivAt_zero_of_eventually_const (c : F) (hf : f =ᶠ[𝓝 x] fun y => c) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
(hasFDerivAt_const _ _).congr_of_eventuallyEq hf
@@ -1929,9 +1197,6 @@ open Function
variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F}
-/- warning: support_fderiv_subset -> support_fderiv_subset is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align support_fderiv_subset support_fderiv_subsetₓ'. -/
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
by
intro x
@@ -1939,16 +1204,10 @@ theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
#align support_fderiv_subset support_fderiv_subset
-/- warning: tsupport_fderiv_subset -> tsupport_fderiv_subset is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align tsupport_fderiv_subset tsupport_fderiv_subsetₓ'. -/
theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
closure_minimal (support_fderiv_subset 𝕜) isClosed_closure
#align tsupport_fderiv_subset tsupport_fderiv_subset
-/- warning: has_compact_support.fderiv -> HasCompactSupport.fderiv is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_compact_support.fderiv HasCompactSupport.fderivₓ'. -/
theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) : HasCompactSupport (fderiv 𝕜 f) :=
hf.mono' <| support_fderiv_subset 𝕜
#align has_compact_support.fderiv HasCompactSupport.fderiv
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -302,9 +302,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
have :
(fun n => c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)) = fun n =>
c n • (f (x + d n) - f x) :=
- by
- ext n
- simp [smul_add, smul_sub]
+ by ext n; simp [smul_add, smul_sub]
rwa [this, zero_add] at L3
#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
@@ -350,10 +348,8 @@ theorem hasFDerivAtFilter_iff_tendsto :
HasFDerivAtFilter f f' x L ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) L (𝓝 0) :=
by
- have h : ∀ x', ‖x' - x‖ = 0 → ‖f x' - f x - f' (x' - x)‖ = 0 := fun x' hx' =>
- by
- rw [sub_eq_zero.1 (norm_eq_zero.1 hx')]
- simp
+ have h : ∀ x', ‖x' - x‖ = 0 → ‖f x' - f x - f' (x' - x)‖ = 0 := fun x' hx' => by
+ rw [sub_eq_zero.1 (norm_eq_zero.1 hx')]; simp
unfold HasFDerivAtFilter
rw [← is_o_norm_left, ← is_o_norm_right, is_o_iff_tendsto h]
exact tendsto_congr fun _ => div_eq_inv_mul _ _
@@ -501,10 +497,8 @@ but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_univ hasFDerivWithinAt_univₓ'. -/
@[simp]
-theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f f' x :=
- by
- simp only [HasFDerivWithinAt, nhdsWithin_univ]
- rfl
+theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f f' x := by
+ simp only [HasFDerivWithinAt, nhdsWithin_univ]; rfl
#align has_fderiv_within_at_univ hasFDerivWithinAt_univ
/- warning: has_fderiv_within_at.has_fderiv_at_of_univ -> HasFDerivWithinAt.hasFDerivAt_of_univ is a dubious translation:
@@ -803,9 +797,7 @@ theorem DifferentiableOn.eventually_differentiableAt (h : DifferentiableOn 𝕜
/- warning: has_fderiv_at.fderiv -> HasFDerivAt.fderiv is a dubious translation:
<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fderiv HasFDerivAt.fderivₓ'. -/
-theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' :=
- by
- ext
+theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' := by ext;
rw [h.unique h.differentiable_at.has_fderiv_at]
#align has_fderiv_at.fderiv HasFDerivAt.fderiv
@@ -1118,8 +1110,7 @@ theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilte
have : tendsto (fun x' => f x' - f x) L (𝓝 0) :=
by
refine' h.is_O_sub.trans_tendsto (tendsto.mono_left _ hL)
- rw [← sub_self x]
- exact tendsto_id.sub tendsto_const_nhds
+ rw [← sub_self x]; exact tendsto_id.sub tendsto_const_nhds
have := tendsto.add this tendsto_const_nhds
rw [zero_add (f x)] at this
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
@@ -1833,10 +1824,7 @@ theorem fderiv_const_apply (c : F) : fderiv 𝕜 (fun y => c) x = 0 :=
<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_const fderiv_constₓ'. -/
@[simp]
-theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 :=
- by
- ext m
- rw [fderiv_const_apply]
+theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 := by ext m; rw [fderiv_const_apply];
rfl
#align fderiv_const fderiv_const
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -241,10 +241,7 @@ variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
/- warning: fderiv_within_zero_of_not_differentiable_within_at -> fderivWithin_zero_of_not_differentiableWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (Not (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (Not (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAtₓ'. -/
theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWithinAt 𝕜 f s x) :
fderivWithin 𝕜 f s x = 0 :=
@@ -254,10 +251,7 @@ theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWit
#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAt
/- warning: fderiv_zero_of_not_differentiable_at -> fderiv_zero_of_not_differentiableAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (Not (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (Not (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_zero_of_not_differentiable_at fderiv_zero_of_not_differentiableAtₓ'. -/
theorem fderiv_zero_of_not_differentiableAt (h : ¬DifferentiableAt 𝕜 f x) : fderiv 𝕜 f x = 0 :=
by
@@ -268,10 +262,7 @@ theorem fderiv_zero_of_not_differentiableAt (h : ¬DifferentiableAt 𝕜 f x) :
section DerivativeUniqueness
/- warning: has_fderiv_within_at.lim -> HasFDerivWithinAt.lim is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall {α : Type.{u4}} (l : Filter.{u4} α) {c : α -> 𝕜} {d : α -> E} {v : E}, (Filter.Eventually.{u4} α (fun (n : α) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (d n)) s) l) -> (Filter.Tendsto.{u4, 0} α Real (fun (n : α) => Norm.norm.{u1} 𝕜 (NormedField.toHasNorm.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.preorder)) -> (Filter.Tendsto.{u4, u2} α E (fun (n : α) => SMul.smul.{u1, u2} 𝕜 E (SMulZeroClass.toHasSmul.{u1, u2} 𝕜 E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} 𝕜 E (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} 𝕜 E (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} 𝕜 E (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (c n) (d n)) l (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) v)) -> (Filter.Tendsto.{u4, u3} α F (fun (n : α) => SMul.smul.{u1, u3} 𝕜 F (SMulZeroClass.toHasSmul.{u1, u3} 𝕜 F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} 𝕜 F (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} 𝕜 F (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (Module.toMulActionWithZero.{u1, u3} 𝕜 F (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) (c n) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (d n))) (f x))) l (nhds.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' v))))
-but is expected to have type
- forall {𝕜 : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (HasFDerivWithinAt.{u4, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall {α : Type.{u1}} (l : Filter.{u1} α) {c : α -> 𝕜} {d : α -> E} {v : E}, (Filter.Eventually.{u1} α (fun (n : α) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (HAdd.hAdd.{u3, u3, u3} E E E (instHAdd.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))))) x (d n)) s) l) -> (Filter.Tendsto.{u1, 0} α Real (fun (n : α) => Norm.norm.{u4} 𝕜 (NormedField.toNorm.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.instPreorderReal)) -> (Filter.Tendsto.{u1, u3} α E (fun (n : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E E (instHSMul.{u4, u3} 𝕜 E (SMulZeroClass.toSMul.{u4, u3} 𝕜 E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)))))) (c n) (d n)) l (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) v)) -> (Filter.Tendsto.{u1, u2} α F (fun (n : α) => HSMul.hSMul.{u4, u2, u2} 𝕜 F F (instHSMul.{u4, u2} 𝕜 F (SMulZeroClass.toSMul.{u4, u2} 𝕜 F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u2} 𝕜 F (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u2} 𝕜 F (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (Module.toMulActionWithZero.{u4, u2} 𝕜 F (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))))) (c n) (HSub.hSub.{u2, u2, u2} F F F (instHSub.{u2} F (SubNegMonoid.toSub.{u2} F (AddGroup.toSubNegMonoid.{u2} F (NormedAddGroup.toAddGroup.{u2} F (NormedAddCommGroup.toNormedAddGroup.{u2} F _inst_4))))) (f (HAdd.hAdd.{u3, u3, u3} E E E (instHAdd.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))))) x (d n))) (f x))) l (nhds.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u4, u4, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f' v))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.lim HasFDerivWithinAt.limₓ'. -/
/- In this section, we discuss the uniqueness of the derivative.
We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the
@@ -318,10 +309,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l
#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
/- warning: has_fderiv_within_at.unique_on -> HasFDerivWithinAt.unique_on is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Set.EqOn.{u2, u3} E F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f') (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁') (tangentConeAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Set.EqOn.{u2, u1} E F (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f') (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f₁') (tangentConeAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_onₓ'. -/
/-- If `f'` and `f₁'` are two derivatives of `f` within `s` at `x`, then they are equal on the
tangent cone to `s` at `x` -/
@@ -332,10 +320,7 @@ theorem HasFDerivWithinAt.unique_on (hf : HasFDerivWithinAt f f' s x)
#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_on
/- warning: unique_diff_within_at.eq -> UniqueDiffWithinAt.eq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' f₁')
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) f' f₁')
+<too large>
Case conversion may be inaccurate. Consider using '#align unique_diff_within_at.eq UniqueDiffWithinAt.eqₓ'. -/
/-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/
theorem UniqueDiffWithinAt.eq (H : UniqueDiffWithinAt 𝕜 s x) (hf : HasFDerivWithinAt f f' s x)
@@ -344,10 +329,7 @@ theorem UniqueDiffWithinAt.eq (H : UniqueDiffWithinAt 𝕜 s x) (hf : HasFDerivW
#align unique_diff_within_at.eq UniqueDiffWithinAt.eq
/- warning: unique_diff_on.eq -> UniqueDiffOn.eq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffOn.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' f₁')
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffOn.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) f' f₁')
+<too large>
Case conversion may be inaccurate. Consider using '#align unique_diff_on.eq UniqueDiffOn.eqₓ'. -/
theorem UniqueDiffOn.eq (H : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (h : HasFDerivWithinAt f f' s x)
(h₁ : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
@@ -362,10 +344,7 @@ section FderivProperties
/- warning: has_fderiv_at_filter_iff_tendsto -> hasFDerivAtFilter_iff_tendsto is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, Iff (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Inv.inv.{0} Real Real.hasInv (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) L (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, Iff (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Inv.inv.{0} Real Real.instInvReal (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x)) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) L (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendstoₓ'. -/
theorem hasFDerivAtFilter_iff_tendsto :
HasFDerivAtFilter f f' x L ↔
@@ -381,10 +360,7 @@ theorem hasFDerivAtFilter_iff_tendsto :
#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendsto
/- warning: has_fderiv_within_at_iff_tendsto -> hasFDerivWithinAt_iff_tendsto is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Inv.inv.{0} Real Real.hasInv (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Inv.inv.{0} Real Real.instInvReal (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x)) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendstoₓ'. -/
theorem hasFDerivWithinAt_iff_tendsto :
HasFDerivWithinAt f f' s x ↔
@@ -393,10 +369,7 @@ theorem hasFDerivWithinAt_iff_tendsto :
#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendsto
/- warning: has_fderiv_at_iff_tendsto -> hasFDerivAt_iff_tendsto is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Inv.inv.{0} Real Real.hasInv (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Inv.inv.{0} Real Real.instInvReal (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x)) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendstoₓ'. -/
theorem hasFDerivAt_iff_tendsto :
HasFDerivAt f f' x ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝 x) (𝓝 0) :=
@@ -404,10 +377,7 @@ theorem hasFDerivAt_iff_tendsto :
#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendsto
/- warning: has_fderiv_at_iff_is_o_nhds_zero -> hasFDerivAt_iff_isLittleO_nhds_zero is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Asymptotics.IsLittleO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) (fun (h : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x h)) (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' h)) (fun (h : E) => h))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Asymptotics.IsLittleO.{u2, u1, u2} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) (fun (h : E) => HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) h) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x h)) (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' h)) (fun (h : E) => h))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zeroₓ'. -/
theorem hasFDerivAt_iff_isLittleO_nhds_zero :
HasFDerivAt f f' x ↔ (fun h : E => f (x + h) - f x - f' h) =o[𝓝 0] fun h => h :=
@@ -417,10 +387,7 @@ theorem hasFDerivAt_iff_isLittleO_nhds_zero :
#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zero
/- warning: has_fderiv_at.le_of_lip' -> HasFDerivAt.le_of_lip' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {C : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) C) -> (Filter.Eventually.{u2} E (fun (x : E) => LE.le.{0} Real Real.hasLe (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x) (f x₀))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) C (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) f') C))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {C : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) C) -> (Filter.Eventually.{u2} E (fun (x : E) => LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x) (f x₀))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) C (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) f') C))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'ₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. This version
@@ -441,10 +408,7 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
/- warning: has_fderiv_at.le_of_lip -> HasFDerivAt.le_of_lip is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) C f s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) f') ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) C))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {s : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) C f s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) f') (NNReal.toReal C))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lipₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/
@@ -653,10 +617,7 @@ protected theorem HasStrictFDerivAt.differentiableAt (hf : HasStrictFDerivAt f f
#align has_strict_fderiv_at.differentiable_at HasStrictFDerivAt.differentiableAt
/- warning: has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt -> HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (K : NNReal), (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (NNNorm.nnnorm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (SeminormedAddGroup.toNNNorm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomIsometric.ids.{u1} 𝕜 (SeminormedCommRing.toSemiNormedRing.{u1} 𝕜 (NormedCommRing.toSeminormedCommRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) f') K) -> (Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) => LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) K f s))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (K : NNReal), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (NNNorm.nnnorm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (SeminormedAddGroup.toNNNorm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHomIsometric.ids.{u3} 𝕜 (SeminormedCommRing.toSeminormedRing.{u3} 𝕜 (NormedCommRing.toSeminormedCommRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) f') K) -> (Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) K f s))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_ltₓ'. -/
/-- If `f` is strictly differentiable at `x` with derivative `f'` and `K > ‖f'‖₊`, then `f` is
`K`-Lipschitz in a neighborhood of `x`. -/
@@ -685,10 +646,7 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith (hf : HasStrictFDerivAt f f' x)
#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWith
/- warning: has_fderiv_at.lim -> HasFDerivAt.lim is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (v : E) {α : Type.{u4}} {c : α -> 𝕜} {l : Filter.{u4} α}, (Filter.Tendsto.{u4, 0} α Real (fun (n : α) => Norm.norm.{u1} 𝕜 (NormedField.toHasNorm.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.preorder)) -> (Filter.Tendsto.{u4, u3} α F (fun (n : α) => SMul.smul.{u1, u3} 𝕜 F (SMulZeroClass.toHasSmul.{u1, u3} 𝕜 F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} 𝕜 F (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} 𝕜 F (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (Module.toMulActionWithZero.{u1, u3} 𝕜 F (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) (c n) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (SMul.smul.{u1, u2} 𝕜 E (SMulZeroClass.toHasSmul.{u1, u2} 𝕜 E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} 𝕜 E (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} 𝕜 E (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} 𝕜 E (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (Inv.inv.{u1} 𝕜 (DivInvMonoid.toHasInv.{u1} 𝕜 (DivisionRing.toDivInvMonoid.{u1} 𝕜 (NormedDivisionRing.toDivisionRing.{u1} 𝕜 (NormedField.toNormedDivisionRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (c n)) v))) (f x))) l (nhds.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' v))))
-but is expected to have type
- forall {𝕜 : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u4, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (v : E) {α : Type.{u1}} {c : α -> 𝕜} {l : Filter.{u1} α}, (Filter.Tendsto.{u1, 0} α Real (fun (n : α) => Norm.norm.{u4} 𝕜 (NormedField.toNorm.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.instPreorderReal)) -> (Filter.Tendsto.{u1, u2} α F (fun (n : α) => HSMul.hSMul.{u4, u2, u2} 𝕜 F F (instHSMul.{u4, u2} 𝕜 F (SMulZeroClass.toSMul.{u4, u2} 𝕜 F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u2} 𝕜 F (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u2} 𝕜 F (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (Module.toMulActionWithZero.{u4, u2} 𝕜 F (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))))) (c n) (HSub.hSub.{u2, u2, u2} F F F (instHSub.{u2} F (SubNegMonoid.toSub.{u2} F (AddGroup.toSubNegMonoid.{u2} F (NormedAddGroup.toAddGroup.{u2} F (NormedAddCommGroup.toNormedAddGroup.{u2} F _inst_4))))) (f (HAdd.hAdd.{u3, u3, u3} E E E (instHAdd.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))))) x (HSMul.hSMul.{u4, u3, u3} 𝕜 E E (instHSMul.{u4, u3} 𝕜 E (SMulZeroClass.toSMul.{u4, u3} 𝕜 E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)))))) (Inv.inv.{u4} 𝕜 (Field.toInv.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))) (c n)) v))) (f x))) l (nhds.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u4, u4, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f' v))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.lim HasFDerivAt.limₓ'. -/
/-- Directional derivative agrees with `has_fderiv`. -/
theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α → 𝕜} {l : Filter α}
@@ -704,10 +662,7 @@ theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α
#align has_fderiv_at.lim HasFDerivAt.lim
/- warning: has_fderiv_at.unique -> HasFDerivAt.unique is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₀' x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' f₁')
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₀' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₀' x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) f₀' f₁')
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.unique HasFDerivAt.uniqueₓ'. -/
theorem HasFDerivAt.unique (h₀ : HasFDerivAt f f₀' x) (h₁ : HasFDerivAt f f₁' x) : f₀' = f₁' :=
by
@@ -846,10 +801,7 @@ theorem DifferentiableOn.eventually_differentiableAt (h : DifferentiableOn 𝕜
#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAt
/- warning: has_fderiv_at.fderiv -> HasFDerivAt.fderiv is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) f')
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) f')
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fderiv HasFDerivAt.fderivₓ'. -/
theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' :=
by
@@ -858,20 +810,14 @@ theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' :=
#align has_fderiv_at.fderiv HasFDerivAt.fderiv
/- warning: fderiv_eq -> fderiv_eq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))}, (forall (x : E), HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (f' x) x) -> (Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) f')
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E -> (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5))}, (forall (x : E), HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (f' x) x) -> (Eq.{max (succ u2) (succ u1)} (E -> (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5))) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) f')
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_eq fderiv_eqₓ'. -/
theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x) : fderiv 𝕜 f = f' :=
funext fun x => (h x).fderiv
#align fderiv_eq fderiv_eq
/- warning: fderiv_at.le_of_lip -> DifferentiableAt.le_of_lip is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x₀ : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀) -> (forall {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) C f s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) C))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x₀ : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀) -> (forall {s : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) C f s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u1 u2} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀)) (NNReal.toReal C))))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_at.le_of_lip DifferentiableAt.le_of_lipₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`.
@@ -882,10 +828,7 @@ theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : Differentiable
#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
/- warning: has_fderiv_within_at.fderiv_within -> HasFDerivWithinAt.fderivWithin is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) f')
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) f')
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithinₓ'. -/
theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = f' :=
@@ -983,10 +926,7 @@ theorem Differentiable.differentiableAt (h : Differentiable 𝕜 f) : Differenti
#align differentiable.differentiable_at Differentiable.differentiableAt
/- warning: differentiable_at.fderiv_within -> DifferentiableAt.fderivWithin is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+<too large>
Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within DifferentiableAt.fderivWithinₓ'. -/
theorem DifferentiableAt.fderivWithin (h : DifferentiableAt 𝕜 f x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
@@ -1039,10 +979,7 @@ theorem differentiableOn_of_locally_differentiableOn
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
/- warning: fderiv_within_of_mem -> fderivWithin_of_mem is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s)) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem fderivWithin_of_memₓ'. -/
theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
@@ -1050,10 +987,7 @@ theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜
#align fderiv_within_of_mem fderivWithin_of_mem
/- warning: fderiv_within_subset -> fderivWithin_subset is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) s t) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_subset fderivWithin_subsetₓ'. -/
theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
@@ -1061,20 +995,14 @@ theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
#align fderiv_within_subset fderivWithin_subset
/- warning: fderiv_within_inter -> fderivWithin_inter is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_inter fderivWithin_interₓ'. -/
theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hasFDerivWithinAt_inter ht]
#align fderiv_within_inter fderivWithin_inter
/- warning: fderiv_within_of_mem_nhds -> fderivWithin_of_mem_nhds is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) s (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhdsₓ'. -/
theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
@@ -1092,20 +1020,14 @@ theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
#align fderiv_within_univ fderivWithin_univ
/- warning: fderiv_within_of_open -> fderivWithin_of_open is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (IsOpen.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E}, (IsOpen.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_of_open fderivWithin_of_openₓ'. -/
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (hs.mem_nhds hx)
#align fderiv_within_of_open fderivWithin_of_open
/- warning: fderiv_within_eq_fderiv -> fderivWithin_eq_fderiv is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_eq_fderiv fderivWithin_eq_fderivₓ'. -/
theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : DifferentiableAt 𝕜 f x) :
fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
@@ -1123,10 +1045,7 @@ theorem fderiv_mem_iff {f : E → F} {s : Set (E →L[𝕜] F)} {x : E} :
-/
/- warning: fderiv_within_mem_iff -> fderivWithin_mem_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {t : Set.{u2} E} {s : Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))} {x : E}, Iff (Membership.Mem.{max u2 u3, max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Set.hasMem.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s) (Or (And (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) (Membership.Mem.{max u2 u3, max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Set.hasMem.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s)) (And (Not (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)) (Membership.Mem.{max u2 u3, max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Set.hasMem.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) s)))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {t : Set.{u3} E} {s : Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))} {x : E}, Iff (Membership.mem.{max u2 u3, max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Set.instMembershipSet.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s) (Or (And (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) (Membership.mem.{max u2 u3, max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Set.instMembershipSet.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s)) (And (Not (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)) (Membership.mem.{max u3 u2, max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Set.instMembershipSet.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) s)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_mem_iff fderivWithin_mem_iffₓ'. -/
theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)} {x : E} :
fderivWithin 𝕜 f t x ∈ s ↔
@@ -1138,10 +1057,7 @@ theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)
#align fderiv_within_mem_iff fderivWithin_mem_iff
/- warning: asymptotics.is_O.has_fderiv_within_at -> Asymptotics.IsBigO.hasFDerivWithinAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u2, u3, 0} E F Real (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) Real.hasNorm (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀ s) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.monoid)) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)) n)) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x₀ s) -> (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) n) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) s x₀)
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {s : Set.{u3} E} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u3, u2, 0} E F Real (NormedAddCommGroup.toNorm.{u2} F _inst_4) Real.norm (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x₀ s) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.instMonoidReal)) (Norm.norm.{u3} E (NormedAddCommGroup.toNorm.{u3} E _inst_2) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))) x x₀)) n)) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x₀ s) -> (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) n) -> (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) s x₀)
+<too large>
Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAtₓ'. -/
theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
(h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n) (hx₀ : x₀ ∈ s) (hn : 1 < n) :
@@ -1152,10 +1068,7 @@ theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAt
/- warning: asymptotics.is_O.has_fderiv_at -> Asymptotics.IsBigO.hasFDerivAt is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u2, u3, 0} E F Real (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) Real.hasNorm (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.monoid)) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)) n)) -> (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) n) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x₀)
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u3, u2, 0} E F Real (NormedAddCommGroup.toNorm.{u2} F _inst_4) Real.norm (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x₀) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.instMonoidReal)) (Norm.norm.{u3} E (NormedAddCommGroup.toNorm.{u3} E _inst_2) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))) x x₀)) n)) -> (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) n) -> (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) x₀)
+<too large>
Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAtₓ'. -/
theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
(hn : 1 < n) : HasFDerivAt f (0 : E →L[𝕜] F) x₀ :=
@@ -1288,10 +1201,7 @@ protected theorem HasStrictFDerivAt.continuousAt (hf : HasStrictFDerivAt f f' x)
#align has_strict_fderiv_at.continuous_at HasStrictFDerivAt.continuousAt
/- warning: has_strict_fderiv_at.is_O_sub_rev -> HasStrictFDerivAt.isBigO_sub_rev is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {f' : ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (coeBase.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearEquiv.ContinuousLinearMap.coe.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) f') x) -> (Asymptotics.IsBigO.{u2, u2, u3} (Prod.{u2, u2} E E) E F (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (nhds.{u2} (Prod.{u2, u2} E E) (Prod.topologicalSpace.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {f' : ContinuousLinearEquiv.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (ContinuousLinearEquiv.toContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) f') x) -> (Asymptotics.IsBigO.{u2, u2, u1} (Prod.{u2, u2} E E) E F (NormedAddCommGroup.toNorm.{u2} E _inst_2) (NormedAddCommGroup.toNorm.{u1} F _inst_4) (nhds.{u2} (Prod.{u2, u2} E E) (instTopologicalSpaceProd.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_revₓ'. -/
theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
(hf : HasStrictFDerivAt f (f' : E →L[𝕜] F) x) :
@@ -1301,10 +1211,7 @@ theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_rev
/- warning: has_fderiv_at_filter.is_O_sub_rev -> HasFDerivAtFilter.isBigO_sub_rev is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (forall {C : NNReal}, (AntilipschitzWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) C (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f')) -> (Asymptotics.IsBigO.{u2, u2, u3} E E F (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) L (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x) (fun (x' : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (forall {C : NNReal}, (AntilipschitzWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) C (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f')) -> (Asymptotics.IsBigO.{u2, u2, u1} E E F (NormedAddCommGroup.toNorm.{u2} E _inst_2) (NormedAddCommGroup.toNorm.{u1} F _inst_4) L (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x) (fun (x' : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x))))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_revₓ'. -/
theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
@@ -1376,10 +1283,7 @@ theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
#align differentiable_within_at_congr_set differentiableWithinAt_congr_set
/- warning: fderiv_within_congr_set' -> fderivWithin_congr_set' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr_set' fderivWithin_congr_set'ₓ'. -/
theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
@@ -1387,20 +1291,14 @@ theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
#align fderiv_within_congr_set' fderivWithin_congr_set'
/- warning: fderiv_within_congr_set -> fderivWithin_congr_set is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr_set fderivWithin_congr_setₓ'. -/
theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_congr_set' x <| h.filter_mono inf_le_left
#align fderiv_within_congr_set fderivWithin_congr_set
/- warning: fderiv_within_eventually_congr_set' -> fderivWithin_eventually_congr_set' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'ₓ'. -/
theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
@@ -1408,10 +1306,7 @@ theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t
#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'
/- warning: fderiv_within_eventually_congr_set -> fderivWithin_eventually_congr_set is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_setₓ'. -/
theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
@@ -1419,10 +1314,7 @@ theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_set
/- warning: filter.eventually_eq.has_strict_fderiv_at_iff -> Filter.EventuallyEq.hasStrictFDerivAt_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (forall (y : E), Eq.{succ u3} F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' y) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁' y)) -> (Iff (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x) (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₀ f₁) -> (forall (y : E), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) y) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₀' y) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₁' y)) -> (Iff (HasStrictFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x) (HasStrictFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iffₓ'. -/
theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x :=
@@ -1444,10 +1336,7 @@ theorem HasStrictFDerivAt.congr_of_eventuallyEq (h : HasStrictFDerivAt f f' x) (
#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEq
/- warning: filter.eventually_eq.has_fderiv_at_filter_iff -> Filter.EventuallyEq.hasFDerivAtFilter_iff is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F L f₀ f₁) -> (Eq.{succ u3} F (f₀ x) (f₁ x)) -> (forall (x : E), Eq.{succ u3} F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁' x)) -> (Iff (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x L) (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F L f₀ f₁) -> (Eq.{succ u2} F (f₀ x) (f₁ x)) -> (forall (x : E), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₀' x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₁' x)) -> (Iff (HasFDerivAtFilter.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x L) (HasFDerivAtFilter.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iffₓ'. -/
theorem Filter.EventuallyEq.hasFDerivAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x)
(h₁ : ∀ x, f₀' x = f₁' x) : HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L :=
@@ -1664,10 +1553,7 @@ theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (
#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEq
/- warning: differentiable_within_at.fderiv_within_congr_mono -> DifferentiableWithinAt.fderivWithin_congr_mono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u1} E F f₁ f t) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_monoₓ'. -/
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
(hs : EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
@@ -1676,10 +1562,7 @@ theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithin
#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_mono
/- warning: filter.eventually_eq.fderiv_within_eq -> Filter.EventuallyEq.fderivWithin_eq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u2} F (f₁ x) (f x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eqₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
@@ -1687,10 +1570,7 @@ theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx :
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
/- warning: filter.eventually_eq.fderiv_within' -> Filter.EventuallyEq.fderiv_within' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₁ f) -> (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) t s) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'ₓ'. -/
theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
@@ -1701,10 +1581,7 @@ theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t
#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
/- warning: filter.eventually_eq.fderiv_within -> Filter.EventuallyEq.fderivWithin is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₁ f) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithinₓ'. -/
protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
@@ -1712,10 +1589,7 @@ protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f)
#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
/- warning: filter.eventually_eq.fderiv_within_eq_nhds -> Filter.EventuallyEq.fderivWithin_eq_nhds is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhdsₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
@@ -1723,10 +1597,7 @@ theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhds
/- warning: fderiv_within_congr -> fderivWithin_congr is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Set.EqOn.{u2, u3} E F f₁ f s) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Set.EqOn.{u3, u2} E F f₁ f s) -> (Eq.{succ u2} F (f₁ x) (f x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr fderivWithin_congrₓ'. -/
theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
@@ -1734,10 +1605,7 @@ theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
#align fderiv_within_congr fderivWithin_congr
/- warning: fderiv_within_congr' -> fderivWithin_congr' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Set.EqOn.{u2, u3} E F f₁ f s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Set.EqOn.{u3, u2} E F f₁ f s) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr' fderivWithin_congr'ₓ'. -/
theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
@@ -1745,20 +1613,14 @@ theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
#align fderiv_within_congr' fderivWithin_congr'
/- warning: filter.eventually_eq.fderiv_eq -> Filter.EventuallyEq.fderiv_eq is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eqₓ'. -/
theorem Filter.EventuallyEq.fderiv_eq (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := by
rw [← fderivWithin_univ, ← fderivWithin_univ, h.fderiv_within_eq_nhds]
#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eq
/- warning: filter.eventually_eq.fderiv -> Filter.EventuallyEq.fderiv is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
+<too large>
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv Filter.EventuallyEq.fderivₓ'. -/
protected theorem Filter.EventuallyEq.fderiv (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f :=
h.eventuallyEq_nhds.mono fun x h => h.fderiv_eq
@@ -1909,10 +1771,7 @@ section Const
/- warning: has_strict_fderiv_at_const -> hasStrictFDerivAt_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E), HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (_x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E), HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (_x : E) => c) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_const hasStrictFDerivAt_constₓ'. -/
theorem hasStrictFDerivAt_const (c : F) (x : E) :
HasStrictFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
@@ -1920,10 +1779,7 @@ theorem hasStrictFDerivAt_const (c : F) (x : E) :
#align has_strict_fderiv_at_const hasStrictFDerivAt_const
/- warning: has_fderiv_at_filter_const -> hasFDerivAtFilter_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E) (L : Filter.{u2} E), HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x L
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E) (L : Filter.{u3} E), HasFDerivAtFilter.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x L
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_const hasFDerivAtFilter_constₓ'. -/
theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
HasFDerivAtFilter (fun x => c) (0 : E →L[𝕜] F) x L :=
@@ -1931,10 +1787,7 @@ theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
#align has_fderiv_at_filter_const hasFDerivAtFilter_const
/- warning: has_fderiv_within_at_const -> hasFDerivWithinAt_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E) (s : Set.{u2} E), HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) s x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E) (s : Set.{u3} E), HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) s x
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_const hasFDerivWithinAt_constₓ'. -/
theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
HasFDerivWithinAt (fun x => c) (0 : E →L[𝕜] F) s x :=
@@ -1942,10 +1795,7 @@ theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
#align has_fderiv_within_at_const hasFDerivWithinAt_const
/- warning: has_fderiv_at_const -> hasFDerivAt_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E), HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E), HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_const hasFDerivAt_constₓ'. -/
theorem hasFDerivAt_const (c : F) (x : E) : HasFDerivAt (fun x => c) (0 : E →L[𝕜] F) x :=
hasFDerivAtFilter_const _ _ _
@@ -1973,20 +1823,14 @@ theorem differentiableWithinAt_const (c : F) : DifferentiableWithinAt 𝕜 (fun
#align differentiable_within_at_const differentiableWithinAt_const
/- warning: fderiv_const_apply -> fderiv_const_apply is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} (c : F), Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {x : E} (c : F), Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) x) (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_const_apply fderiv_const_applyₓ'. -/
theorem fderiv_const_apply (c : F) : fderiv 𝕜 (fun y => c) x = 0 :=
HasFDerivAt.fderiv (hasFDerivAt_const c x)
#align fderiv_const_apply fderiv_const_apply
/- warning: fderiv_const -> fderiv_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F), Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c)) (OfNat.ofNat.{max u2 u3} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) 0 (OfNat.mk.{max u2 u3} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) 0 (Zero.zero.{max u2 u3} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Pi.instZero.{u2, max u2 u3} E (fun (x : E) => ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (i : E) => ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] (c : F), Eq.{max (succ u3) (succ u2)} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c)) (OfNat.ofNat.{max u3 u2} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) 0 (Zero.toOfNat0.{max u3 u2} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Pi.instZero.{u3, max u3 u2} E (fun (x : E) => ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fun (i : E) => ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_const fderiv_constₓ'. -/
@[simp]
theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 :=
@@ -1997,10 +1841,7 @@ theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 :=
#align fderiv_const fderiv_const
/- warning: fderiv_within_const_apply -> fderivWithin_const_apply is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) s x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) s x) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_const_apply fderivWithin_const_applyₓ'. -/
theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun y => c) s x = 0 :=
@@ -2031,10 +1872,7 @@ theorem differentiableOn_const (c : F) : DifferentiableOn 𝕜 (fun x => c) s :=
#align differentiable_on_const differentiableOn_const
/- warning: has_fderiv_within_at_singleton -> hasFDerivWithinAt_singleton is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (f : E -> F) (x : E), HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x) x
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (f : E -> F) (x : E), HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.instSingletonSet.{u2} E) x) x
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_singleton hasFDerivWithinAt_singletonₓ'. -/
theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) {x} x := by
@@ -2043,10 +1881,7 @@ theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
#align has_fderiv_within_at_singleton hasFDerivWithinAt_singleton
/- warning: has_fderiv_at_of_subsingleton -> hasFDerivAt_of_subsingleton is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] [h : Subsingleton.{succ u2} E] (f : E -> F) (x : E), HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] [h : Subsingleton.{succ u3} E] (f : E -> F) (x : E), HasFDerivAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingletonₓ'. -/
theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
@@ -2085,10 +1920,7 @@ theorem Set.Subsingleton.differentiableOn (hs : s.Subsingleton) : Differentiable
#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOn
/- warning: has_fderiv_at_zero_of_eventually_const -> hasFDerivAt_zero_of_eventually_const is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} (c : F), (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f (fun (y : E) => c)) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x)
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} (c : F), (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f (fun (y : E) => c)) -> (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_zero_of_eventually_const hasFDerivAt_zero_of_eventually_constₓ'. -/
theorem hasFDerivAt_zero_of_eventually_const (c : F) (hf : f =ᶠ[𝓝 x] fun y => c) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
@@ -2110,10 +1942,7 @@ variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAd
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F}
/- warning: support_fderiv_subset -> support_fderiv_subset is a dubious translation:
-lean 3 declaration is
- forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (Function.support.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u2, u3} E F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) f)
-but is expected to have type
- forall (𝕜 : Type.{u1}) {E : Type.{u3}} {F : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (Function.support.{u3, max u2 u3} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u3, u2} E F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) f)
+<too large>
Case conversion may be inaccurate. Consider using '#align support_fderiv_subset support_fderiv_subsetₓ'. -/
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
by
@@ -2123,20 +1952,14 @@ theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
#align support_fderiv_subset support_fderiv_subset
/- warning: tsupport_fderiv_subset -> tsupport_fderiv_subset is a dubious translation:
-lean 3 declaration is
- forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (tsupport.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u2, u3} E F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) f)
-but is expected to have type
- forall (𝕜 : Type.{u1}) {E : Type.{u3}} {F : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (tsupport.{u3, max u2 u3} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u3, u2} E F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) f)
+<too large>
Case conversion may be inaccurate. Consider using '#align tsupport_fderiv_subset tsupport_fderiv_subsetₓ'. -/
theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
closure_minimal (support_fderiv_subset 𝕜) isClosed_closure
#align tsupport_fderiv_subset tsupport_fderiv_subset
/- warning: has_compact_support.fderiv -> HasCompactSupport.fderiv is a dubious translation:
-lean 3 declaration is
- forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, (HasCompactSupport.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) f) -> (HasCompactSupport.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
-but is expected to have type
- forall (𝕜 : Type.{u1}) {E : Type.{u3}} {F : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, (HasCompactSupport.{u3, u2} E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) f) -> (HasCompactSupport.{u3, max u2 u3} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
+<too large>
Case conversion may be inaccurate. Consider using '#align has_compact_support.fderiv HasCompactSupport.fderivₓ'. -/
theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) : HasCompactSupport (fderiv 𝕜 f) :=
hf.mono' <| support_fderiv_subset 𝕜
mathlib commit https://github.com/leanprover-community/mathlib/commit/ef95945cd48c932c9e034872bd25c3c220d9c946
@@ -556,7 +556,7 @@ alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : E} {y : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) s x) f') (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y x f')
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_insert hasFDerivWithinAt_insertₓ'. -/
theorem hasFDerivWithinAt_insert {y : E} :
HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x :=
@@ -573,13 +573,13 @@ theorem hasFDerivWithinAt_insert {y : E} :
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : E} {y : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) s x) f') -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y x f')
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insertₓ'. -/
/- warning: has_fderiv_within_at.insert' -> HasFDerivWithinAt.insert' is a dubious translation:
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : E} {y : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y x f') -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) s x) f')
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'ₓ'. -/
alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
@@ -589,13 +589,19 @@ alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) x s) x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x f') -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) f' x) f')
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) x s) x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert HasFDerivWithinAt.insertₓ'. -/
theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt f f' s x) :
HasFDerivWithinAt f f' (insert x s) x :=
h.insert'
#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
+/- warning: has_fderiv_within_at_diff_singleton -> hasFDerivWithinAt_diff_singleton is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} (y : E), Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (SDiff.sdiff.{u2} (Set.{u2} E) (BooleanAlgebra.toHasSdiff.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) s (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y)) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} (y : E), Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (SDiff.sdiff.{u2} (Set.{u2} E) (Set.instSDiffSet.{u2} E) s (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.instSingletonSet.{u2} E) y)) x) (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_diff_singleton hasFDerivWithinAt_diff_singletonₓ'. -/
theorem hasFDerivWithinAt_diff_singleton (y : E) :
HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' s x := by
rw [← hasFDerivWithinAt_insert, insert_diff_singleton, hasFDerivWithinAt_insert]
@@ -1032,6 +1038,12 @@ theorem differentiableOn_of_locally_differentiableOn
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
+/- warning: fderiv_within_of_mem -> fderivWithin_of_mem is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s)) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem fderivWithin_of_memₓ'. -/
theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
((DifferentiableWithinAt.hasFDerivWithinAt h).mono_of_mem st).fderivWithin ht
@@ -1052,7 +1064,7 @@ theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_inter fderivWithin_interₓ'. -/
theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hasFDerivWithinAt_inter ht]
@@ -1310,6 +1322,12 @@ section congr
/-! ### congr properties of the derivative -/
+/- warning: has_fderiv_within_at_congr_set' -> hasFDerivWithinAt_congr_set' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'ₓ'. -/
theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
calc
@@ -1324,35 +1342,77 @@ theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'
+/- warning: has_fderiv_within_at_congr_set -> hasFDerivWithinAt_congr_set is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_setₓ'. -/
theorem hasFDerivWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
hasFDerivWithinAt_congr_set' x <| h.filter_mono inf_le_left
#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_set
+/- warning: differentiable_within_at_congr_set' -> differentiableWithinAt_congr_set' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'ₓ'. -/
theorem differentiableWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
exists_congr fun _ => hasFDerivWithinAt_congr_set' _ h
#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'
+/- warning: differentiable_within_at_congr_set -> differentiableWithinAt_congr_set is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_congr_set differentiableWithinAt_congr_setₓ'. -/
theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
exists_congr fun _ => hasFDerivWithinAt_congr_set h
#align differentiable_within_at_congr_set differentiableWithinAt_congr_set
+/- warning: fderiv_within_congr_set' -> fderivWithin_congr_set' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_congr_set' fderivWithin_congr_set'ₓ'. -/
theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
#align fderiv_within_congr_set' fderivWithin_congr_set'
+/- warning: fderiv_within_congr_set -> fderivWithin_congr_set is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_congr_set fderivWithin_congr_setₓ'. -/
theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_congr_set' x <| h.filter_mono inf_le_left
#align fderiv_within_congr_set fderivWithin_congr_set
+/- warning: fderiv_within_eventually_congr_set' -> fderivWithin_eventually_congr_set' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E} (y : E), (Filter.EventuallyEq.{u2, 0} E Prop (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x (HasCompl.compl.{u2} (Set.{u2} E) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} E) (Set.booleanAlgebra.{u2} E)) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) y))) s t) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E} (y : E), (Filter.EventuallyEq.{u3, 0} E Prop (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x (HasCompl.compl.{u3} (Set.{u3} E) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} E) (Set.instBooleanAlgebraSet.{u3} E)) (Singleton.singleton.{u3, u3} E (Set.{u3} E) (Set.instSingletonSet.{u3} E) y))) s t) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'ₓ'. -/
theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
(eventually_nhds_nhdsWithin.2 h).mono fun _ => fderivWithin_congr_set' y
#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'
+/- warning: fderiv_within_eventually_congr_set -> fderivWithin_eventually_congr_set is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, 0} E Prop (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) s t) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, 0} E Prop (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) s t) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_setₓ'. -/
theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
fderivWithin_eventually_congr_set' x <| h.filter_mono inf_le_left
@@ -1476,7 +1536,7 @@ theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem (h : f₀ =ᶠ[
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u1} E F f₁ f t) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_monoₓ'. -/
theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFDerivWithinAt f₁ f' t x :=
@@ -1487,7 +1547,7 @@ theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : EqOn
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f s) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u1} E F f₁ f s) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr HasFDerivWithinAt.congrₓ'. -/
theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s)
(hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
@@ -1498,7 +1558,7 @@ theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u1} E F f₁ f s) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'ₓ'. -/
theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s) (hx : x ∈ s) :
HasFDerivWithinAt f₁ f' s x :=
@@ -1531,7 +1591,7 @@ theorem HasFDerivAt.congr_of_eventuallyEq (h : HasFDerivAt f f' x) (h₁ : f₁
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u1} E F f₁ f t) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_monoₓ'. -/
theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
@@ -1607,7 +1667,7 @@ theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u1} E F f₁ f t) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_monoₓ'. -/
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
(hs : EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
@@ -1619,13 +1679,19 @@ theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithin
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u2} F (f₁ x) (f x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eqₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
simp only [fderivWithin, hs.has_fderiv_within_at_iff hx]
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
+/- warning: filter.eventually_eq.fderiv_within' -> Filter.EventuallyEq.fderiv_within' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₁ f) -> (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) t s) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'ₓ'. -/
theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
(eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
@@ -1634,6 +1700,12 @@ theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t
(hs.self_of_nhdsWithin hys)
#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
+/- warning: filter.eventually_eq.fderiv_within -> Filter.EventuallyEq.fderivWithin is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₁ f) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithinₓ'. -/
protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
hs.fderiv_within' Subset.rfl
@@ -1643,7 +1715,7 @@ protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f)
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhdsₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
@@ -1654,7 +1726,7 @@ theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Set.EqOn.{u2, u3} E F f₁ f s) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) y s) -> (Eq.{succ u1} F (f₁ y) (f y))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Set.EqOn.{u3, u2} E F f₁ f s) -> (Eq.{succ u2} F (f₁ x) (f x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr fderivWithin_congrₓ'. -/
theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
@@ -1665,7 +1737,7 @@ theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Set.EqOn.{u2, u3} E F f₁ f s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) y s) -> (Eq.{succ u1} F (f₁ y) (f y))) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Set.EqOn.{u3, u2} E F f₁ f s) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr' fderivWithin_congr'ₓ'. -/
theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
@@ -2050,6 +2122,12 @@ theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
#align support_fderiv_subset support_fderiv_subset
+/- warning: tsupport_fderiv_subset -> tsupport_fderiv_subset is a dubious translation:
+lean 3 declaration is
+ forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (tsupport.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u2, u3} E F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) f)
+but is expected to have type
+ forall (𝕜 : Type.{u1}) {E : Type.{u3}} {F : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (tsupport.{u3, max u2 u3} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u3, u2} E F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) f)
+Case conversion may be inaccurate. Consider using '#align tsupport_fderiv_subset tsupport_fderiv_subsetₓ'. -/
theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
closure_minimal (support_fderiv_subset 𝕜) isClosed_closure
#align tsupport_fderiv_subset tsupport_fderiv_subset
mathlib commit https://github.com/leanprover-community/mathlib/commit/ef95945cd48c932c9e034872bd25c3c220d9c946
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
+! leanprover-community/mathlib commit 3a69562db5a458db8322b190ec8d9a8bbd8a5b14
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -554,32 +554,32 @@ alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
/- warning: has_fderiv_within_at_insert -> hasFDerivWithinAt_insert is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : E} {y : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) s x) f') (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y x f')
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_insert hasFDerivWithinAt_insertₓ'. -/
-theorem hasFDerivWithinAt_insert {y : E} {g' : E →L[𝕜] F} :
- HasFDerivWithinAt g g' (insert y s) x ↔ HasFDerivWithinAt g g' s x :=
+theorem hasFDerivWithinAt_insert {y : E} :
+ HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x :=
by
rcases eq_or_ne x y with (rfl | h)
· simp_rw [HasFDerivWithinAt, HasFDerivAtFilter]
apply Asymptotics.isLittleO_insert
- simp only [sub_self, g'.map_zero]
- refine' ⟨fun h => h.mono <| subset_insert y s, fun hg => hg.mono_of_mem _⟩
+ simp only [sub_self, map_zero]
+ refine' ⟨fun h => h.mono <| subset_insert y s, fun hf => hf.mono_of_mem _⟩
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
/- warning: has_fderiv_within_at.of_insert -> HasFDerivWithinAt.of_insert is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : E} {y : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) s x) f') -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y x f')
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insertₓ'. -/
/- warning: has_fderiv_within_at.insert' -> HasFDerivWithinAt.insert' is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {y : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : E} {y : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y x f') -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) s x) f')
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'ₓ'. -/
alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
@@ -587,15 +587,20 @@ alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt
/- warning: has_fderiv_within_at.insert -> HasFDerivWithinAt.insert is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) x s) x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) x s) x)
but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) x s) x)
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E} {x : Set.{u2} E} {s : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x f') -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) f' x) f')
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert HasFDerivWithinAt.insertₓ'. -/
-theorem HasFDerivWithinAt.insert {g' : E →L[𝕜] F} (h : HasFDerivWithinAt g g' s x) :
- HasFDerivWithinAt g g' (insert x s) x :=
+theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt f f' s x) :
+ HasFDerivWithinAt f f' (insert x s) x :=
h.insert'
#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
+theorem hasFDerivWithinAt_diff_singleton (y : E) :
+ HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' s x := by
+ rw [← hasFDerivWithinAt_insert, insert_diff_singleton, hasFDerivWithinAt_insert]
+#align has_fderiv_within_at_diff_singleton hasFDerivWithinAt_diff_singleton
+
/- warning: has_strict_fderiv_at.is_O_sub -> HasStrictFDerivAt.isBigO_sub is a dubious translation:
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Asymptotics.IsBigO.{u2, u3, u2} (Prod.{u2, u2} E E) F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} (Prod.{u2, u2} E E) (Prod.topologicalSpace.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)))
@@ -914,7 +919,7 @@ but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall {t : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
Case conversion may be inaccurate. Consider using '#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_memₓ'. -/
theorem DifferentiableWithinAt.mono_of_mem (h : DifferentiableWithinAt 𝕜 f s x) {t : Set E}
- (hst : s ∈ nhdsWithin x t) : DifferentiableWithinAt 𝕜 f t x :=
+ (hst : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x :=
(h.HasFDerivWithinAt.mono_of_mem hst).DifferentiableWithinAt
#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_mem
@@ -936,8 +941,7 @@ but is expected to have type
Case conversion may be inaccurate. Consider using '#align differentiable_within_at_inter differentiableWithinAt_interₓ'. -/
theorem differentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
- simp only [DifferentiableWithinAt, HasFDerivWithinAt, HasFDerivAtFilter,
- nhdsWithin_restrict' s ht]
+ simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter ht]
#align differentiable_within_at_inter differentiableWithinAt_inter
/- warning: differentiable_within_at_inter' -> differentiableWithinAt_inter' is a dubious translation:
@@ -948,35 +952,9 @@ but is expected to have type
Case conversion may be inaccurate. Consider using '#align differentiable_within_at_inter' differentiableWithinAt_inter'ₓ'. -/
theorem differentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
- simp only [DifferentiableWithinAt, HasFDerivWithinAt, HasFDerivAtFilter,
- nhdsWithin_restrict'' s ht]
+ simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter' ht]
#align differentiable_within_at_inter' differentiableWithinAt_inter'
-/- warning: differentiable_within_at.antimono -> DifferentiableWithinAt.antimono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.antimono DifferentiableWithinAt.antimonoₓ'. -/
-theorem DifferentiableWithinAt.antimono (h : DifferentiableWithinAt 𝕜 f s x) (hst : s ⊆ t)
- (hx : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x := by
- rwa [← differentiableWithinAt_inter' hx, inter_eq_self_of_subset_right hst]
-#align differentiable_within_at.antimono DifferentiableWithinAt.antimono
-
-/- warning: has_fderiv_within_at.antimono -> HasFDerivWithinAt.antimono is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
-but is expected to have type
- forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.antimono HasFDerivWithinAt.antimonoₓ'. -/
-theorem HasFDerivWithinAt.antimono (h : HasFDerivWithinAt f f' s x) (hst : s ⊆ t)
- (hs : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x) : HasFDerivWithinAt f f' t x :=
- by
- have h' : HasFDerivWithinAt f _ t x :=
- (h.differentiable_within_at.antimono hst hx).HasFDerivWithinAt
- rwa [hs.eq h (h'.mono hst)]
-#align has_fderiv_within_at.antimono HasFDerivWithinAt.antimono
-
/- warning: differentiable_at.differentiable_within_at -> DifferentiableAt.differentiableWithinAt is a dubious translation:
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
@@ -1054,6 +1032,11 @@ theorem differentiableOn_of_locally_differentiableOn
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
+theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜 s x)
+ (h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
+ ((DifferentiableWithinAt.hasFDerivWithinAt h).mono_of_mem st).fderivWithin ht
+#align fderiv_within_of_mem fderivWithin_of_mem
+
/- warning: fderiv_within_subset -> fderivWithin_subset is a dubious translation:
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
@@ -1062,53 +1045,17 @@ but is expected to have type
Case conversion may be inaccurate. Consider using '#align fderiv_within_subset fderivWithin_subsetₓ'. -/
theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
- ((DifferentiableWithinAt.hasFDerivWithinAt h).mono st).fderivWithin ht
+ fderivWithin_of_mem (nhdsWithin_mono _ st self_mem_nhdsWithin) ht h
#align fderiv_within_subset fderivWithin_subset
-/- warning: fderiv_within_subset' -> fderivWithin_subset' is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-but is expected to have type
- forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) s t) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) s (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
-Case conversion may be inaccurate. Consider using '#align fderiv_within_subset' fderivWithin_subset'ₓ'. -/
-theorem fderivWithin_subset' (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x)
- (h : DifferentiableWithinAt 𝕜 f s x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
- fderivWithin_subset st ht (h.antimono st hx)
-#align fderiv_within_subset' fderivWithin_subset'
-
-/- warning: fderiv_within_univ -> fderivWithin_univ is a dubious translation:
-lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
-but is expected to have type
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, Eq.{max (succ u3) (succ u2)} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u3} E)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
-Case conversion may be inaccurate. Consider using '#align fderiv_within_univ fderivWithin_univₓ'. -/
-@[simp]
-theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
- by
- ext x : 1
- by_cases h : DifferentiableAt 𝕜 f x
- · apply HasFDerivWithinAt.fderivWithin _ uniqueDiffWithinAt_univ
- rw [hasFDerivWithinAt_univ]
- apply h.has_fderiv_at
- · have : ¬DifferentiableWithinAt 𝕜 f univ x := by rwa [differentiableWithinAt_univ]
- rw [fderiv_zero_of_not_differentiableAt h, fderivWithin_zero_of_not_differentiableWithinAt this]
-#align fderiv_within_univ fderivWithin_univ
-
/- warning: fderiv_within_inter -> fderivWithin_inter is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_inter fderivWithin_interₓ'. -/
-theorem fderivWithin_inter (ht : t ∈ 𝓝 x) (hs : UniqueDiffWithinAt 𝕜 s x) :
- fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x :=
- by
- by_cases h : DifferentiableWithinAt 𝕜 f (s ∩ t) x
- · apply fderivWithin_subset (inter_subset_left _ _) _ ((differentiableWithinAt_inter ht).1 h)
- apply hs.inter ht
- · have : ¬DifferentiableWithinAt 𝕜 f s x := by rwa [← differentiableWithinAt_inter ht]
- rw [fderivWithin_zero_of_not_differentiableWithinAt h,
- fderivWithin_zero_of_not_differentiableWithinAt this]
+theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
+ simp only [fderivWithin, hasFDerivWithinAt_inter ht]
#align fderiv_within_inter fderivWithin_inter
/- warning: fderiv_within_of_mem_nhds -> fderivWithin_of_mem_nhds is a dubious translation:
@@ -1117,13 +1064,21 @@ lean 3 declaration is
but is expected to have type
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) s (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhdsₓ'. -/
-theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
- by
- have : s = univ ∩ s := by simp only [univ_inter]
- rw [this, ← fderivWithin_univ]
- exact fderivWithin_inter h (uniqueDiffOn_univ _ (mem_univ _))
+theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
+ simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
+/- warning: fderiv_within_univ -> fderivWithin_univ is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, Eq.{max (succ u3) (succ u2)} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u3} E)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
+Case conversion may be inaccurate. Consider using '#align fderiv_within_univ fderivWithin_univₓ'. -/
+@[simp]
+theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
+ funext fun _ => fderivWithin_of_mem_nhds univ_mem
+#align fderiv_within_univ fderivWithin_univ
+
/- warning: fderiv_within_of_open -> fderivWithin_of_open is a dubious translation:
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (IsOpen.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
@@ -1131,7 +1086,7 @@ but is expected to have type
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E}, (IsOpen.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_of_open fderivWithin_of_openₓ'. -/
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
- fderivWithin_of_mem_nhds (IsOpen.mem_nhds hs hx)
+ fderivWithin_of_mem_nhds (hs.mem_nhds hx)
#align fderiv_within_of_open fderivWithin_of_open
/- warning: fderiv_within_eq_fderiv -> fderivWithin_eq_fderiv is a dubious translation:
@@ -1355,6 +1310,54 @@ section congr
/-! ### congr properties of the derivative -/
+theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
+ calc
+ HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' (s \ {y}) x :=
+ (hasFDerivWithinAt_diff_singleton _).symm
+ _ ↔ HasFDerivWithinAt f f' (t \ {y}) x :=
+ by
+ suffices 𝓝[s \ {y}] x = 𝓝[t \ {y}] x by simp only [HasFDerivWithinAt, this]
+ simpa only [set_eventually_eq_iff_inf_principal, ← nhdsWithin_inter', diff_eq,
+ inter_comm] using h
+ _ ↔ HasFDerivWithinAt f f' t x := hasFDerivWithinAt_diff_singleton _
+
+#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'
+
+theorem hasFDerivWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
+ HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
+ hasFDerivWithinAt_congr_set' x <| h.filter_mono inf_le_left
+#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_set
+
+theorem differentiableWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
+ exists_congr fun _ => hasFDerivWithinAt_congr_set' _ h
+#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'
+
+theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
+ DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
+ exists_congr fun _ => hasFDerivWithinAt_congr_set h
+#align differentiable_within_at_congr_set differentiableWithinAt_congr_set
+
+theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
+ simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
+#align fderiv_within_congr_set' fderivWithin_congr_set'
+
+theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
+ fderivWithin_congr_set' x <| h.filter_mono inf_le_left
+#align fderiv_within_congr_set fderivWithin_congr_set
+
+theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
+ (eventually_nhds_nhdsWithin.2 h).mono fun _ => fderivWithin_congr_set' y
+#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'
+
+theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
+ fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
+ fderivWithin_eventually_congr_set' x <| h.filter_mono inf_le_left
+#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_set
+
/- warning: filter.eventually_eq.has_strict_fderiv_at_iff -> Filter.EventuallyEq.hasStrictFDerivAt_iff is a dubious translation:
lean 3 declaration is
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (forall (y : E), Eq.{succ u3} F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' y) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁' y)) -> (Iff (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x) (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x))
@@ -1471,35 +1474,35 @@ theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem (h : f₀ =ᶠ[
/- warning: has_fderiv_within_at.congr_mono -> HasFDerivWithinAt.congr_mono is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_monoₓ'. -/
-theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : ∀ x ∈ t, f₁ x = f x)
+theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFDerivWithinAt f₁ f' t x :=
HasFDerivAtFilter.congr_of_eventuallyEq (h.mono h₁) (Filter.mem_inf_of_right ht) hx
#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_mono
/- warning: has_fderiv_within_at.congr -> HasFDerivWithinAt.congr is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f s) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr HasFDerivWithinAt.congrₓ'. -/
-theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
+theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s)
(hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
h.congr_mono hs hx (Subset.refl _)
#align has_fderiv_within_at.congr HasFDerivWithinAt.congr
/- warning: has_fderiv_within_at.congr' -> HasFDerivWithinAt.congr' is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.EqOn.{u2, u3} E F f₁ f s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'ₓ'. -/
-theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
- (hx : x ∈ s) : HasFDerivWithinAt f₁ f' s x :=
- h.congr hs (hs x hx)
+theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s) (hx : x ∈ s) :
+ HasFDerivWithinAt f₁ f' s x :=
+ h.congr hs (hs hx)
#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'
/- warning: has_fderiv_within_at.congr_of_eventually_eq -> HasFDerivWithinAt.congr_of_eventuallyEq is a dubious translation:
@@ -1526,13 +1529,13 @@ theorem HasFDerivAt.congr_of_eventuallyEq (h : HasFDerivAt f f' x) (h₁ : f₁
/- warning: differentiable_within_at.congr_mono -> DifferentiableWithinAt.congr_mono is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_monoₓ'. -/
-theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
- (ht : ∀ x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
- (HasFDerivWithinAt.congr_mono h.HasFDerivWithinAt ht hx h₁).DifferentiableWithinAt
+theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x) (ht : EqOn f₁ f t)
+ (hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
+ (h.HasFDerivWithinAt.congr_mono ht hx h₁).DifferentiableWithinAt
#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_mono
/- warning: differentiable_within_at.congr -> DifferentiableWithinAt.congr is a dubious translation:
@@ -1602,68 +1605,71 @@ theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (
/- warning: differentiable_within_at.fderiv_within_congr_mono -> DifferentiableWithinAt.fderivWithin_congr_mono is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.EqOn.{u2, u3} E F f₁ f t) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_monoₓ'. -/
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
- (hs : ∀ x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
+ (hs : EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
fderivWithin 𝕜 f₁ t x = fderivWithin 𝕜 f s x :=
(HasFDerivWithinAt.congr_mono h.HasFDerivWithinAt hs hx h₁).fderivWithin hxt
#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_mono
/- warning: filter.eventually_eq.fderiv_within_eq -> Filter.EventuallyEq.fderivWithin_eq is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eqₓ'. -/
-theorem Filter.EventuallyEq.fderivWithin_eq (hs : UniqueDiffWithinAt 𝕜 s x) (hL : f₁ =ᶠ[𝓝[s] x] f)
- (hx : f₁ x = f x) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- if h : DifferentiableWithinAt 𝕜 f s x then
- HasFDerivWithinAt.fderivWithin (h.HasFDerivWithinAt.congr_of_eventuallyEq hL hx) hs
- else
- by
- have h' : ¬DifferentiableWithinAt 𝕜 f₁ s x :=
- mt (fun h => h.congr_of_eventuallyEq (hL.mono fun x => Eq.symm) hx.symm) h
- rw [fderivWithin_zero_of_not_differentiableWithinAt h,
- fderivWithin_zero_of_not_differentiableWithinAt h']
+theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
+ simp only [fderivWithin, hs.has_fderiv_within_at_iff hx]
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
+theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
+ fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
+ (eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
+ eventually_mem_nhdsWithin.mono fun y hys hs =>
+ Filter.EventuallyEq.fderivWithin_eq (hs.filter_mono <| nhdsWithin_mono _ ht)
+ (hs.self_of_nhdsWithin hys)
+#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
+
+protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
+ fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
+ hs.fderiv_within' Subset.rfl
+#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
+
/- warning: filter.eventually_eq.fderiv_within_eq_nhds -> Filter.EventuallyEq.fderivWithin_eq_nhds is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhdsₓ'. -/
-theorem Filter.EventuallyEq.fderivWithin_eq_nhds (hs : UniqueDiffWithinAt 𝕜 s x)
- (hL : f₁ =ᶠ[𝓝 x] f) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- (show f₁ =ᶠ[𝓝[s] x] f from nhdsWithin_le_nhds hL).fderivWithin_eq hs (mem_of_mem_nhds hL : _)
+theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
+ (h.filter_mono nhdsWithin_le_nhds).fderivWithin_eq h.self_of_nhds
#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhds
/- warning: fderiv_within_congr -> fderivWithin_congr is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) y s) -> (Eq.{succ u3} F (f₁ y) (f y))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Set.EqOn.{u2, u3} E F f₁ f s) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) y s) -> (Eq.{succ u1} F (f₁ y) (f y))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr fderivWithin_congrₓ'. -/
-theorem fderivWithin_congr (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s, f₁ y = f y)
- (hx : f₁ x = f x) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- by
- apply Filter.EventuallyEq.fderivWithin_eq hs _ hx
- apply mem_of_superset self_mem_nhdsWithin
- exact hL
+theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
+ (hs.EventuallyEq.filter_mono inf_le_right).fderivWithin_eq hx
#align fderiv_within_congr fderivWithin_congr
/- warning: fderiv_within_congr' -> fderivWithin_congr' is a dubious translation:
lean 3 declaration is
- forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) y s) -> (Eq.{succ u3} F (f₁ y) (f y))) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Set.EqOn.{u2, u3} E F f₁ f s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
but is expected to have type
forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) y s) -> (Eq.{succ u1} F (f₁ y) (f y))) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
Case conversion may be inaccurate. Consider using '#align fderiv_within_congr' fderivWithin_congr'ₓ'. -/
-theorem fderivWithin_congr' (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s, f₁ y = f y)
- (hx : x ∈ s) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- fderivWithin_congr hs hL (hL x hx)
+theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
+ fderivWithin_congr hs (hs hx)
#align fderiv_within_congr' fderivWithin_congr'
/- warning: filter.eventually_eq.fderiv_eq -> Filter.EventuallyEq.fderiv_eq is a dubious translation:
@@ -1672,12 +1678,8 @@ lean 3 declaration is
but is expected to have type
forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eqₓ'. -/
-theorem Filter.EventuallyEq.fderiv_eq (hL : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x :=
- by
- have A : f₁ x = f x := hL.eq_of_nhds
- rw [← fderivWithin_univ, ← fderivWithin_univ]
- rw [← nhdsWithin_univ] at hL
- exact hL.fderiv_within_eq uniqueDiffWithinAt_univ A
+theorem Filter.EventuallyEq.fderiv_eq (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := by
+ rw [← fderivWithin_univ, ← fderivWithin_univ, h.fderiv_within_eq_nhds]
#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eq
/- warning: filter.eventually_eq.fderiv -> Filter.EventuallyEq.fderiv is a dubious translation:
@@ -2044,12 +2046,14 @@ Case conversion may be inaccurate. Consider using '#align support_fderiv_subset
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
by
intro x
- rw [← not_imp_not]
- intro h2x
- rw [not_mem_tsupport_iff_eventuallyEq] at h2x
- exact nmem_support.mpr (h2x.fderiv_eq.trans <| fderiv_const_apply 0)
+ rw [← not_imp_not, not_mem_tsupport_iff_eventuallyEq, nmem_support]
+ exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
#align support_fderiv_subset support_fderiv_subset
+theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
+ closure_minimal (support_fderiv_subset 𝕜) isClosed_closure
+#align tsupport_fderiv_subset tsupport_fderiv_subset
+
/- warning: has_compact_support.fderiv -> HasCompactSupport.fderiv is a dubious translation:
lean 3 declaration is
forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, (HasCompactSupport.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) f) -> (HasCompactSupport.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
mathlib commit https://github.com/leanprover-community/mathlib/commit/75e7fca56381d056096ce5d05e938f63a6567828
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.NormedSpace.BoundedLinearMaps
/-!
# The Fréchet derivative
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
Let `E` and `F` be normed spaces, `f : E → F`, and `f' : E →L[𝕜] F` a
continuous 𝕜-linear map, where `𝕜` is a non-discrete normed field. Then
mathlib commit https://github.com/leanprover-community/mathlib/commit/33c67ae661dd8988516ff7f247b0be3018cdd952
@@ -138,70 +138,90 @@ variable {G : Type _} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
variable {G' : Type _} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
+#print HasFDerivAtFilter /-
/-- A function `f` has the continuous linear map `f'` as derivative along the filter `L` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` converges along the filter `L`. This definition
is designed to be specialized for `L = 𝓝 x` (in `has_fderiv_at`), giving rise to the usual notion
of Fréchet derivative, and for `L = 𝓝[s] x` (in `has_fderiv_within_at`), giving rise to
the notion of Fréchet derivative along the set `s`. -/
-def HasFderivAtFilter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : Filter E) :=
+def HasFDerivAtFilter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : Filter E) :=
(fun x' => f x' - f x - f' (x' - x)) =o[L] fun x' => x' - x
-#align has_fderiv_at_filter HasFderivAtFilter
+#align has_fderiv_at_filter HasFDerivAtFilter
+-/
+#print HasFDerivWithinAt /-
/-- A function `f` has the continuous linear map `f'` as derivative at `x` within a set `s` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x` inside `s`. -/
-def HasFderivWithinAt (f : E → F) (f' : E →L[𝕜] F) (s : Set E) (x : E) :=
- HasFderivAtFilter f f' x (𝓝[s] x)
-#align has_fderiv_within_at HasFderivWithinAt
+def HasFDerivWithinAt (f : E → F) (f' : E →L[𝕜] F) (s : Set E) (x : E) :=
+ HasFDerivAtFilter f f' x (𝓝[s] x)
+#align has_fderiv_within_at HasFDerivWithinAt
+-/
+#print HasFDerivAt /-
/-- A function `f` has the continuous linear map `f'` as derivative at `x` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x`. -/
-def HasFderivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
- HasFderivAtFilter f f' x (𝓝 x)
-#align has_fderiv_at HasFderivAt
+def HasFDerivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
+ HasFDerivAtFilter f f' x (𝓝 x)
+#align has_fderiv_at HasFDerivAt
+-/
+#print HasStrictFDerivAt /-
/-- A function `f` has derivative `f'` at `a` in the sense of *strict differentiability*
if `f x - f y - f' (x - y) = o(x - y)` as `x, y → a`. This form of differentiability is required,
e.g., by the inverse function theorem. Any `C^1` function on a vector space over `ℝ` is strictly
differentiable but this definition works, e.g., for vector spaces over `p`-adic numbers. -/
-def HasStrictFderivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
+def HasStrictFDerivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
(fun p : E × E => f p.1 - f p.2 - f' (p.1 - p.2)) =o[𝓝 (x, x)] fun p : E × E => p.1 - p.2
-#align has_strict_fderiv_at HasStrictFderivAt
+#align has_strict_fderiv_at HasStrictFDerivAt
+-/
variable (𝕜)
+#print DifferentiableWithinAt /-
/-- A function `f` is differentiable at a point `x` within a set `s` if it admits a derivative
there (possibly non-unique). -/
def DifferentiableWithinAt (f : E → F) (s : Set E) (x : E) :=
- ∃ f' : E →L[𝕜] F, HasFderivWithinAt f f' s x
+ ∃ f' : E →L[𝕜] F, HasFDerivWithinAt f f' s x
#align differentiable_within_at DifferentiableWithinAt
+-/
+#print DifferentiableAt /-
/-- A function `f` is differentiable at a point `x` if it admits a derivative there (possibly
non-unique). -/
def DifferentiableAt (f : E → F) (x : E) :=
- ∃ f' : E →L[𝕜] F, HasFderivAt f f' x
+ ∃ f' : E →L[𝕜] F, HasFDerivAt f f' x
#align differentiable_at DifferentiableAt
+-/
+#print fderivWithin /-
/-- If `f` has a derivative at `x` within `s`, then `fderiv_within 𝕜 f s x` is such a derivative.
Otherwise, it is set to `0`. -/
def fderivWithin (f : E → F) (s : Set E) (x : E) : E →L[𝕜] F :=
- if h : ∃ f', HasFderivWithinAt f f' s x then Classical.choose h else 0
+ if h : ∃ f', HasFDerivWithinAt f f' s x then Classical.choose h else 0
#align fderiv_within fderivWithin
+-/
+#print fderiv /-
/-- If `f` has a derivative at `x`, then `fderiv 𝕜 f x` is such a derivative. Otherwise, it is
set to `0`. -/
def fderiv (f : E → F) (x : E) : E →L[𝕜] F :=
- if h : ∃ f', HasFderivAt f f' x then Classical.choose h else 0
+ if h : ∃ f', HasFDerivAt f f' x then Classical.choose h else 0
#align fderiv fderiv
+-/
+#print DifferentiableOn /-
/-- `differentiable_on 𝕜 f s` means that `f` is differentiable within `s` at any point of `s`. -/
def DifferentiableOn (f : E → F) (s : Set E) :=
∀ x ∈ s, DifferentiableWithinAt 𝕜 f s x
#align differentiable_on DifferentiableOn
+-/
+#print Differentiable /-
/-- `differentiable 𝕜 f` means that `f` is differentiable at any point. -/
def Differentiable (f : E → F) :=
∀ x, DifferentiableAt 𝕜 f x
#align differentiable Differentiable
+-/
variable {𝕜}
@@ -217,21 +237,39 @@ variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
+/- warning: fderiv_within_zero_of_not_differentiable_within_at -> fderivWithin_zero_of_not_differentiableWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (Not (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (Not (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAtₓ'. -/
theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWithinAt 𝕜 f s x) :
fderivWithin 𝕜 f s x = 0 :=
by
- have : ¬∃ f', HasFderivWithinAt f f' s x := h
+ have : ¬∃ f', HasFDerivWithinAt f f' s x := h
simp [fderivWithin, this]
#align fderiv_within_zero_of_not_differentiable_within_at fderivWithin_zero_of_not_differentiableWithinAt
+/- warning: fderiv_zero_of_not_differentiable_at -> fderiv_zero_of_not_differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (Not (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (Not (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))))
+Case conversion may be inaccurate. Consider using '#align fderiv_zero_of_not_differentiable_at fderiv_zero_of_not_differentiableAtₓ'. -/
theorem fderiv_zero_of_not_differentiableAt (h : ¬DifferentiableAt 𝕜 f x) : fderiv 𝕜 f x = 0 :=
by
- have : ¬∃ f', HasFderivAt f f' x := h
+ have : ¬∃ f', HasFDerivAt f f' x := h
simp [fderiv, this]
#align fderiv_zero_of_not_differentiable_at fderiv_zero_of_not_differentiableAt
section DerivativeUniqueness
+/- warning: has_fderiv_within_at.lim -> HasFDerivWithinAt.lim is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall {α : Type.{u4}} (l : Filter.{u4} α) {c : α -> 𝕜} {d : α -> E} {v : E}, (Filter.Eventually.{u4} α (fun (n : α) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (d n)) s) l) -> (Filter.Tendsto.{u4, 0} α Real (fun (n : α) => Norm.norm.{u1} 𝕜 (NormedField.toHasNorm.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.preorder)) -> (Filter.Tendsto.{u4, u2} α E (fun (n : α) => SMul.smul.{u1, u2} 𝕜 E (SMulZeroClass.toHasSmul.{u1, u2} 𝕜 E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} 𝕜 E (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} 𝕜 E (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} 𝕜 E (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (c n) (d n)) l (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) v)) -> (Filter.Tendsto.{u4, u3} α F (fun (n : α) => SMul.smul.{u1, u3} 𝕜 F (SMulZeroClass.toHasSmul.{u1, u3} 𝕜 F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} 𝕜 F (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} 𝕜 F (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (Module.toMulActionWithZero.{u1, u3} 𝕜 F (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) (c n) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (d n))) (f x))) l (nhds.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' v))))
+but is expected to have type
+ forall {𝕜 : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (HasFDerivWithinAt.{u4, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall {α : Type.{u1}} (l : Filter.{u1} α) {c : α -> 𝕜} {d : α -> E} {v : E}, (Filter.Eventually.{u1} α (fun (n : α) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (HAdd.hAdd.{u3, u3, u3} E E E (instHAdd.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))))) x (d n)) s) l) -> (Filter.Tendsto.{u1, 0} α Real (fun (n : α) => Norm.norm.{u4} 𝕜 (NormedField.toNorm.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.instPreorderReal)) -> (Filter.Tendsto.{u1, u3} α E (fun (n : α) => HSMul.hSMul.{u4, u3, u3} 𝕜 E E (instHSMul.{u4, u3} 𝕜 E (SMulZeroClass.toSMul.{u4, u3} 𝕜 E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)))))) (c n) (d n)) l (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) v)) -> (Filter.Tendsto.{u1, u2} α F (fun (n : α) => HSMul.hSMul.{u4, u2, u2} 𝕜 F F (instHSMul.{u4, u2} 𝕜 F (SMulZeroClass.toSMul.{u4, u2} 𝕜 F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u2} 𝕜 F (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u2} 𝕜 F (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (Module.toMulActionWithZero.{u4, u2} 𝕜 F (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))))) (c n) (HSub.hSub.{u2, u2, u2} F F F (instHSub.{u2} F (SubNegMonoid.toSub.{u2} F (AddGroup.toSubNegMonoid.{u2} F (NormedAddGroup.toAddGroup.{u2} F (NormedAddCommGroup.toNormedAddGroup.{u2} F _inst_4))))) (f (HAdd.hAdd.{u3, u3, u3} E E E (instHAdd.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))))) x (d n))) (f x))) l (nhds.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u4, u4, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f' v))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.lim HasFDerivWithinAt.limₓ'. -/
/- In this section, we discuss the uniqueness of the derivative.
We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the
uniqueness of the derivative. -/
@@ -240,7 +278,7 @@ i.e., `n (f (x + (1/n) v) - f x)` converges to `f' v`. More generally, if `c n`
and `c n * d n` tends to `v`, then `c n * (f (x + d n) - f x)` tends to `f' v`. This lemma expresses
this fact, for functions having a derivative within a set. Its specific formulation is useful for
tangent cone related discussions. -/
-theorem HasFderivWithinAt.lim (h : HasFderivWithinAt f f' s x) {α : Type _} (l : Filter α)
+theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l : Filter α)
{c : α → 𝕜} {d : α → E} {v : E} (dtop : ∀ᶠ n in l, x + d n ∈ s)
(clim : Tendsto (fun n => ‖c n‖) l atTop) (cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)) :
Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (f' v)) :=
@@ -274,24 +312,42 @@ theorem HasFderivWithinAt.lim (h : HasFderivWithinAt f f' s x) {α : Type _} (l
ext n
simp [smul_add, smul_sub]
rwa [this, zero_add] at L3
-#align has_fderiv_within_at.lim HasFderivWithinAt.lim
-
+#align has_fderiv_within_at.lim HasFDerivWithinAt.lim
+
+/- warning: has_fderiv_within_at.unique_on -> HasFDerivWithinAt.unique_on is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Set.EqOn.{u2, u3} E F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f') (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁') (tangentConeAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Set.EqOn.{u2, u1} E F (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f') (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f₁') (tangentConeAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_onₓ'. -/
/-- If `f'` and `f₁'` are two derivatives of `f` within `s` at `x`, then they are equal on the
tangent cone to `s` at `x` -/
-theorem HasFderivWithinAt.unique_on (hf : HasFderivWithinAt f f' s x)
- (hg : HasFderivWithinAt f f₁' s x) : EqOn f' f₁' (tangentConeAt 𝕜 s x) :=
+theorem HasFDerivWithinAt.unique_on (hf : HasFDerivWithinAt f f' s x)
+ (hg : HasFDerivWithinAt f f₁' s x) : EqOn f' f₁' (tangentConeAt 𝕜 s x) :=
fun y ⟨c, d, dtop, clim, cdlim⟩ =>
tendsto_nhds_unique (hf.lim atTop dtop clim cdlim) (hg.lim atTop dtop clim cdlim)
-#align has_fderiv_within_at.unique_on HasFderivWithinAt.unique_on
-
+#align has_fderiv_within_at.unique_on HasFDerivWithinAt.unique_on
+
+/- warning: unique_diff_within_at.eq -> UniqueDiffWithinAt.eq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' f₁')
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) f' f₁')
+Case conversion may be inaccurate. Consider using '#align unique_diff_within_at.eq UniqueDiffWithinAt.eqₓ'. -/
/-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/
-theorem UniqueDiffWithinAt.eq (H : UniqueDiffWithinAt 𝕜 s x) (hf : HasFderivWithinAt f f' s x)
- (hg : HasFderivWithinAt f f₁' s x) : f' = f₁' :=
+theorem UniqueDiffWithinAt.eq (H : UniqueDiffWithinAt 𝕜 s x) (hf : HasFDerivWithinAt f f' s x)
+ (hg : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
ContinuousLinearMap.ext_on H.1 (hf.unique_on hg)
#align unique_diff_within_at.eq UniqueDiffWithinAt.eq
-theorem UniqueDiffOn.eq (H : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (h : HasFderivWithinAt f f' s x)
- (h₁ : HasFderivWithinAt f f₁' s x) : f' = f₁' :=
+/- warning: unique_diff_on.eq -> UniqueDiffOn.eq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffOn.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' f₁')
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (UniqueDiffOn.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) f' f₁')
+Case conversion may be inaccurate. Consider using '#align unique_diff_on.eq UniqueDiffOn.eqₓ'. -/
+theorem UniqueDiffOn.eq (H : UniqueDiffOn 𝕜 s) (hx : x ∈ s) (h : HasFDerivWithinAt f f' s x)
+ (h₁ : HasFDerivWithinAt f f₁' s x) : f' = f₁' :=
(H x hx).Eq h h₁
#align unique_diff_on.eq UniqueDiffOn.eq
@@ -302,151 +358,295 @@ section FderivProperties
/-! ### Basic properties of the derivative -/
-theorem hasFderivAtFilter_iff_tendsto :
- HasFderivAtFilter f f' x L ↔
+/- warning: has_fderiv_at_filter_iff_tendsto -> hasFDerivAtFilter_iff_tendsto is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, Iff (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Inv.inv.{0} Real Real.hasInv (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) L (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, Iff (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Inv.inv.{0} Real Real.instInvReal (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x)) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) L (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendstoₓ'. -/
+theorem hasFDerivAtFilter_iff_tendsto :
+ HasFDerivAtFilter f f' x L ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) L (𝓝 0) :=
by
have h : ∀ x', ‖x' - x‖ = 0 → ‖f x' - f x - f' (x' - x)‖ = 0 := fun x' hx' =>
by
rw [sub_eq_zero.1 (norm_eq_zero.1 hx')]
simp
- unfold HasFderivAtFilter
+ unfold HasFDerivAtFilter
rw [← is_o_norm_left, ← is_o_norm_right, is_o_iff_tendsto h]
exact tendsto_congr fun _ => div_eq_inv_mul _ _
-#align has_fderiv_at_filter_iff_tendsto hasFderivAtFilter_iff_tendsto
-
-theorem hasFderivWithinAt_iff_tendsto :
- HasFderivWithinAt f f' s x ↔
+#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendsto
+
+/- warning: has_fderiv_within_at_iff_tendsto -> hasFDerivWithinAt_iff_tendsto is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Inv.inv.{0} Real Real.hasInv (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Inv.inv.{0} Real Real.instInvReal (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x)) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendstoₓ'. -/
+theorem hasFDerivWithinAt_iff_tendsto :
+ HasFDerivWithinAt f f' s x ↔
Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝[s] x) (𝓝 0) :=
- hasFderivAtFilter_iff_tendsto
-#align has_fderiv_within_at_iff_tendsto hasFderivWithinAt_iff_tendsto
-
-theorem hasFderivAt_iff_tendsto :
- HasFderivAt f f' x ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝 x) (𝓝 0) :=
- hasFderivAtFilter_iff_tendsto
-#align has_fderiv_at_iff_tendsto hasFderivAt_iff_tendsto
-
-theorem hasFderivAt_iff_isLittleO_nhds_zero :
- HasFderivAt f f' x ↔ (fun h : E => f (x + h) - f x - f' h) =o[𝓝 0] fun h => h :=
+ hasFDerivAtFilter_iff_tendsto
+#align has_fderiv_within_at_iff_tendsto hasFDerivWithinAt_iff_tendsto
+
+/- warning: has_fderiv_at_iff_tendsto -> hasFDerivAt_iff_tendsto is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Inv.inv.{0} Real Real.hasInv (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Filter.Tendsto.{u2, 0} E Real (fun (x' : E) => HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Inv.inv.{0} Real Real.instInvReal (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))) (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x)) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendstoₓ'. -/
+theorem hasFDerivAt_iff_tendsto :
+ HasFDerivAt f f' x ↔ Tendsto (fun x' => ‖x' - x‖⁻¹ * ‖f x' - f x - f' (x' - x)‖) (𝓝 x) (𝓝 0) :=
+ hasFDerivAtFilter_iff_tendsto
+#align has_fderiv_at_iff_tendsto hasFDerivAt_iff_tendsto
+
+/- warning: has_fderiv_at_iff_is_o_nhds_zero -> hasFDerivAt_iff_isLittleO_nhds_zero is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Asymptotics.IsLittleO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) (fun (h : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x h)) (f x)) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' h)) (fun (h : E) => h))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) (Asymptotics.IsLittleO.{u2, u1, u2} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) (fun (h : E) => HSub.hSub.{u1, u1, u1} F ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) h) F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x h)) (f x)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f' h)) (fun (h : E) => h))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zeroₓ'. -/
+theorem hasFDerivAt_iff_isLittleO_nhds_zero :
+ HasFDerivAt f f' x ↔ (fun h : E => f (x + h) - f x - f' h) =o[𝓝 0] fun h => h :=
by
- rw [HasFderivAt, HasFderivAtFilter, ← map_add_left_nhds_zero x, is_o_map]
+ rw [HasFDerivAt, HasFDerivAtFilter, ← map_add_left_nhds_zero x, is_o_map]
simp [(· ∘ ·)]
-#align has_fderiv_at_iff_is_o_nhds_zero hasFderivAt_iff_isLittleO_nhds_zero
-
+#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zero
+
+/- warning: has_fderiv_at.le_of_lip' -> HasFDerivAt.le_of_lip' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {C : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) C) -> (Filter.Eventually.{u2} E (fun (x : E) => LE.le.{0} Real Real.hasLe (Norm.norm.{u3} F (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x) (f x₀))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) C (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) f') C))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {C : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) C) -> (Filter.Eventually.{u2} E (fun (x : E) => LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} F (NormedAddCommGroup.toNorm.{u1} F _inst_4) (HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x) (f x₀))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) C (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)))) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) f') C))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'ₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. This version
only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood of `x`. -/
-theorem HasFderivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFderivAt f f' x₀)
+theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) : ‖f'‖ ≤ C :=
by
refine' le_of_forall_pos_le_add fun ε ε0 => op_norm_le_of_nhds_zero _ _
exact add_nonneg hC₀ ε0.le
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
- filter_upwards [is_o_iff.1 (hasFderivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip]with y hy hyC
+ filter_upwards [is_o_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip]with y hy hyC
rw [add_sub_cancel'] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
_ = (C + ε) * ‖y‖ := (add_mul _ _ _).symm
-#align has_fderiv_at.le_of_lip' HasFderivAt.le_of_lip'
-
+#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
+
+/- warning: has_fderiv_at.le_of_lip -> HasFDerivAt.le_of_lip is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) C f s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) f') ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) C))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x₀ : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (forall {s : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) C f s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) f') (NNReal.toReal C))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lipₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/
-theorem HasFderivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFderivAt f f' x₀)
+theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖f'‖ ≤ C :=
by
refine' hf.le_of_lip' C.coe_nonneg _
filter_upwards [hs]with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
-#align has_fderiv_at.le_of_lip HasFderivAt.le_of_lip
-
-theorem HasFderivAtFilter.mono (h : HasFderivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
- HasFderivAtFilter f f' x L₁ :=
+#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lip
+
+/- warning: has_fderiv_at_filter.mono -> HasFDerivAtFilter.mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L₁ : Filter.{u2} E} {L₂ : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₂) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toHasLe.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.partialOrder.{u2} E))) L₁ L₂) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₁)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L₁ : Filter.{u2} E} {L₂ : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₂) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toLE.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.instPartialOrderFilter.{u2} E))) L₁ L₂) -> (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L₁)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.mono HasFDerivAtFilter.monoₓ'. -/
+theorem HasFDerivAtFilter.mono (h : HasFDerivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
+ HasFDerivAtFilter f f' x L₁ :=
h.mono hst
-#align has_fderiv_at_filter.mono HasFderivAtFilter.mono
-
-theorem HasFderivWithinAt.mono_of_mem (h : HasFderivWithinAt f f' t x) (hst : t ∈ 𝓝[s] x) :
- HasFderivWithinAt f f' s x :=
+#align has_fderiv_at_filter.mono HasFDerivAtFilter.mono
+
+/- warning: has_fderiv_within_at.mono_of_mem -> HasFDerivWithinAt.mono_of_mem is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.mono_of_mem HasFDerivWithinAt.mono_of_memₓ'. -/
+theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' t x) (hst : t ∈ 𝓝[s] x) :
+ HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_le_iff.mpr hst
-#align has_fderiv_within_at.mono_of_mem HasFderivWithinAt.mono_of_mem
-
-theorem HasFderivWithinAt.mono (h : HasFderivWithinAt f f' t x) (hst : s ⊆ t) :
- HasFderivWithinAt f f' s x :=
+#align has_fderiv_within_at.mono_of_mem HasFDerivWithinAt.mono_of_mem
+
+/- warning: has_fderiv_within_at.mono -> HasFDerivWithinAt.mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.mono HasFDerivWithinAt.monoₓ'. -/
+theorem HasFDerivWithinAt.mono (h : HasFDerivWithinAt f f' t x) (hst : s ⊆ t) :
+ HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_mono _ hst
-#align has_fderiv_within_at.mono HasFderivWithinAt.mono
-
-theorem HasFderivAt.hasFderivAtFilter (h : HasFderivAt f f' x) (hL : L ≤ 𝓝 x) :
- HasFderivAtFilter f f' x L :=
+#align has_fderiv_within_at.mono HasFDerivWithinAt.mono
+
+/- warning: has_fderiv_at.has_fderiv_at_filter -> HasFDerivAt.hasFDerivAtFilter is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toHasLe.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.partialOrder.{u2} E))) L (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (LE.le.{u2} (Filter.{u2} E) (Preorder.toLE.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.instPartialOrderFilter.{u2} E))) L (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.has_fderiv_at_filter HasFDerivAt.hasFDerivAtFilterₓ'. -/
+theorem HasFDerivAt.hasFDerivAtFilter (h : HasFDerivAt f f' x) (hL : L ≤ 𝓝 x) :
+ HasFDerivAtFilter f f' x L :=
h.mono hL
-#align has_fderiv_at.has_fderiv_at_filter HasFderivAt.hasFderivAtFilter
-
-theorem HasFderivAt.hasFderivWithinAt (h : HasFderivAt f f' x) : HasFderivWithinAt f f' s x :=
- h.HasFderivAtFilter inf_le_left
-#align has_fderiv_at.has_fderiv_within_at HasFderivAt.hasFderivWithinAt
-
-theorem HasFderivWithinAt.differentiableWithinAt (h : HasFderivWithinAt f f' s x) :
+#align has_fderiv_at.has_fderiv_at_filter HasFDerivAt.hasFDerivAtFilter
+
+/- warning: has_fderiv_at.has_fderiv_within_at -> HasFDerivAt.hasFDerivWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.has_fderiv_within_at HasFDerivAt.hasFDerivWithinAtₓ'. -/
+theorem HasFDerivAt.hasFDerivWithinAt (h : HasFDerivAt f f' x) : HasFDerivWithinAt f f' s x :=
+ h.HasFDerivAtFilter inf_le_left
+#align has_fderiv_at.has_fderiv_within_at HasFDerivAt.hasFDerivWithinAt
+
+/- warning: has_fderiv_within_at.differentiable_within_at -> HasFDerivWithinAt.differentiableWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.differentiable_within_at HasFDerivWithinAt.differentiableWithinAtₓ'. -/
+theorem HasFDerivWithinAt.differentiableWithinAt (h : HasFDerivWithinAt f f' s x) :
DifferentiableWithinAt 𝕜 f s x :=
⟨f', h⟩
-#align has_fderiv_within_at.differentiable_within_at HasFderivWithinAt.differentiableWithinAt
-
-theorem HasFderivAt.differentiableAt (h : HasFderivAt f f' x) : DifferentiableAt 𝕜 f x :=
+#align has_fderiv_within_at.differentiable_within_at HasFDerivWithinAt.differentiableWithinAt
+
+/- warning: has_fderiv_at.differentiable_at -> HasFDerivAt.differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.differentiable_at HasFDerivAt.differentiableAtₓ'. -/
+theorem HasFDerivAt.differentiableAt (h : HasFDerivAt f f' x) : DifferentiableAt 𝕜 f x :=
⟨f', h⟩
-#align has_fderiv_at.differentiable_at HasFderivAt.differentiableAt
-
+#align has_fderiv_at.differentiable_at HasFDerivAt.differentiableAt
+
+/- warning: has_fderiv_within_at_univ -> hasFDerivWithinAt_univ is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_univ hasFDerivWithinAt_univₓ'. -/
@[simp]
-theorem hasFderivWithinAt_univ : HasFderivWithinAt f f' univ x ↔ HasFderivAt f f' x :=
+theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f f' x :=
by
- simp only [HasFderivWithinAt, nhdsWithin_univ]
+ simp only [HasFDerivWithinAt, nhdsWithin_univ]
rfl
-#align has_fderiv_within_at_univ hasFderivWithinAt_univ
-
-alias hasFderivWithinAt_univ ↔ HasFderivWithinAt.hasFderivAt_of_univ _
-#align has_fderiv_within_at.has_fderiv_at_of_univ HasFderivWithinAt.hasFderivAt_of_univ
-
-theorem hasFderivWithinAt_insert {y : E} {g' : E →L[𝕜] F} :
- HasFderivWithinAt g g' (insert y s) x ↔ HasFderivWithinAt g g' s x :=
+#align has_fderiv_within_at_univ hasFDerivWithinAt_univ
+
+/- warning: has_fderiv_within_at.has_fderiv_at_of_univ -> HasFDerivWithinAt.hasFDerivAt_of_univ is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Set.univ.{u2} E) x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univₓ'. -/
+alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
+#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
+
+/- warning: has_fderiv_within_at_insert -> hasFDerivWithinAt_insert is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, Iff (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_insert hasFDerivWithinAt_insertₓ'. -/
+theorem hasFDerivWithinAt_insert {y : E} {g' : E →L[𝕜] F} :
+ HasFDerivWithinAt g g' (insert y s) x ↔ HasFDerivWithinAt g g' s x :=
by
rcases eq_or_ne x y with (rfl | h)
- · simp_rw [HasFderivWithinAt, HasFderivAtFilter]
+ · simp_rw [HasFDerivWithinAt, HasFDerivAtFilter]
apply Asymptotics.isLittleO_insert
simp only [sub_self, g'.map_zero]
refine' ⟨fun h => h.mono <| subset_insert y s, fun hg => hg.mono_of_mem _⟩
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
-#align has_fderiv_within_at_insert hasFderivWithinAt_insert
-
-alias hasFderivWithinAt_insert ↔ HasFderivWithinAt.of_insert HasFderivWithinAt.insert'
-#align has_fderiv_within_at.of_insert HasFderivWithinAt.of_insert
-#align has_fderiv_within_at.insert' HasFderivWithinAt.insert'
-
-theorem HasFderivWithinAt.insert {g' : E →L[𝕜] F} (h : HasFderivWithinAt g g' s x) :
- HasFderivWithinAt g g' (insert x s) x :=
+#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
+
+/- warning: has_fderiv_within_at.of_insert -> HasFDerivWithinAt.of_insert is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insertₓ'. -/
+/- warning: has_fderiv_within_at.insert' -> HasFDerivWithinAt.insert' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) y s) x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {y : E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) y s) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'ₓ'. -/
+alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
+#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
+#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
+
+/- warning: has_fderiv_within_at.insert -> HasFDerivWithinAt.insert is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {g' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.hasInsert.{u2} E) x s) x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {g : E -> F} {x : E} {s : Set.{u2} E} {g' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 g g' (Insert.insert.{u2, u2} E (Set.{u2} E) (Set.instInsertSet.{u2} E) x s) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.insert HasFDerivWithinAt.insertₓ'. -/
+theorem HasFDerivWithinAt.insert {g' : E →L[𝕜] F} (h : HasFDerivWithinAt g g' s x) :
+ HasFDerivWithinAt g g' (insert x s) x :=
h.insert'
-#align has_fderiv_within_at.insert HasFderivWithinAt.insert
-
-theorem HasStrictFderivAt.isBigO_sub (hf : HasStrictFderivAt f f' x) :
+#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
+
+/- warning: has_strict_fderiv_at.is_O_sub -> HasStrictFDerivAt.isBigO_sub is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Asymptotics.IsBigO.{u2, u3, u2} (Prod.{u2, u2} E E) F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} (Prod.{u2, u2} E E) (Prod.topologicalSpace.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Asymptotics.IsBigO.{u2, u1, u2} (Prod.{u2, u2} E E) F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) (nhds.{u2} (Prod.{u2, u2} E E) (instTopologicalSpaceProd.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)))
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.is_O_sub HasStrictFDerivAt.isBigO_subₓ'. -/
+theorem HasStrictFDerivAt.isBigO_sub (hf : HasStrictFDerivAt f f' x) :
(fun p : E × E => f p.1 - f p.2) =O[𝓝 (x, x)] fun p : E × E => p.1 - p.2 :=
hf.IsBigO.congr_of_sub.2 (f'.isBigO_comp _ _)
-#align has_strict_fderiv_at.is_O_sub HasStrictFderivAt.isBigO_sub
-
-theorem HasFderivAtFilter.isBigO_sub (h : HasFderivAtFilter f f' x L) :
+#align has_strict_fderiv_at.is_O_sub HasStrictFDerivAt.isBigO_sub
+
+/- warning: has_fderiv_at_filter.is_O_sub -> HasFDerivAtFilter.isBigO_sub is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Asymptotics.IsBigO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) L (fun (x' : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x)) (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Asymptotics.IsBigO.{u2, u1, u2} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) L (fun (x' : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x)) (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_subₓ'. -/
+theorem HasFDerivAtFilter.isBigO_sub (h : HasFDerivAtFilter f f' x L) :
(fun x' => f x' - f x) =O[L] fun x' => x' - x :=
h.IsBigO.congr_of_sub.2 (f'.isBigO_sub _ _)
-#align has_fderiv_at_filter.is_O_sub HasFderivAtFilter.isBigO_sub
-
-protected theorem HasStrictFderivAt.hasFderivAt (hf : HasStrictFderivAt f f' x) :
- HasFderivAt f f' x := by
- rw [HasFderivAt, HasFderivAtFilter, is_o_iff]
+#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_sub
+
+/- warning: has_strict_fderiv_at.has_fderiv_at -> HasStrictFDerivAt.hasFDerivAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.has_fderiv_at HasStrictFDerivAt.hasFDerivAtₓ'. -/
+protected theorem HasStrictFDerivAt.hasFDerivAt (hf : HasStrictFDerivAt f f' x) :
+ HasFDerivAt f f' x := by
+ rw [HasFDerivAt, HasFDerivAtFilter, is_o_iff]
exact fun c hc => tendsto_id.prod_mk_nhds tendsto_const_nhds (is_o_iff.1 hf hc)
-#align has_strict_fderiv_at.has_fderiv_at HasStrictFderivAt.hasFderivAt
-
-protected theorem HasStrictFderivAt.differentiableAt (hf : HasStrictFderivAt f f' x) :
+#align has_strict_fderiv_at.has_fderiv_at HasStrictFDerivAt.hasFDerivAt
+
+/- warning: has_strict_fderiv_at.differentiable_at -> HasStrictFDerivAt.differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.differentiable_at HasStrictFDerivAt.differentiableAtₓ'. -/
+protected theorem HasStrictFDerivAt.differentiableAt (hf : HasStrictFDerivAt f f' x) :
DifferentiableAt 𝕜 f x :=
- hf.HasFderivAt.DifferentiableAt
-#align has_strict_fderiv_at.differentiable_at HasStrictFderivAt.differentiableAt
-
+ hf.HasFDerivAt.DifferentiableAt
+#align has_strict_fderiv_at.differentiable_at HasStrictFDerivAt.differentiableAt
+
+/- warning: has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt -> HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (K : NNReal), (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (NNNorm.nnnorm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (SeminormedAddGroup.toNNNorm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomIsometric.ids.{u1} 𝕜 (SeminormedCommRing.toSemiNormedRing.{u1} 𝕜 (NormedCommRing.toSeminormedCommRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) f') K) -> (Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) => LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) K f s))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (K : NNReal), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (NNNorm.nnnorm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (SeminormedAddGroup.toNNNorm.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHomIsometric.ids.{u3} 𝕜 (SeminormedCommRing.toSeminormedRing.{u3} 𝕜 (NormedCommRing.toSeminormedCommRing.{u3} 𝕜 (NormedField.toNormedCommRing.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) f') K) -> (Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) K f s))))
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_ltₓ'. -/
/-- If `f` is strictly differentiable at `x` with derivative `f'` and `K > ‖f'‖₊`, then `f` is
`K`-Lipschitz in a neighborhood of `x`. -/
-theorem HasStrictFderivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFderivAt f f' x)
+theorem HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFDerivAt f f' x)
(K : ℝ≥0) (hK : ‖f'‖₊ < K) : ∃ s ∈ 𝓝 x, LipschitzOnWith K f s :=
by
have := hf.add_is_O_with (f'.is_O_with_comp _ _) hK
@@ -454,197 +654,395 @@ theorem HasStrictFderivAt.exists_lipschitzOnWith_of_nnnorm_lt (hf : HasStrictFde
rcases exists_nhds_square this with ⟨U, Uo, xU, hU⟩
exact
⟨U, Uo.mem_nhds xU, lipschitzOnWith_iff_norm_sub_le.2 fun x hx y hy => hU (mk_mem_prod hx hy)⟩
-#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFderivAt.exists_lipschitzOnWith_of_nnnorm_lt
-
+#align has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt
+
+/- warning: has_strict_fderiv_at.exists_lipschitz_on_with -> HasStrictFDerivAt.exists_lipschitzOnWith is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Exists.{1} NNReal (fun (K : NNReal) => Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => Exists.{0} (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (fun (H : Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) => LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) K f s))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Exists.{1} NNReal (fun (K : NNReal) => Exists.{succ u2} (Set.{u2} E) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) K f s))))
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWithₓ'. -/
/-- If `f` is strictly differentiable at `x` with derivative `f'`, then `f` is Lipschitz in a
neighborhood of `x`. See also `has_strict_fderiv_at.exists_lipschitz_on_with_of_nnnorm_lt` for a
more precise statement. -/
-theorem HasStrictFderivAt.exists_lipschitzOnWith (hf : HasStrictFderivAt f f' x) :
+theorem HasStrictFDerivAt.exists_lipschitzOnWith (hf : HasStrictFDerivAt f f' x) :
∃ K, ∃ s ∈ 𝓝 x, LipschitzOnWith K f s :=
(exists_gt _).imp hf.exists_lipschitzOnWith_of_nnnorm_lt
-#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFderivAt.exists_lipschitzOnWith
-
+#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWith
+
+/- warning: has_fderiv_at.lim -> HasFDerivAt.lim is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (v : E) {α : Type.{u4}} {c : α -> 𝕜} {l : Filter.{u4} α}, (Filter.Tendsto.{u4, 0} α Real (fun (n : α) => Norm.norm.{u1} 𝕜 (NormedField.toHasNorm.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.preorder)) -> (Filter.Tendsto.{u4, u3} α F (fun (n : α) => SMul.smul.{u1, u3} 𝕜 F (SMulZeroClass.toHasSmul.{u1, u3} 𝕜 F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} 𝕜 F (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} 𝕜 F (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))))) (Module.toMulActionWithZero.{u1, u3} 𝕜 F (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) (c n) (HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (SMul.smul.{u1, u2} 𝕜 E (SMulZeroClass.toHasSmul.{u1, u2} 𝕜 E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} 𝕜 E (MulZeroClass.toHasZero.{u1} 𝕜 (MulZeroOneClass.toMulZeroClass.{u1} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u1} 𝕜 (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} 𝕜 E (Semiring.toMonoidWithZero.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} 𝕜 E (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (Inv.inv.{u1} 𝕜 (DivInvMonoid.toHasInv.{u1} 𝕜 (DivisionRing.toDivInvMonoid.{u1} 𝕜 (NormedDivisionRing.toDivisionRing.{u1} 𝕜 (NormedField.toNormedDivisionRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (c n)) v))) (f x))) l (nhds.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f' v))))
+but is expected to have type
+ forall {𝕜 : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u4, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (forall (v : E) {α : Type.{u1}} {c : α -> 𝕜} {l : Filter.{u1} α}, (Filter.Tendsto.{u1, 0} α Real (fun (n : α) => Norm.norm.{u4} 𝕜 (NormedField.toNorm.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)) (c n)) l (Filter.atTop.{0} Real Real.instPreorderReal)) -> (Filter.Tendsto.{u1, u2} α F (fun (n : α) => HSMul.hSMul.{u4, u2, u2} 𝕜 F F (instHSMul.{u4, u2} 𝕜 F (SMulZeroClass.toSMul.{u4, u2} 𝕜 F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (SMulWithZero.toSMulZeroClass.{u4, u2} 𝕜 F (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (MulActionWithZero.toSMulWithZero.{u4, u2} 𝕜 F (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (Module.toMulActionWithZero.{u4, u2} 𝕜 F (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))))) (c n) (HSub.hSub.{u2, u2, u2} F F F (instHSub.{u2} F (SubNegMonoid.toSub.{u2} F (AddGroup.toSubNegMonoid.{u2} F (NormedAddGroup.toAddGroup.{u2} F (NormedAddCommGroup.toNormedAddGroup.{u2} F _inst_4))))) (f (HAdd.hAdd.{u3, u3, u3} E E E (instHAdd.{u3} E (AddZeroClass.toAdd.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))))) x (HSMul.hSMul.{u4, u3, u3} 𝕜 E E (instHSMul.{u4, u3} 𝕜 E (SMulZeroClass.toSMul.{u4, u3} 𝕜 E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u4, u3} 𝕜 E (CommMonoidWithZero.toZero.{u4} 𝕜 (CommGroupWithZero.toCommMonoidWithZero.{u4} 𝕜 (Semifield.toCommGroupWithZero.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u4, u3} 𝕜 E (Semiring.toMonoidWithZero.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1)))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)))))) (Module.toMulActionWithZero.{u4, u3} 𝕜 E (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)))))) (Inv.inv.{u4} 𝕜 (Field.toInv.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))) (c n)) v))) (f x))) l (nhds.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u4, u4, u3, u2} (ContinuousLinearMap.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u4, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))) (RingHom.id.{u4} 𝕜 (Semiring.toNonAssocSemiring.{u4} 𝕜 (DivisionSemiring.toSemiring.{u4} 𝕜 (Semifield.toDivisionSemiring.{u4} 𝕜 (Field.toSemifield.{u4} 𝕜 (NormedField.toField.{u4} 𝕜 (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u4} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f' v))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.lim HasFDerivAt.limₓ'. -/
/-- Directional derivative agrees with `has_fderiv`. -/
-theorem HasFderivAt.lim (hf : HasFderivAt f f' x) (v : E) {α : Type _} {c : α → 𝕜} {l : Filter α}
+theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α → 𝕜} {l : Filter α}
(hc : Tendsto (fun n => ‖c n‖) l atTop) :
Tendsto (fun n => c n • (f (x + (c n)⁻¹ • v) - f x)) l (𝓝 (f' v)) :=
by
- refine' (hasFderivWithinAt_univ.2 hf).lim _ univ_mem hc _
+ refine' (hasFDerivWithinAt_univ.2 hf).lim _ univ_mem hc _
intro U hU
refine' (eventually_ne_of_tendsto_norm_atTop hc (0 : 𝕜)).mono fun y hy => _
convert mem_of_mem_nhds hU
dsimp only
rw [← mul_smul, mul_inv_cancel hy, one_smul]
-#align has_fderiv_at.lim HasFderivAt.lim
-
-theorem HasFderivAt.unique (h₀ : HasFderivAt f f₀' x) (h₁ : HasFderivAt f f₁' x) : f₀' = f₁' :=
+#align has_fderiv_at.lim HasFDerivAt.lim
+
+/- warning: has_fderiv_at.unique -> HasFDerivAt.unique is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₀' x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' f₁')
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₀' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₀' x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f₁' x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) f₀' f₁')
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.unique HasFDerivAt.uniqueₓ'. -/
+theorem HasFDerivAt.unique (h₀ : HasFDerivAt f f₀' x) (h₁ : HasFDerivAt f f₁' x) : f₀' = f₁' :=
by
- rw [← hasFderivWithinAt_univ] at h₀ h₁
+ rw [← hasFDerivWithinAt_univ] at h₀ h₁
exact unique_diff_within_at_univ.eq h₀ h₁
-#align has_fderiv_at.unique HasFderivAt.unique
-
-theorem hasFderivWithinAt_inter' (h : t ∈ 𝓝[s] x) :
- HasFderivWithinAt f f' (s ∩ t) x ↔ HasFderivWithinAt f f' s x := by
- simp [HasFderivWithinAt, nhdsWithin_restrict'' s h]
-#align has_fderiv_within_at_inter' hasFderivWithinAt_inter'
-
-theorem hasFderivWithinAt_inter (h : t ∈ 𝓝 x) :
- HasFderivWithinAt f f' (s ∩ t) x ↔ HasFderivWithinAt f f' s x := by
- simp [HasFderivWithinAt, nhdsWithin_restrict' s h]
-#align has_fderiv_within_at_inter hasFderivWithinAt_inter
-
-theorem HasFderivWithinAt.union (hs : HasFderivWithinAt f f' s x)
- (ht : HasFderivWithinAt f f' t x) : HasFderivWithinAt f f' (s ∪ t) x :=
+#align has_fderiv_at.unique HasFDerivAt.unique
+
+/- warning: has_fderiv_within_at_inter' -> hasFDerivWithinAt_inter' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s)) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_inter' hasFDerivWithinAt_inter'ₓ'. -/
+theorem hasFDerivWithinAt_inter' (h : t ∈ 𝓝[s] x) :
+ HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x := by
+ simp [HasFDerivWithinAt, nhdsWithin_restrict'' s h]
+#align has_fderiv_within_at_inter' hasFDerivWithinAt_inter'
+
+/- warning: has_fderiv_within_at_inter -> hasFDerivWithinAt_inter is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Iff (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_inter hasFDerivWithinAt_interₓ'. -/
+theorem hasFDerivWithinAt_inter (h : t ∈ 𝓝 x) :
+ HasFDerivWithinAt f f' (s ∩ t) x ↔ HasFDerivWithinAt f f' s x := by
+ simp [HasFDerivWithinAt, nhdsWithin_restrict' s h]
+#align has_fderiv_within_at_inter hasFDerivWithinAt_inter
+
+/- warning: has_fderiv_within_at.union -> HasFDerivWithinAt.union is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) s t) x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Union.union.{u2} (Set.{u2} E) (Set.instUnionSet.{u2} E) s t) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.union HasFDerivWithinAt.unionₓ'. -/
+theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
+ (ht : HasFDerivWithinAt f f' t x) : HasFDerivWithinAt f f' (s ∪ t) x :=
by
- simp only [HasFderivWithinAt, nhdsWithin_union]
+ simp only [HasFDerivWithinAt, nhdsWithin_union]
exact hs.sup ht
-#align has_fderiv_within_at.union HasFderivWithinAt.union
-
-theorem HasFderivWithinAt.nhdsWithin (h : HasFderivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
- HasFderivWithinAt f f' t x :=
- (hasFderivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
-#align has_fderiv_within_at.nhds_within HasFderivWithinAt.nhdsWithin
-
-theorem HasFderivWithinAt.hasFderivAt (h : HasFderivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
- HasFderivAt f f' x := by
- rwa [← univ_inter s, hasFderivWithinAt_inter hs, hasFderivWithinAt_univ] at h
-#align has_fderiv_within_at.has_fderiv_at HasFderivWithinAt.hasFderivAt
-
+#align has_fderiv_within_at.union HasFDerivWithinAt.union
+
+/- warning: has_fderiv_within_at.nhds_within -> HasFDerivWithinAt.nhdsWithin is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithinₓ'. -/
+theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
+ HasFDerivWithinAt f f' t x :=
+ (hasFDerivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
+#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithin
+
+/- warning: has_fderiv_within_at.has_fderiv_at -> HasFDerivWithinAt.hasFDerivAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAtₓ'. -/
+theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
+ HasFDerivAt f f' x := by
+ rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
+#align has_fderiv_within_at.has_fderiv_at HasFDerivWithinAt.hasFDerivAt
+
+/- warning: differentiable_within_at.differentiable_at -> DifferentiableWithinAt.differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.differentiable_at DifferentiableWithinAt.differentiableAtₓ'. -/
theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜 f s x)
(hs : s ∈ 𝓝 x) : DifferentiableAt 𝕜 f x :=
- h.imp fun f' hf' => hf'.HasFderivAt hs
+ h.imp fun f' hf' => hf'.HasFDerivAt hs
#align differentiable_within_at.differentiable_at DifferentiableWithinAt.differentiableAt
-theorem DifferentiableWithinAt.hasFderivWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
- HasFderivWithinAt f (fderivWithin 𝕜 f s x) s x :=
+/- warning: differentiable_within_at.has_fderiv_within_at -> DifferentiableWithinAt.hasFDerivWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAtₓ'. -/
+theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
+ HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x :=
by
dsimp only [fderivWithin]
dsimp only [DifferentiableWithinAt] at h
rw [dif_pos h]
exact Classical.choose_spec h
-#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFderivWithinAt
-
-theorem DifferentiableAt.hasFderivAt (h : DifferentiableAt 𝕜 f x) :
- HasFderivAt f (fderiv 𝕜 f x) x := by
+#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
+
+/- warning: differentiable_at.has_fderiv_at -> DifferentiableAt.hasFDerivAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAtₓ'. -/
+theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
+ HasFDerivAt f (fderiv 𝕜 f x) x := by
dsimp only [fderiv]
dsimp only [DifferentiableAt] at h
rw [dif_pos h]
exact Classical.choose_spec h
-#align differentiable_at.has_fderiv_at DifferentiableAt.hasFderivAt
-
-theorem DifferentiableOn.hasFderivAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
- HasFderivAt f (fderiv 𝕜 f x) x :=
- ((h x (mem_of_mem_nhds hs)).DifferentiableAt hs).HasFderivAt
-#align differentiable_on.has_fderiv_at DifferentiableOn.hasFderivAt
-
+#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAt
+
+/- warning: differentiable_on.has_fderiv_at -> DifferentiableOn.hasFDerivAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.has_fderiv_at DifferentiableOn.hasFDerivAtₓ'. -/
+theorem DifferentiableOn.hasFDerivAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
+ HasFDerivAt f (fderiv 𝕜 f x) x :=
+ ((h x (mem_of_mem_nhds hs)).DifferentiableAt hs).HasFDerivAt
+#align differentiable_on.has_fderiv_at DifferentiableOn.hasFDerivAt
+
+/- warning: differentiable_on.differentiable_at -> DifferentiableOn.differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.differentiable_at DifferentiableOn.differentiableAtₓ'. -/
theorem DifferentiableOn.differentiableAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
DifferentiableAt 𝕜 f x :=
- (h.HasFderivAt hs).DifferentiableAt
+ (h.HasFDerivAt hs).DifferentiableAt
#align differentiable_on.differentiable_at DifferentiableOn.differentiableAt
+/- warning: differentiable_on.eventually_differentiable_at -> DifferentiableOn.eventually_differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Filter.Eventually.{u2} E (fun (y : E) => DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Filter.Eventually.{u2} E (fun (y : E) => DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f y) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x))
+Case conversion may be inaccurate. Consider using '#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAtₓ'. -/
theorem DifferentiableOn.eventually_differentiableAt (h : DifferentiableOn 𝕜 f s) (hs : s ∈ 𝓝 x) :
∀ᶠ y in 𝓝 x, DifferentiableAt 𝕜 f y :=
(eventually_eventually_nhds.2 hs).mono fun y => h.DifferentiableAt
#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAt
-theorem HasFderivAt.fderiv (h : HasFderivAt f f' x) : fderiv 𝕜 f x = f' :=
+/- warning: has_fderiv_at.fderiv -> HasFDerivAt.fderiv is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) f')
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) f')
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fderiv HasFDerivAt.fderivₓ'. -/
+theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' :=
by
ext
rw [h.unique h.differentiable_at.has_fderiv_at]
-#align has_fderiv_at.fderiv HasFderivAt.fderiv
-
-theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFderivAt f (f' x) x) : fderiv 𝕜 f = f' :=
+#align has_fderiv_at.fderiv HasFDerivAt.fderiv
+
+/- warning: fderiv_eq -> fderiv_eq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))}, (forall (x : E), HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (f' x) x) -> (Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) f')
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : E -> (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5))}, (forall (x : E), HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (f' x) x) -> (Eq.{max (succ u2) (succ u1)} (E -> (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5))) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) f')
+Case conversion may be inaccurate. Consider using '#align fderiv_eq fderiv_eqₓ'. -/
+theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x) : fderiv 𝕜 f = f' :=
funext fun x => (h x).fderiv
#align fderiv_eq fderiv_eq
+/- warning: fderiv_at.le_of_lip -> DifferentiableAt.le_of_lip is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x₀ : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀) -> (forall {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) C f s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u3} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal Real (HasLiftT.mk.{1, 1} NNReal Real (CoeTCₓ.coe.{1, 1} NNReal Real (coeBase.{1, 1} NNReal Real NNReal.Real.hasCoe))) C))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x₀ : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀) -> (forall {s : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀)) -> (forall {C : NNReal}, (LipschitzOnWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) C f s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u1 u2} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.hasOpNorm.{u3, u3, u2, u1} 𝕜 𝕜 E F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_1 _inst_1 _inst_3 _inst_5 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))))) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x₀)) (NNReal.toReal C))))
+Case conversion may be inaccurate. Consider using '#align fderiv_at.le_of_lip DifferentiableAt.le_of_lipₓ'. -/
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`.
Version using `fderiv`. -/
-theorem FderivAt.le_of_lip {f : E → F} {x₀ : E} (hf : DifferentiableAt 𝕜 f x₀) {s : Set E}
+theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : DifferentiableAt 𝕜 f x₀) {s : Set E}
(hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖fderiv 𝕜 f x₀‖ ≤ C :=
- hf.HasFderivAt.le_of_lip hs hlip
-#align fderiv_at.le_of_lip FderivAt.le_of_lip
-
-theorem HasFderivWithinAt.fderivWithin (h : HasFderivWithinAt f f' s x)
+ hf.HasFDerivAt.le_of_lip hs hlip
+#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
+
+/- warning: has_fderiv_within_at.fderiv_within -> HasFDerivWithinAt.fderivWithin is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) f')
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) f')
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithinₓ'. -/
+theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = f' :=
- (hxs.Eq h h.DifferentiableWithinAt.HasFderivWithinAt).symm
-#align has_fderiv_within_at.fderiv_within HasFderivWithinAt.fderivWithin
-
+ (hxs.Eq h h.DifferentiableWithinAt.HasFDerivWithinAt).symm
+#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithin
+
+/- warning: has_fderiv_within_at_of_not_mem_closure -> hasFDerivWithinAt_of_not_mem_closure is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (Not (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x (closure.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s))) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (Not (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x (closure.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s))) -> (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closureₓ'. -/
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
-theorem hasFderivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFderivWithinAt f f' s x :=
+theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
by
simp only [mem_closure_iff_nhdsWithin_neBot, ne_bot_iff, Ne.def, Classical.not_not] at h
- simp [HasFderivWithinAt, HasFderivAtFilter, h, is_o, is_O_with]
-#align has_fderiv_within_at_of_not_mem_closure hasFderivWithinAt_of_not_mem_closure
-
+ simp [HasFDerivWithinAt, HasFDerivAtFilter, h, is_o, is_O_with]
+#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closure
+
+/- warning: differentiable_within_at.mono -> DifferentiableWithinAt.mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.mono DifferentiableWithinAt.monoₓ'. -/
theorem DifferentiableWithinAt.mono (h : DifferentiableWithinAt 𝕜 f t x) (st : s ⊆ t) :
DifferentiableWithinAt 𝕜 f s x := by
rcases h with ⟨f', hf'⟩
exact ⟨f', hf'.mono st⟩
#align differentiable_within_at.mono DifferentiableWithinAt.mono
+/- warning: differentiable_within_at.mono_of_mem -> DifferentiableWithinAt.mono_of_mem is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall {t : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_memₓ'. -/
theorem DifferentiableWithinAt.mono_of_mem (h : DifferentiableWithinAt 𝕜 f s x) {t : Set E}
(hst : s ∈ nhdsWithin x t) : DifferentiableWithinAt 𝕜 f t x :=
- (h.HasFderivWithinAt.mono_of_mem hst).DifferentiableWithinAt
+ (h.HasFDerivWithinAt.mono_of_mem hst).DifferentiableWithinAt
#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_mem
+/- warning: differentiable_within_at_univ -> differentiableWithinAt_univ is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E) x) (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, Iff (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E) x) (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_univ differentiableWithinAt_univₓ'. -/
theorem differentiableWithinAt_univ : DifferentiableWithinAt 𝕜 f univ x ↔ DifferentiableAt 𝕜 f x :=
- by simp only [DifferentiableWithinAt, hasFderivWithinAt_univ, DifferentiableAt]
+ by simp only [DifferentiableWithinAt, hasFDerivWithinAt_univ, DifferentiableAt]
#align differentiable_within_at_univ differentiableWithinAt_univ
+/- warning: differentiable_within_at_inter -> differentiableWithinAt_inter is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_inter differentiableWithinAt_interₓ'. -/
theorem differentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
- simp only [DifferentiableWithinAt, HasFderivWithinAt, HasFderivAtFilter,
+ simp only [DifferentiableWithinAt, HasFDerivWithinAt, HasFDerivAtFilter,
nhdsWithin_restrict' s ht]
#align differentiable_within_at_inter differentiableWithinAt_inter
+/- warning: differentiable_within_at_inter' -> differentiableWithinAt_inter' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s)) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s)) -> (Iff (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_inter' differentiableWithinAt_inter'ₓ'. -/
theorem differentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
- simp only [DifferentiableWithinAt, HasFderivWithinAt, HasFderivAtFilter,
+ simp only [DifferentiableWithinAt, HasFDerivWithinAt, HasFDerivAtFilter,
nhdsWithin_restrict'' s ht]
#align differentiable_within_at_inter' differentiableWithinAt_inter'
+/- warning: differentiable_within_at.antimono -> DifferentiableWithinAt.antimono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.antimono DifferentiableWithinAt.antimonoₓ'. -/
theorem DifferentiableWithinAt.antimono (h : DifferentiableWithinAt 𝕜 f s x) (hst : s ⊆ t)
(hx : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x := by
rwa [← differentiableWithinAt_inter' hx, inter_eq_self_of_subset_right hst]
#align differentiable_within_at.antimono DifferentiableWithinAt.antimono
-theorem HasFderivWithinAt.antimono (h : HasFderivWithinAt f f' s x) (hst : s ⊆ t)
- (hs : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x) : HasFderivWithinAt f f' t x :=
+/- warning: has_fderiv_within_at.antimono -> HasFDerivWithinAt.antimono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' t x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.antimono HasFDerivWithinAt.antimonoₓ'. -/
+theorem HasFDerivWithinAt.antimono (h : HasFDerivWithinAt f f' s x) (hst : s ⊆ t)
+ (hs : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x) : HasFDerivWithinAt f f' t x :=
by
- have h' : HasFderivWithinAt f _ t x :=
- (h.differentiable_within_at.antimono hst hx).HasFderivWithinAt
+ have h' : HasFDerivWithinAt f _ t x :=
+ (h.differentiable_within_at.antimono hst hx).HasFDerivWithinAt
rwa [hs.eq h (h'.mono hst)]
-#align has_fderiv_within_at.antimono HasFderivWithinAt.antimono
-
+#align has_fderiv_within_at.antimono HasFDerivWithinAt.antimono
+
+/- warning: differentiable_at.differentiable_within_at -> DifferentiableAt.differentiableWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.differentiable_within_at DifferentiableAt.differentiableWithinAtₓ'. -/
theorem DifferentiableAt.differentiableWithinAt (h : DifferentiableAt 𝕜 f x) :
DifferentiableWithinAt 𝕜 f s x :=
(differentiableWithinAt_univ.2 h).mono (subset_univ _)
#align differentiable_at.differentiable_within_at DifferentiableAt.differentiableWithinAt
+/- warning: differentiable.differentiable_at -> Differentiable.differentiableAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)
+Case conversion may be inaccurate. Consider using '#align differentiable.differentiable_at Differentiable.differentiableAtₓ'. -/
theorem Differentiable.differentiableAt (h : Differentiable 𝕜 f) : DifferentiableAt 𝕜 f x :=
h x
#align differentiable.differentiable_at Differentiable.differentiableAt
+/- warning: differentiable_at.fderiv_within -> DifferentiableAt.fderivWithin is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within DifferentiableAt.fderivWithinₓ'. -/
theorem DifferentiableAt.fderivWithin (h : DifferentiableAt 𝕜 f x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
- h.HasFderivAt.HasFderivWithinAt.fderivWithin hxs
+ h.HasFDerivAt.HasFDerivWithinAt.fderivWithin hxs
#align differentiable_at.fderiv_within DifferentiableAt.fderivWithin
+/- warning: differentiable_on.mono -> DifferentiableOn.mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s t) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.mono DifferentiableOn.monoₓ'. -/
theorem DifferentiableOn.mono (h : DifferentiableOn 𝕜 f t) (st : s ⊆ t) : DifferentiableOn 𝕜 f s :=
fun x hx => (h x (st hx)).mono st
#align differentiable_on.mono DifferentiableOn.mono
+/- warning: differentiable_on_univ -> differentiableOn_univ is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, Iff (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F}, Iff (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
+Case conversion may be inaccurate. Consider using '#align differentiable_on_univ differentiableOn_univₓ'. -/
theorem differentiableOn_univ : DifferentiableOn 𝕜 f univ ↔ Differentiable 𝕜 f := by
simp only [DifferentiableOn, Differentiable, differentiableWithinAt_univ, mem_univ,
forall_true_left]
#align differentiable_on_univ differentiableOn_univ
+/- warning: differentiable.differentiable_on -> Differentiable.differentiableOn is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+Case conversion may be inaccurate. Consider using '#align differentiable.differentiable_on Differentiable.differentiableOnₓ'. -/
theorem Differentiable.differentiableOn (h : Differentiable 𝕜 f) : DifferentiableOn 𝕜 f s :=
(differentiableOn_univ.2 h).mono (subset_univ _)
#align differentiable.differentiable_on Differentiable.differentiableOn
+/- warning: differentiable_on_of_locally_differentiable_on -> differentiableOn_of_locally_differentiableOn is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Exists.{succ u2} (Set.{u2} E) (fun (u : Set.{u2} E) => And (IsOpen.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) u) (And (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x u) (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s u)))))) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u3} E}, (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Exists.{succ u3} (Set.{u3} E) (fun (u : Set.{u3} E) => And (IsOpen.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) u) (And (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x u) (DifferentiableOn.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s u)))))) -> (DifferentiableOn.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOnₓ'. -/
theorem differentiableOn_of_locally_differentiableOn
(h : ∀ x ∈ s, ∃ u, IsOpen u ∧ x ∈ u ∧ DifferentiableOn 𝕜 f (s ∩ u)) : DifferentiableOn 𝕜 f s :=
by
@@ -653,28 +1051,52 @@ theorem differentiableOn_of_locally_differentiableOn
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
+/- warning: fderiv_within_subset -> fderivWithin_subset is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) s t) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_subset fderivWithin_subsetₓ'. -/
theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
- ((DifferentiableWithinAt.hasFderivWithinAt h).mono st).fderivWithin ht
+ ((DifferentiableWithinAt.hasFDerivWithinAt h).mono st).fderivWithin ht
#align fderiv_within_subset fderivWithin_subset
+/- warning: fderiv_within_subset' -> fderivWithin_subset' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) s t) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) s (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x t)) -> (DifferentiableWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_subset' fderivWithin_subset'ₓ'. -/
theorem fderivWithin_subset' (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x)
(h : DifferentiableWithinAt 𝕜 f s x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
fderivWithin_subset st ht (h.antimono st hx)
#align fderiv_within_subset' fderivWithin_subset'
+/- warning: fderiv_within_univ -> fderivWithin_univ is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u2} E)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, Eq.{max (succ u3) (succ u2)} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Set.univ.{u3} E)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)
+Case conversion may be inaccurate. Consider using '#align fderiv_within_univ fderivWithin_univₓ'. -/
@[simp]
theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
by
ext x : 1
by_cases h : DifferentiableAt 𝕜 f x
- · apply HasFderivWithinAt.fderivWithin _ uniqueDiffWithinAt_univ
- rw [hasFderivWithinAt_univ]
+ · apply HasFDerivWithinAt.fderivWithin _ uniqueDiffWithinAt_univ
+ rw [hasFDerivWithinAt_univ]
apply h.has_fderiv_at
· have : ¬DifferentiableWithinAt 𝕜 f univ x := by rwa [differentiableWithinAt_univ]
rw [fderiv_zero_of_not_differentiableAt h, fderivWithin_zero_of_not_differentiableWithinAt this]
#align fderiv_within_univ fderivWithin_univ
+/- warning: fderiv_within_inter -> fderivWithin_inter is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) t (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E} {t : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) t (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (UniqueDiffWithinAt.{u2, u3} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Inter.inter.{u3} (Set.{u3} E) (Set.instInterSet.{u3} E) s t) x) (fderivWithin.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_inter fderivWithin_interₓ'. -/
theorem fderivWithin_inter (ht : t ∈ 𝓝 x) (hs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x :=
by
@@ -686,6 +1108,12 @@ theorem fderivWithin_inter (ht : t ∈ 𝓝 x) (hs : UniqueDiffWithinAt 𝕜 s x
fderivWithin_zero_of_not_differentiableWithinAt this]
#align fderiv_within_inter fderivWithin_inter
+/- warning: fderiv_within_of_mem_nhds -> fderivWithin_of_mem_nhds is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E}, (Membership.mem.{u3, u3} (Set.{u3} E) (Filter.{u3} E) (instMembershipSetFilter.{u3} E) s (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhdsₓ'. -/
theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
by
have : s = univ ∩ s := by simp only [univ_inter]
@@ -693,10 +1121,22 @@ theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x =
exact fderivWithin_inter h (uniqueDiffOn_univ _ (mem_univ _))
#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
+/- warning: fderiv_within_of_open -> fderivWithin_of_open is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (IsOpen.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u3} E}, (IsOpen.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_of_open fderivWithin_of_openₓ'. -/
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (IsOpen.mem_nhds hs hx)
#align fderiv_within_of_open fderivWithin_of_open
+/- warning: fderiv_within_eq_fderiv -> fderivWithin_eq_fderiv is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) (fderiv.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_eq_fderiv fderivWithin_eq_fderivₓ'. -/
theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : DifferentiableAt 𝕜 f x) :
fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
by
@@ -704,12 +1144,20 @@ theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : Different
exact fderivWithin_subset (subset_univ _) hs h.differentiable_within_at
#align fderiv_within_eq_fderiv fderivWithin_eq_fderiv
+#print fderiv_mem_iff /-
theorem fderiv_mem_iff {f : E → F} {s : Set (E →L[𝕜] F)} {x : E} :
fderiv 𝕜 f x ∈ s ↔
DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ s ∨ ¬DifferentiableAt 𝕜 f x ∧ (0 : E →L[𝕜] F) ∈ s :=
by by_cases hx : DifferentiableAt 𝕜 f x <;> simp [fderiv_zero_of_not_differentiableAt, *]
#align fderiv_mem_iff fderiv_mem_iff
+-/
+/- warning: fderiv_within_mem_iff -> fderivWithin_mem_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {t : Set.{u2} E} {s : Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))} {x : E}, Iff (Membership.Mem.{max u2 u3, max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Set.hasMem.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s) (Or (And (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) (Membership.Mem.{max u2 u3, max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Set.hasMem.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s)) (And (Not (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)) (Membership.Mem.{max u2 u3, max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Set.hasMem.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) s)))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {t : Set.{u3} E} {s : Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))} {x : E}, Iff (Membership.mem.{max u2 u3, max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Set.instMembershipSet.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s) (Or (And (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) (Membership.mem.{max u2 u3, max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Set.instMembershipSet.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderivWithin.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x) s)) (And (Not (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f t x)) (Membership.mem.{max u3 u2, max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (Set.{max u2 u3} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Set.instMembershipSet.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) s)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_mem_iff fderivWithin_mem_iffₓ'. -/
theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)} {x : E} :
fderivWithin 𝕜 f t x ∈ s ↔
DifferentiableWithinAt 𝕜 f t x ∧ fderivWithin 𝕜 f t x ∈ s ∨
@@ -719,30 +1167,54 @@ theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)
simp [fderivWithin_zero_of_not_differentiableWithinAt, *]
#align fderiv_within_mem_iff fderivWithin_mem_iff
-theorem Asymptotics.IsBigO.hasFderivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
+/- warning: asymptotics.is_O.has_fderiv_within_at -> Asymptotics.IsBigO.hasFDerivWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u2, u3, 0} E F Real (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) Real.hasNorm (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀ s) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.monoid)) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)) n)) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x₀ s) -> (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) n) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) s x₀)
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {s : Set.{u3} E} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u3, u2, 0} E F Real (NormedAddCommGroup.toNorm.{u2} F _inst_4) Real.norm (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x₀ s) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.instMonoidReal)) (Norm.norm.{u3} E (NormedAddCommGroup.toNorm.{u3} E _inst_2) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))) x x₀)) n)) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x₀ s) -> (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) n) -> (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) s x₀)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAtₓ'. -/
+theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
(h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n) (hx₀ : x₀ ∈ s) (hn : 1 < n) :
- HasFderivWithinAt f (0 : E →L[𝕜] F) s x₀ := by
- simp_rw [HasFderivWithinAt, HasFderivAtFilter,
+ HasFDerivWithinAt f (0 : E →L[𝕜] F) s x₀ := by
+ simp_rw [HasFDerivWithinAt, HasFDerivAtFilter,
h.eq_zero_of_norm_pow_within hx₀ <| zero_lt_one.trans hn, zero_apply, sub_zero,
h.trans_is_o ((is_o_pow_sub_sub x₀ hn).mono nhdsWithin_le_nhds)]
-#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFderivWithinAt
-
-theorem Asymptotics.IsBigO.hasFderivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
- (hn : 1 < n) : HasFderivAt f (0 : E →L[𝕜] F) x₀ :=
+#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAt
+
+/- warning: asymptotics.is_O.has_fderiv_at -> Asymptotics.IsBigO.hasFDerivAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u2, u3, 0} E F Real (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) Real.hasNorm (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.monoid)) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀)) n)) -> (LT.lt.{0} Nat Nat.hasLt (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) n) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x₀)
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x₀ : E} {n : Nat}, (Asymptotics.IsBigO.{u3, u2, 0} E F Real (NormedAddCommGroup.toNorm.{u2} F _inst_4) Real.norm (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x₀) f (fun (x : E) => HPow.hPow.{0, 0, 0} Real Nat Real (instHPow.{0, 0} Real Nat (Monoid.Pow.{0} Real Real.instMonoidReal)) (Norm.norm.{u3} E (NormedAddCommGroup.toNorm.{u3} E _inst_2) (HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))) x x₀)) n)) -> (LT.lt.{0} Nat instLTNat (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) n) -> (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) x₀)
+Case conversion may be inaccurate. Consider using '#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAtₓ'. -/
+theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀] fun x => ‖x - x₀‖ ^ n)
+ (hn : 1 < n) : HasFDerivAt f (0 : E →L[𝕜] F) x₀ :=
by
rw [← nhdsWithin_univ] at h
- exact (h.has_fderiv_within_at (mem_univ _) hn).hasFderivAt_of_univ
-#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFderivAt
-
-theorem HasFderivWithinAt.isBigO {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
- (h : HasFderivWithinAt f f' s x₀) : (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀ := by
+ exact (h.has_fderiv_within_at (mem_univ _) hn).hasFDerivAt_of_univ
+#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
+
+/- warning: has_fderiv_within_at.is_O -> HasFDerivWithinAt.isBigO is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E} {x₀ : E} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x₀) -> (Asymptotics.IsBigO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀ s) (fun (x : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u3} E} {x₀ : E} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x₀) -> (Asymptotics.IsBigO.{u3, u1, u3} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u3} E _inst_2) (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x₀ s) (fun (x : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u3, u3, u3} E E E (instHSub.{u3} E (SubNegMonoid.toSub.{u3} E (AddGroup.toSubNegMonoid.{u3} E (NormedAddGroup.toAddGroup.{u3} E (NormedAddCommGroup.toNormedAddGroup.{u3} E _inst_2))))) x x₀))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigOₓ'. -/
+theorem HasFDerivWithinAt.isBigO {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
+ (h : HasFDerivWithinAt f f' s x₀) : (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝[s] x₀) x₀)
-#align has_fderiv_within_at.is_O HasFderivWithinAt.isBigO
-
-theorem HasFderivAt.isBigO {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFderivAt f f' x₀) :
+#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO
+
+/- warning: has_fderiv_at.is_O -> HasFDerivAt.isBigO is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x₀ : E} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (Asymptotics.IsBigO.{u2, u3, u2} E F E (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀) (fun (x : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x₀ : E} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x₀) -> (Asymptotics.IsBigO.{u2, u1, u2} E F E (NormedAddCommGroup.toNorm.{u1} F _inst_4) (NormedAddCommGroup.toNorm.{u2} E _inst_2) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x₀) (fun (x : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x) (f x₀)) (fun (x : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x x₀))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.is_O HasFDerivAt.isBigOₓ'. -/
+theorem HasFDerivAt.isBigO {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFDerivAt f f' x₀) :
(fun x => f x - f x₀) =O[𝓝 x₀] fun x => x - x₀ := by
simpa only [sub_add_cancel] using h.is_O.add (is_O_sub f' (𝓝 x₀) x₀)
-#align has_fderiv_at.is_O HasFderivAt.isBigO
+#align has_fderiv_at.is_O HasFDerivAt.isBigO
end FderivProperties
@@ -751,7 +1223,13 @@ section Continuous
/-! ### Deducing continuity from differentiability -/
-theorem HasFderivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFderivAtFilter f f' x L) :
+/- warning: has_fderiv_at_filter.tendsto_nhds -> HasFDerivAtFilter.tendsto_nhds is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (LE.le.{u2} (Filter.{u2} E) (Preorder.toHasLe.{u2} (Filter.{u2} E) (PartialOrder.toPreorder.{u2} (Filter.{u2} E) (Filter.partialOrder.{u2} E))) L (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u2, u3} E F f L (nhds.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (f x)))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E}, (LE.le.{u3} (Filter.{u3} E) (Preorder.toLE.{u3} (Filter.{u3} E) (PartialOrder.toPreorder.{u3} (Filter.{u3} E) (Filter.instPartialOrderFilter.{u3} E))) L (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x)) -> (HasFDerivAtFilter.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u3, u1} E F f L (nhds.{u1} F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (f x)))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhdsₓ'. -/
+theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilter f f' x L) :
Tendsto f L (𝓝 (f x)) :=
by
have : tendsto (fun x' => f x' - f x) L (𝓝 0) :=
@@ -762,56 +1240,110 @@ theorem HasFderivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFderivAtFilte
have := tendsto.add this tendsto_const_nhds
rw [zero_add (f x)] at this
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
-#align has_fderiv_at_filter.tendsto_nhds HasFderivAtFilter.tendsto_nhds
-
-theorem HasFderivWithinAt.continuousWithinAt (h : HasFderivWithinAt f f' s x) :
+#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhds
+
+/- warning: has_fderiv_within_at.continuous_within_at -> HasFDerivWithinAt.continuousWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (ContinuousWithinAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (ContinuousWithinAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.continuous_within_at HasFDerivWithinAt.continuousWithinAtₓ'. -/
+theorem HasFDerivWithinAt.continuousWithinAt (h : HasFDerivWithinAt f f' s x) :
ContinuousWithinAt f s x :=
- HasFderivAtFilter.tendsto_nhds inf_le_left h
-#align has_fderiv_within_at.continuous_within_at HasFderivWithinAt.continuousWithinAt
-
-theorem HasFderivAt.continuousAt (h : HasFderivAt f f' x) : ContinuousAt f x :=
- HasFderivAtFilter.tendsto_nhds le_rfl h
-#align has_fderiv_at.continuous_at HasFderivAt.continuousAt
-
+ HasFDerivAtFilter.tendsto_nhds inf_le_left h
+#align has_fderiv_within_at.continuous_within_at HasFDerivWithinAt.continuousWithinAt
+
+/- warning: has_fderiv_at.continuous_at -> HasFDerivAt.continuousAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.continuous_at HasFDerivAt.continuousAtₓ'. -/
+theorem HasFDerivAt.continuousAt (h : HasFDerivAt f f' x) : ContinuousAt f x :=
+ HasFDerivAtFilter.tendsto_nhds le_rfl h
+#align has_fderiv_at.continuous_at HasFDerivAt.continuousAt
+
+/- warning: differentiable_within_at.continuous_within_at -> DifferentiableWithinAt.continuousWithinAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (ContinuousWithinAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (ContinuousWithinAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.continuous_within_at DifferentiableWithinAt.continuousWithinAtₓ'. -/
theorem DifferentiableWithinAt.continuousWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
ContinuousWithinAt f s x :=
let ⟨f', hf'⟩ := h
hf'.ContinuousWithinAt
#align differentiable_within_at.continuous_within_at DifferentiableWithinAt.continuousWithinAt
+/- warning: differentiable_at.continuous_at -> DifferentiableAt.continuousAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (ContinuousAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (ContinuousAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.continuous_at DifferentiableAt.continuousAtₓ'. -/
theorem DifferentiableAt.continuousAt (h : DifferentiableAt 𝕜 f x) : ContinuousAt f x :=
let ⟨f', hf'⟩ := h
hf'.ContinuousAt
#align differentiable_at.continuous_at DifferentiableAt.continuousAt
+/- warning: differentiable_on.continuous_on -> DifferentiableOn.continuousOn is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (ContinuousOn.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f s)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (ContinuousOn.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.continuous_on DifferentiableOn.continuousOnₓ'. -/
theorem DifferentiableOn.continuousOn (h : DifferentiableOn 𝕜 f s) : ContinuousOn f s := fun x hx =>
(h x hx).ContinuousWithinAt
#align differentiable_on.continuous_on DifferentiableOn.continuousOn
+/- warning: differentiable.continuous -> Differentiable.continuous is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, (Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Continuous.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F}, (Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Continuous.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f)
+Case conversion may be inaccurate. Consider using '#align differentiable.continuous Differentiable.continuousₓ'. -/
theorem Differentiable.continuous (h : Differentiable 𝕜 f) : Continuous f :=
continuous_iff_continuousAt.2 fun x => (h x).ContinuousAt
#align differentiable.continuous Differentiable.continuous
-protected theorem HasStrictFderivAt.continuousAt (hf : HasStrictFderivAt f f' x) :
+/- warning: has_strict_fderiv_at.continuous_at -> HasStrictFDerivAt.continuousAt is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) f x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (ContinuousAt.{u2, u1} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) f x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.continuous_at HasStrictFDerivAt.continuousAtₓ'. -/
+protected theorem HasStrictFDerivAt.continuousAt (hf : HasStrictFDerivAt f f' x) :
ContinuousAt f x :=
- hf.HasFderivAt.ContinuousAt
-#align has_strict_fderiv_at.continuous_at HasStrictFderivAt.continuousAt
-
-theorem HasStrictFderivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
- (hf : HasStrictFderivAt f (f' : E →L[𝕜] F) x) :
+ hf.HasFDerivAt.ContinuousAt
+#align has_strict_fderiv_at.continuous_at HasStrictFDerivAt.continuousAt
+
+/- warning: has_strict_fderiv_at.is_O_sub_rev -> HasStrictFDerivAt.isBigO_sub_rev is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} {f' : ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f ((fun (a : Sort.{max (succ u2) (succ u3)}) (b : Sort.{max (succ u2) (succ u3)}) [self : HasLiftT.{max (succ u2) (succ u3), max (succ u2) (succ u3)} a b] => self.0) (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (HasLiftT.mk.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (CoeTCₓ.coe.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (coeBase.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearEquiv.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearEquiv.ContinuousLinearMap.coe.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) f') x) -> (Asymptotics.IsBigO.{u2, u2, u3} (Prod.{u2, u2} E E) E F (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) (nhds.{u2} (Prod.{u2, u2} E E) (Prod.topologicalSpace.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E} {f' : ContinuousLinearEquiv.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (ContinuousLinearEquiv.toContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) (RingHomInvPair.ids.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1)))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) f') x) -> (Asymptotics.IsBigO.{u2, u2, u1} (Prod.{u2, u2} E E) E F (NormedAddCommGroup.toNorm.{u2} E _inst_2) (NormedAddCommGroup.toNorm.{u1} F _inst_4) (nhds.{u2} (Prod.{u2, u2} E E) (instTopologicalSpaceProd.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (Prod.mk.{u2, u2} E E x x)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) (Prod.fst.{u2, u2} E E p) (Prod.snd.{u2, u2} E E p)) (fun (p : Prod.{u2, u2} E E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f (Prod.fst.{u2, u2} E E p)) (f (Prod.snd.{u2, u2} E E p))))
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_revₓ'. -/
+theorem HasStrictFDerivAt.isBigO_sub_rev {f' : E ≃L[𝕜] F}
+ (hf : HasStrictFDerivAt f (f' : E →L[𝕜] F) x) :
(fun p : E × E => p.1 - p.2) =O[𝓝 (x, x)] fun p : E × E => f p.1 - f p.2 :=
((f'.isBigO_comp_rev _ _).trans (hf.trans_isBigO (f'.isBigO_comp_rev _ _)).right_isBigO_add).congr
(fun _ => rfl) fun _ => sub_add_cancel _ _
-#align has_strict_fderiv_at.is_O_sub_rev HasStrictFderivAt.isBigO_sub_rev
-
-theorem HasFderivAtFilter.isBigO_sub_rev (hf : HasFderivAtFilter f f' x L) {C}
+#align has_strict_fderiv_at.is_O_sub_rev HasStrictFDerivAt.isBigO_sub_rev
+
+/- warning: has_fderiv_at_filter.is_O_sub_rev -> HasFDerivAtFilter.isBigO_sub_rev is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (forall {C : NNReal}, (AntilipschitzWith.{u2, u3} E F (PseudoMetricSpace.toPseudoEMetricSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (PseudoMetricSpace.toPseudoEMetricSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))) C (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f')) -> (Asymptotics.IsBigO.{u2, u2, u3} E E F (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (NormedAddCommGroup.toHasNorm.{u3} F _inst_4) L (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x) (fun (x' : E) => HSub.hSub.{u3, u3, u3} F F F (instHSub.{u3} F (SubNegMonoid.toHasSub.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4))))) (f x') (f x))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (forall {C : NNReal}, (AntilipschitzWith.{u2, u1} E F (EMetricSpace.toPseudoEMetricSpace.{u2} E (MetricSpace.toEMetricSpace.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))) (EMetricSpace.toPseudoEMetricSpace.{u1} F (MetricSpace.toEMetricSpace.{u1} F (NormedAddCommGroup.toMetricSpace.{u1} F _inst_4))) C (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u3, u3, u2, u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) f')) -> (Asymptotics.IsBigO.{u2, u2, u1} E E F (NormedAddCommGroup.toNorm.{u2} E _inst_2) (NormedAddCommGroup.toNorm.{u1} F _inst_4) L (fun (x' : E) => HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x' x) (fun (x' : E) => HSub.hSub.{u1, u1, u1} F F F (instHSub.{u1} F (SubNegMonoid.toSub.{u1} F (AddGroup.toSubNegMonoid.{u1} F (NormedAddGroup.toAddGroup.{u1} F (NormedAddCommGroup.toNormedAddGroup.{u1} F _inst_4))))) (f x') (f x))))
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_revₓ'. -/
+theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
have : (fun x' => x' - x) =O[L] fun x' => f' (x' - x) :=
isBigO_iff.2
⟨C, eventually_of_forall fun x' => AddMonoidHomClass.bound_of_antilipschitz f' hf' _⟩
(this.trans (hf.trans_isBigO this).right_isBigO_add).congr (fun _ => rfl) fun _ =>
sub_add_cancel _ _
-#align has_fderiv_at_filter.is_O_sub_rev HasFderivAtFilter.isBigO_sub_rev
+#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_rev
end Continuous
@@ -820,129 +1352,273 @@ section congr
/-! ### congr properties of the derivative -/
-theorem Filter.EventuallyEq.hasStrictFderivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
- HasStrictFderivAt f₀ f₀' x ↔ HasStrictFderivAt f₁ f₁' x :=
+/- warning: filter.eventually_eq.has_strict_fderiv_at_iff -> Filter.EventuallyEq.hasStrictFDerivAt_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (forall (y : E), Eq.{succ u3} F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' y) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁' y)) -> (Iff (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x) (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₀ f₁) -> (forall (y : E), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) y) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₀' y) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₁' y)) -> (Iff (HasStrictFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x) (HasStrictFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iffₓ'. -/
+theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
+ HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x :=
by
refine' is_o_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall fun _ => rfl)
rintro p ⟨hp₁, hp₂⟩
simp only [*]
-#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFderivAt_iff
-
-theorem HasStrictFderivAt.congr_of_eventuallyEq (h : HasStrictFderivAt f f' x) (h₁ : f =ᶠ[𝓝 x] f₁) :
- HasStrictFderivAt f₁ f' x :=
- (h₁.hasStrictFderivAt_iff fun _ => rfl).1 h
-#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFderivAt.congr_of_eventuallyEq
-
-theorem Filter.EventuallyEq.hasFderivAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x)
- (h₁ : ∀ x, f₀' x = f₁' x) : HasFderivAtFilter f₀ f₀' x L ↔ HasFderivAtFilter f₁ f₁' x L :=
+#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iff
+
+/- warning: has_strict_fderiv_at.congr_of_eventually_eq -> HasStrictFDerivAt.congr_of_eventuallyEq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f f₁) -> (HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f f₁) -> (HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEqₓ'. -/
+theorem HasStrictFDerivAt.congr_of_eventuallyEq (h : HasStrictFDerivAt f f' x) (h₁ : f =ᶠ[𝓝 x] f₁) :
+ HasStrictFDerivAt f₁ f' x :=
+ (h₁.hasStrictFDerivAt_iff fun _ => rfl).1 h
+#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEq
+
+/- warning: filter.eventually_eq.has_fderiv_at_filter_iff -> Filter.EventuallyEq.hasFDerivAtFilter_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F L f₀ f₁) -> (Eq.{succ u3} F (f₀ x) (f₁ x)) -> (forall (x : E), Eq.{succ u3} F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₀' x) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) f₁' x)) -> (Iff (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x L) (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f₀' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {f₁' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F L f₀ f₁) -> (Eq.{succ u2} F (f₀ x) (f₁ x)) -> (forall (x : E), Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₀' x) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u3 u2, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u2, u1, u1, u3, u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) f₁' x)) -> (Iff (HasFDerivAtFilter.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f₀' x L) (HasFDerivAtFilter.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iffₓ'. -/
+theorem Filter.EventuallyEq.hasFDerivAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x)
+ (h₁ : ∀ x, f₀' x = f₁' x) : HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L :=
isLittleO_congr (h₀.mono fun y hy => by simp only [hy, h₁, hx])
(eventually_of_forall fun _ => rfl)
-#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFderivAtFilter_iff
-
-theorem HasFderivAtFilter.congr_of_eventuallyEq (h : HasFderivAtFilter f f' x L) (hL : f₁ =ᶠ[L] f)
- (hx : f₁ x = f x) : HasFderivAtFilter f₁ f' x L :=
- (hL.hasFderivAtFilter_iff hx fun _ => rfl).2 h
-#align has_fderiv_at_filter.congr_of_eventually_eq HasFderivAtFilter.congr_of_eventuallyEq
-
-theorem Filter.EventuallyEq.hasFderivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
- HasFderivAt f₀ f' x ↔ HasFderivAt f₁ f' x :=
- h.hasFderivAtFilter_iff h.eq_of_nhds fun _ => rfl
-#align filter.eventually_eq.has_fderiv_at_iff Filter.EventuallyEq.hasFderivAt_iff
-
+#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iff
+
+/- warning: has_fderiv_at_filter.congr_of_eventually_eq -> HasFDerivAtFilter.congr_of_eventuallyEq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.EventuallyEq.{u2, u3} E F L f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x L)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E}, (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.EventuallyEq.{u2, u1} E F L f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivAtFilter.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.congr_of_eventually_eq HasFDerivAtFilter.congr_of_eventuallyEqₓ'. -/
+theorem HasFDerivAtFilter.congr_of_eventuallyEq (h : HasFDerivAtFilter f f' x L) (hL : f₁ =ᶠ[L] f)
+ (hx : f₁ x = f x) : HasFDerivAtFilter f₁ f' x L :=
+ (hL.hasFDerivAtFilter_iff hx fun _ => rfl).2 h
+#align has_fderiv_at_filter.congr_of_eventually_eq HasFDerivAtFilter.congr_of_eventuallyEq
+
+/- warning: filter.eventually_eq.has_fderiv_at_iff -> Filter.EventuallyEq.hasFDerivAt_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (Iff (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' x) (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₀ f₁) -> (Iff (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' x) (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_at_iff Filter.EventuallyEq.hasFDerivAt_iffₓ'. -/
+theorem Filter.EventuallyEq.hasFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
+ HasFDerivAt f₀ f' x ↔ HasFDerivAt f₁ f' x :=
+ h.hasFDerivAtFilter_iff h.eq_of_nhds fun _ => rfl
+#align filter.eventually_eq.has_fderiv_at_iff Filter.EventuallyEq.hasFDerivAt_iff
+
+/- warning: filter.eventually_eq.differentiable_at_iff -> Filter.EventuallyEq.differentiableAt_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₀ f₁) -> (Iff (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ x) (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₀ f₁) -> (Iff (DifferentiableAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ x) (DifferentiableAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.differentiable_at_iff Filter.EventuallyEq.differentiableAt_iffₓ'. -/
theorem Filter.EventuallyEq.differentiableAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) :
DifferentiableAt 𝕜 f₀ x ↔ DifferentiableAt 𝕜 f₁ x :=
- exists_congr fun f' => h.hasFderivAt_iff
+ exists_congr fun f' => h.hasFDerivAt_iff
#align filter.eventually_eq.differentiable_at_iff Filter.EventuallyEq.differentiableAt_iff
-theorem Filter.EventuallyEq.hasFderivWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
- HasFderivWithinAt f₀ f' s x ↔ HasFderivWithinAt f₁ f' s x :=
- h.hasFderivAtFilter_iff hx fun _ => rfl
-#align filter.eventually_eq.has_fderiv_within_at_iff Filter.EventuallyEq.hasFderivWithinAt_iff
-
-theorem Filter.EventuallyEq.hasFderivWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
- HasFderivWithinAt f₀ f' s x ↔ HasFderivWithinAt f₁ f' s x :=
- h.hasFderivWithinAt_iff (h.eq_of_nhdsWithin hx)
-#align filter.eventually_eq.has_fderiv_within_at_iff_of_mem Filter.EventuallyEq.hasFderivWithinAt_iff_of_mem
-
+/- warning: filter.eventually_eq.has_fderiv_within_at_iff -> Filter.EventuallyEq.hasFDerivWithinAt_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u3} F (f₀ x) (f₁ x)) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u2} F (f₀ x) (f₁ x)) -> (Iff (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_within_at_iff Filter.EventuallyEq.hasFDerivWithinAt_iffₓ'. -/
+theorem Filter.EventuallyEq.hasFDerivWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
+ HasFDerivWithinAt f₀ f' s x ↔ HasFDerivWithinAt f₁ f' s x :=
+ h.hasFDerivAtFilter_iff hx fun _ => rfl
+#align filter.eventually_eq.has_fderiv_within_at_iff Filter.EventuallyEq.hasFDerivWithinAt_iff
+
+/- warning: filter.eventually_eq.has_fderiv_within_at_iff_of_mem -> Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Iff (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Iff (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ f' s x) (HasFDerivWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.has_fderiv_within_at_iff_of_mem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_memₓ'. -/
+theorem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
+ HasFDerivWithinAt f₀ f' s x ↔ HasFDerivWithinAt f₁ f' s x :=
+ h.hasFDerivWithinAt_iff (h.eq_of_nhdsWithin hx)
+#align filter.eventually_eq.has_fderiv_within_at_iff_of_mem Filter.EventuallyEq.hasFDerivWithinAt_iff_of_mem
+
+/- warning: filter.eventually_eq.differentiable_within_at_iff -> Filter.EventuallyEq.differentiableWithinAt_iff is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u3} F (f₀ x) (f₁ x)) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Eq.{succ u2} F (f₀ x) (f₁ x)) -> (Iff (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.differentiable_within_at_iff Filter.EventuallyEq.differentiableWithinAt_iffₓ'. -/
theorem Filter.EventuallyEq.differentiableWithinAt_iff (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : f₀ x = f₁ x) :
DifferentiableWithinAt 𝕜 f₀ s x ↔ DifferentiableWithinAt 𝕜 f₁ s x :=
- exists_congr fun f' => h.hasFderivWithinAt_iff hx
+ exists_congr fun f' => h.hasFDerivWithinAt_iff hx
#align filter.eventually_eq.differentiable_within_at_iff Filter.EventuallyEq.differentiableWithinAt_iff
+/- warning: filter.eventually_eq.differentiable_within_at_iff_of_mem -> Filter.EventuallyEq.differentiableWithinAt_iff_of_mem is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₀ f₁) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Iff (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f₀ : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u3} E}, (Filter.EventuallyEq.{u3, u2} E F (nhdsWithin.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x s) f₀ f₁) -> (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Iff (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₀ s x) (DifferentiableWithinAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.differentiable_within_at_iff_of_mem Filter.EventuallyEq.differentiableWithinAt_iff_of_memₓ'. -/
theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem (h : f₀ =ᶠ[𝓝[s] x] f₁) (hx : x ∈ s) :
DifferentiableWithinAt 𝕜 f₀ s x ↔ DifferentiableWithinAt 𝕜 f₁ s x :=
h.differentiableWithinAt_iff (h.eq_of_nhdsWithin hx)
#align filter.eventually_eq.differentiable_within_at_iff_of_mem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem
-theorem HasFderivWithinAt.congr_mono (h : HasFderivWithinAt f f' s x) (ht : ∀ x ∈ t, f₁ x = f x)
- (hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFderivWithinAt f₁ f' t x :=
- HasFderivAtFilter.congr_of_eventuallyEq (h.mono h₁) (Filter.mem_inf_of_right ht) hx
-#align has_fderiv_within_at.congr_mono HasFderivWithinAt.congr_mono
-
-theorem HasFderivWithinAt.congr (h : HasFderivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
- (hx : f₁ x = f x) : HasFderivWithinAt f₁ f' s x :=
+/- warning: has_fderiv_within_at.congr_mono -> HasFDerivWithinAt.congr_mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' t x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_monoₓ'. -/
+theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : ∀ x ∈ t, f₁ x = f x)
+ (hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFDerivWithinAt f₁ f' t x :=
+ HasFDerivAtFilter.congr_of_eventuallyEq (h.mono h₁) (Filter.mem_inf_of_right ht) hx
+#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_mono
+
+/- warning: has_fderiv_within_at.congr -> HasFDerivWithinAt.congr is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr HasFDerivWithinAt.congrₓ'. -/
+theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
+ (hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
h.congr_mono hs hx (Subset.refl _)
-#align has_fderiv_within_at.congr HasFderivWithinAt.congr
-
-theorem HasFderivWithinAt.congr' (h : HasFderivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
- (hx : x ∈ s) : HasFderivWithinAt f₁ f' s x :=
+#align has_fderiv_within_at.congr HasFDerivWithinAt.congr
+
+/- warning: has_fderiv_within_at.congr' -> HasFDerivWithinAt.congr' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'ₓ'. -/
+theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
+ (hx : x ∈ s) : HasFDerivWithinAt f₁ f' s x :=
h.congr hs (hs x hx)
-#align has_fderiv_within_at.congr' HasFderivWithinAt.congr'
-
-theorem HasFderivWithinAt.congr_of_eventuallyEq (h : HasFderivWithinAt f f' s x)
- (h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : HasFderivWithinAt f₁ f' s x :=
- HasFderivAtFilter.congr_of_eventuallyEq h h₁ hx
-#align has_fderiv_within_at.congr_of_eventually_eq HasFderivWithinAt.congr_of_eventuallyEq
-
-theorem HasFderivAt.congr_of_eventuallyEq (h : HasFderivAt f f' x) (h₁ : f₁ =ᶠ[𝓝 x] f) :
- HasFderivAt f₁ f' x :=
- HasFderivAtFilter.congr_of_eventuallyEq h h₁ (mem_of_mem_nhds h₁ : _)
-#align has_fderiv_at.congr_of_eventually_eq HasFderivAt.congr_of_eventuallyEq
-
+#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'
+
+/- warning: has_fderiv_within_at.congr_of_eventually_eq -> HasFDerivWithinAt.congr_of_eventuallyEq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E}, (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.congr_of_eventually_eq HasFDerivWithinAt.congr_of_eventuallyEqₓ'. -/
+theorem HasFDerivWithinAt.congr_of_eventuallyEq (h : HasFDerivWithinAt f f' s x)
+ (h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
+ HasFDerivAtFilter.congr_of_eventuallyEq h h₁ hx
+#align has_fderiv_within_at.congr_of_eventually_eq HasFDerivWithinAt.congr_of_eventuallyEq
+
+/- warning: has_fderiv_at.congr_of_eventually_eq -> HasFDerivAt.congr_of_eventuallyEq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {f' : ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)} {x : E}, (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f' x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.congr_of_eventually_eq HasFDerivAt.congr_of_eventuallyEqₓ'. -/
+theorem HasFDerivAt.congr_of_eventuallyEq (h : HasFDerivAt f f' x) (h₁ : f₁ =ᶠ[𝓝 x] f) :
+ HasFDerivAt f₁ f' x :=
+ HasFDerivAtFilter.congr_of_eventuallyEq h h₁ (mem_of_mem_nhds h₁ : _)
+#align has_fderiv_at.congr_of_eventually_eq HasFDerivAt.congr_of_eventuallyEq
+
+/- warning: differentiable_within_at.congr_mono -> DifferentiableWithinAt.congr_mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_monoₓ'. -/
theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
(ht : ∀ x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
- (HasFderivWithinAt.congr_mono h.HasFderivWithinAt ht hx h₁).DifferentiableWithinAt
+ (HasFDerivWithinAt.congr_mono h.HasFDerivWithinAt ht hx h₁).DifferentiableWithinAt
#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_mono
+/- warning: differentiable_within_at.congr -> DifferentiableWithinAt.congr is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr DifferentiableWithinAt.congrₓ'. -/
theorem DifferentiableWithinAt.congr (h : DifferentiableWithinAt 𝕜 f s x) (ht : ∀ x ∈ s, f₁ x = f x)
(hx : f₁ x = f x) : DifferentiableWithinAt 𝕜 f₁ s x :=
DifferentiableWithinAt.congr_mono h ht hx (Subset.refl _)
#align differentiable_within_at.congr DifferentiableWithinAt.congr
+/- warning: differentiable_within_at.congr_of_eventually_eq -> DifferentiableWithinAt.congr_of_eventuallyEq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.congr_of_eventually_eq DifferentiableWithinAt.congr_of_eventuallyEqₓ'. -/
theorem DifferentiableWithinAt.congr_of_eventuallyEq (h : DifferentiableWithinAt 𝕜 f s x)
(h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : DifferentiableWithinAt 𝕜 f₁ s x :=
- (h.HasFderivWithinAt.congr_of_eventuallyEq h₁ hx).DifferentiableWithinAt
+ (h.HasFDerivWithinAt.congr_of_eventuallyEq h₁ hx).DifferentiableWithinAt
#align differentiable_within_at.congr_of_eventually_eq DifferentiableWithinAt.congr_of_eventuallyEq
+/- warning: differentiable_on.congr_mono -> DifferentiableOn.congr_mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.congr_mono DifferentiableOn.congr_monoₓ'. -/
theorem DifferentiableOn.congr_mono (h : DifferentiableOn 𝕜 f s) (h' : ∀ x ∈ t, f₁ x = f x)
(h₁ : t ⊆ s) : DifferentiableOn 𝕜 f₁ t := fun x hx => (h x (h₁ hx)).congr_mono h' (h' x hx) h₁
#align differentiable_on.congr_mono DifferentiableOn.congr_mono
+/- warning: differentiable_on.congr -> DifferentiableOn.congr is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E}, (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.congr DifferentiableOn.congrₓ'. -/
theorem DifferentiableOn.congr (h : DifferentiableOn 𝕜 f s) (h' : ∀ x ∈ s, f₁ x = f x) :
DifferentiableOn 𝕜 f₁ s := fun x hx => (h x hx).congr h' (h' x hx)
#align differentiable_on.congr DifferentiableOn.congr
+/- warning: differentiable_on_congr -> differentiableOn_congr is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u2} E}, (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Iff (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {s : Set.{u3} E}, (forall (x : E), (Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) x s) -> (Eq.{succ u2} F (f₁ x) (f x))) -> (Iff (DifferentiableOn.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) (DifferentiableOn.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s))
+Case conversion may be inaccurate. Consider using '#align differentiable_on_congr differentiableOn_congrₓ'. -/
theorem differentiableOn_congr (h' : ∀ x ∈ s, f₁ x = f x) :
DifferentiableOn 𝕜 f₁ s ↔ DifferentiableOn 𝕜 f s :=
⟨fun h => DifferentiableOn.congr h fun y hy => (h' y hy).symm, fun h =>
DifferentiableOn.congr h h'⟩
#align differentiable_on_congr differentiableOn_congr
+/- warning: differentiable_at.congr_of_eventually_eq -> DifferentiableAt.congr_of_eventuallyEq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEqₓ'. -/
theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (hL : f₁ =ᶠ[𝓝 x] f) :
DifferentiableAt 𝕜 f₁ x :=
hL.differentiableAt_iff.2 h
#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEq
+/- warning: differentiable_within_at.fderiv_within_congr_mono -> DifferentiableWithinAt.fderivWithin_congr_mono is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x t) -> (Eq.{succ u3} F (f₁ x) (f x))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) t s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E} {t : Set.{u2} E}, (DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x t) -> (Eq.{succ u1} F (f₁ x) (f x))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) t x) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) t s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ t x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_monoₓ'. -/
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
(hs : ∀ x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
fderivWithin 𝕜 f₁ t x = fderivWithin 𝕜 f s x :=
- (HasFderivWithinAt.congr_mono h.HasFderivWithinAt hs hx h₁).fderivWithin hxt
+ (HasFDerivWithinAt.congr_mono h.HasFDerivWithinAt hs hx h₁).fderivWithin hxt
#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_mono
+/- warning: filter.eventually_eq.fderiv_within_eq -> Filter.EventuallyEq.fderivWithin_eq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) f₁ f) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eqₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq (hs : UniqueDiffWithinAt 𝕜 s x) (hL : f₁ =ᶠ[𝓝[s] x] f)
(hx : f₁ x = f x) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
if h : DifferentiableWithinAt 𝕜 f s x then
- HasFderivWithinAt.fderivWithin (h.HasFderivWithinAt.congr_of_eventuallyEq hL hx) hs
+ HasFDerivWithinAt.fderivWithin (h.HasFDerivWithinAt.congr_of_eventuallyEq hL hx) hs
else
by
have h' : ¬DifferentiableWithinAt 𝕜 f₁ s x :=
@@ -951,11 +1627,23 @@ theorem Filter.EventuallyEq.fderivWithin_eq (hs : UniqueDiffWithinAt 𝕜 s x) (
fderivWithin_zero_of_not_differentiableWithinAt h']
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
+/- warning: filter.eventually_eq.fderiv_within_eq_nhds -> Filter.EventuallyEq.fderivWithin_eq_nhds is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Filter.EventuallyEq.{u2, u1} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhdsₓ'. -/
theorem Filter.EventuallyEq.fderivWithin_eq_nhds (hs : UniqueDiffWithinAt 𝕜 s x)
(hL : f₁ =ᶠ[𝓝 x] f) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
(show f₁ =ᶠ[𝓝[s] x] f from nhdsWithin_le_nhds hL).fderivWithin_eq hs (mem_of_mem_nhds hL : _)
#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhds
+/- warning: fderiv_within_congr -> fderivWithin_congr is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) y s) -> (Eq.{succ u3} F (f₁ y) (f y))) -> (Eq.{succ u3} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) y s) -> (Eq.{succ u1} F (f₁ y) (f y))) -> (Eq.{succ u1} F (f₁ x) (f x)) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_congr fderivWithin_congrₓ'. -/
theorem fderivWithin_congr (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s, f₁ y = f y)
(hx : f₁ x = f x) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
by
@@ -964,11 +1652,23 @@ theorem fderivWithin_congr (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s,
exact hL
#align fderiv_within_congr fderivWithin_congr
+/- warning: fderiv_within_congr' -> fderivWithin_congr' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) y s) -> (Eq.{succ u3} F (f₁ y) (f y))) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (forall (y : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) y s) -> (Eq.{succ u1} F (f₁ y) (f y))) -> (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_congr' fderivWithin_congr'ₓ'. -/
theorem fderivWithin_congr' (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s, f₁ y = f y)
(hx : x ∈ s) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
fderivWithin_congr hs hL (hL x hx)
#align fderiv_within_congr' fderivWithin_congr'
+/- warning: filter.eventually_eq.fderiv_eq -> Filter.EventuallyEq.fderiv_eq is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eqₓ'. -/
theorem Filter.EventuallyEq.fderiv_eq (hL : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x :=
by
have A : f₁ x = f x := hL.eq_of_nhds
@@ -977,6 +1677,12 @@ theorem Filter.EventuallyEq.fderiv_eq (hL : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f
exact hL.fderiv_within_eq uniqueDiffWithinAt_univ A
#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eq
+/- warning: filter.eventually_eq.fderiv -> Filter.EventuallyEq.fderiv is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f₁ f) -> (Filter.EventuallyEq.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {f₁ : E -> F} {x : E}, (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f₁ f) -> (Filter.EventuallyEq.{u3, max u3 u2} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.fderiv Filter.EventuallyEq.fderivₓ'. -/
protected theorem Filter.EventuallyEq.fderiv (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f :=
h.eventuallyEq_nhds.mono fun x h => h.fderiv_eq
#align filter.eventually_eq.fderiv Filter.EventuallyEq.fderiv
@@ -988,63 +1694,131 @@ section id
/-! ### Derivative of the identity -/
-theorem hasStrictFderivAt_id (x : E) : HasStrictFderivAt id (id 𝕜 E) x :=
+/- warning: has_strict_fderiv_at_id -> hasStrictFDerivAt_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] (x : E), HasStrictFDerivAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), HasStrictFDerivAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) x
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_id hasStrictFDerivAt_idₓ'. -/
+theorem hasStrictFDerivAt_id (x : E) : HasStrictFDerivAt id (id 𝕜 E) x :=
(isLittleO_zero _ _).congr_left <| by simp
-#align has_strict_fderiv_at_id hasStrictFderivAt_id
+#align has_strict_fderiv_at_id hasStrictFDerivAt_id
-theorem hasFderivAtFilter_id (x : E) (L : Filter E) : HasFderivAtFilter id (id 𝕜 E) x L :=
+#print hasFDerivAtFilter_id /-
+theorem hasFDerivAtFilter_id (x : E) (L : Filter E) : HasFDerivAtFilter id (id 𝕜 E) x L :=
(isLittleO_zero _ _).congr_left <| by simp
-#align has_fderiv_at_filter_id hasFderivAtFilter_id
-
-theorem hasFderivWithinAt_id (x : E) (s : Set E) : HasFderivWithinAt id (id 𝕜 E) s x :=
- hasFderivAtFilter_id _ _
-#align has_fderiv_within_at_id hasFderivWithinAt_id
+#align has_fderiv_at_filter_id hasFDerivAtFilter_id
+-/
-theorem hasFderivAt_id (x : E) : HasFderivAt id (id 𝕜 E) x :=
- hasFderivAtFilter_id _ _
-#align has_fderiv_at_id hasFderivAt_id
+#print hasFDerivWithinAt_id /-
+theorem hasFDerivWithinAt_id (x : E) (s : Set E) : HasFDerivWithinAt id (id 𝕜 E) s x :=
+ hasFDerivAtFilter_id _ _
+#align has_fderiv_within_at_id hasFDerivWithinAt_id
+-/
+/- warning: has_fderiv_at_id -> hasFDerivAt_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] (x : E), HasFDerivAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), HasFDerivAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) x
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_id hasFDerivAt_idₓ'. -/
+theorem hasFDerivAt_id (x : E) : HasFDerivAt id (id 𝕜 E) x :=
+ hasFDerivAtFilter_id _ _
+#align has_fderiv_at_id hasFDerivAt_id
+
+/- warning: differentiable_at_id -> differentiableAt_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, DifferentiableAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, DifferentiableAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) x
+Case conversion may be inaccurate. Consider using '#align differentiable_at_id differentiableAt_idₓ'. -/
@[simp]
theorem differentiableAt_id : DifferentiableAt 𝕜 id x :=
- (hasFderivAt_id x).DifferentiableAt
+ (hasFDerivAt_id x).DifferentiableAt
#align differentiable_at_id differentiableAt_id
+/- warning: differentiable_at_id' -> differentiableAt_id' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, DifferentiableAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, DifferentiableAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) x
+Case conversion may be inaccurate. Consider using '#align differentiable_at_id' differentiableAt_id'ₓ'. -/
@[simp]
theorem differentiableAt_id' : DifferentiableAt 𝕜 (fun x => x) x :=
- (hasFderivAt_id x).DifferentiableAt
+ (hasFDerivAt_id x).DifferentiableAt
#align differentiable_at_id' differentiableAt_id'
+/- warning: differentiable_within_at_id -> differentiableWithinAt_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E}, DifferentiableWithinAt.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) s x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E}, DifferentiableWithinAt.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) s x
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_id differentiableWithinAt_idₓ'. -/
theorem differentiableWithinAt_id : DifferentiableWithinAt 𝕜 id s x :=
differentiableAt_id.DifferentiableWithinAt
#align differentiable_within_at_id differentiableWithinAt_id
+/- warning: differentiable_id -> differentiable_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)], Differentiable.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E)
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)], Differentiable.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E)
+Case conversion may be inaccurate. Consider using '#align differentiable_id differentiable_idₓ'. -/
@[simp]
theorem differentiable_id : Differentiable 𝕜 (id : E → E) := fun x => differentiableAt_id
#align differentiable_id differentiable_id
+/- warning: differentiable_id' -> differentiable_id' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)], Differentiable.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x)
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)], Differentiable.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x)
+Case conversion may be inaccurate. Consider using '#align differentiable_id' differentiable_id'ₓ'. -/
@[simp]
theorem differentiable_id' : Differentiable 𝕜 fun x : E => x := fun x => differentiableAt_id
#align differentiable_id' differentiable_id'
+/- warning: differentiable_on_id -> differentiableOn_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E}, DifferentiableOn.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) s
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {s : Set.{u1} E}, DifferentiableOn.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) s
+Case conversion may be inaccurate. Consider using '#align differentiable_on_id differentiableOn_idₓ'. -/
theorem differentiableOn_id : DifferentiableOn 𝕜 id s :=
differentiable_id.DifferentiableOn
#align differentiable_on_id differentiableOn_id
+#print fderiv_id /-
theorem fderiv_id : fderiv 𝕜 id x = id 𝕜 E :=
- HasFderivAt.fderiv (hasFderivAt_id x)
+ HasFDerivAt.fderiv (hasFDerivAt_id x)
#align fderiv_id fderiv_id
+-/
+#print fderiv_id' /-
@[simp]
theorem fderiv_id' : fderiv 𝕜 (fun x : E => x) x = ContinuousLinearMap.id 𝕜 E :=
fderiv_id
#align fderiv_id' fderiv_id'
+-/
+/- warning: fderiv_within_id -> fderivWithin_id is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u2} E) s x) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E}, (UniqueDiffWithinAt.{u2, u1} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (fderivWithin.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (id.{succ u1} E) s x) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_id fderivWithin_idₓ'. -/
theorem fderivWithin_id (hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 id s x = id 𝕜 E :=
by
rw [DifferentiableAt.fderivWithin differentiableAt_id hxs]
exact fderiv_id
#align fderiv_within_id fderivWithin_id
+/- warning: fderiv_within_id' -> fderivWithin_id' is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E}, (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, u2, u2} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) s x) (ContinuousLinearMap.id.{u1, u2} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E}, (UniqueDiffWithinAt.{u2, u1} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (fderivWithin.{u2, u1, u1} 𝕜 _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (fun (x : E) => x) s x) (ContinuousLinearMap.id.{u2, u1} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_id' fderivWithin_id'ₓ'. -/
theorem fderivWithin_id' (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun x : E => x) s x = ContinuousLinearMap.id 𝕜 E :=
fderivWithin_id hxs
@@ -1057,38 +1831,86 @@ section Const
/-! ### derivative of a constant function -/
-theorem hasStrictFderivAt_const (c : F) (x : E) :
- HasStrictFderivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
+/- warning: has_strict_fderiv_at_const -> hasStrictFDerivAt_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E), HasStrictFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (_x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E), HasStrictFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (_x : E) => c) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_const hasStrictFDerivAt_constₓ'. -/
+theorem hasStrictFDerivAt_const (c : F) (x : E) :
+ HasStrictFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
-#align has_strict_fderiv_at_const hasStrictFderivAt_const
-
-theorem hasFderivAtFilter_const (c : F) (x : E) (L : Filter E) :
- HasFderivAtFilter (fun x => c) (0 : E →L[𝕜] F) x L :=
+#align has_strict_fderiv_at_const hasStrictFDerivAt_const
+
+/- warning: has_fderiv_at_filter_const -> hasFDerivAtFilter_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E) (L : Filter.{u2} E), HasFDerivAtFilter.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x L
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E) (L : Filter.{u3} E), HasFDerivAtFilter.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x L
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_const hasFDerivAtFilter_constₓ'. -/
+theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
+ HasFDerivAtFilter (fun x => c) (0 : E →L[𝕜] F) x L :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
-#align has_fderiv_at_filter_const hasFderivAtFilter_const
-
-theorem hasFderivWithinAt_const (c : F) (x : E) (s : Set E) :
- HasFderivWithinAt (fun x => c) (0 : E →L[𝕜] F) s x :=
- hasFderivAtFilter_const _ _ _
-#align has_fderiv_within_at_const hasFderivWithinAt_const
-
-theorem hasFderivAt_const (c : F) (x : E) : HasFderivAt (fun x => c) (0 : E →L[𝕜] F) x :=
- hasFderivAtFilter_const _ _ _
-#align has_fderiv_at_const hasFderivAt_const
-
+#align has_fderiv_at_filter_const hasFDerivAtFilter_const
+
+/- warning: has_fderiv_within_at_const -> hasFDerivWithinAt_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E) (s : Set.{u2} E), HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) s x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E) (s : Set.{u3} E), HasFDerivWithinAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) s x
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_const hasFDerivWithinAt_constₓ'. -/
+theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
+ HasFDerivWithinAt (fun x => c) (0 : E →L[𝕜] F) s x :=
+ hasFDerivAtFilter_const _ _ _
+#align has_fderiv_within_at_const hasFDerivWithinAt_const
+
+/- warning: has_fderiv_at_const -> hasFDerivAt_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F) (x : E), HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F) (x : E), HasFDerivAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_const hasFDerivAt_constₓ'. -/
+theorem hasFDerivAt_const (c : F) (x : E) : HasFDerivAt (fun x => c) (0 : E →L[𝕜] F) x :=
+ hasFDerivAtFilter_const _ _ _
+#align has_fderiv_at_const hasFDerivAt_const
+
+/- warning: differentiable_at_const -> differentiableAt_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} (c : F), DifferentiableAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) x
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {x : E} (c : F), DifferentiableAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) x
+Case conversion may be inaccurate. Consider using '#align differentiable_at_const differentiableAt_constₓ'. -/
@[simp]
theorem differentiableAt_const (c : F) : DifferentiableAt 𝕜 (fun x => c) x :=
- ⟨0, hasFderivAt_const c x⟩
+ ⟨0, hasFDerivAt_const c x⟩
#align differentiable_at_const differentiableAt_const
+/- warning: differentiable_within_at_const -> differentiableWithinAt_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), DifferentiableWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s x
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), DifferentiableWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s x
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_const differentiableWithinAt_constₓ'. -/
theorem differentiableWithinAt_const (c : F) : DifferentiableWithinAt 𝕜 (fun x => c) s x :=
DifferentiableAt.differentiableWithinAt (differentiableAt_const _)
#align differentiable_within_at_const differentiableWithinAt_const
+/- warning: fderiv_const_apply -> fderiv_const_apply is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} (c : F), Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {x : E} (c : F), Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) x) (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))))
+Case conversion may be inaccurate. Consider using '#align fderiv_const_apply fderiv_const_applyₓ'. -/
theorem fderiv_const_apply (c : F) : fderiv 𝕜 (fun y => c) x = 0 :=
- HasFderivAt.fderiv (hasFderivAt_const c x)
+ HasFDerivAt.fderiv (hasFDerivAt_const c x)
#align fderiv_const_apply fderiv_const_apply
+/- warning: fderiv_const -> fderiv_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F), Eq.{max (succ u2) (succ u3)} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c)) (OfNat.ofNat.{max u2 u3} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) 0 (OfNat.mk.{max u2 u3} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) 0 (Zero.zero.{max u2 u3} (E -> (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))) (Pi.instZero.{u2, max u2 u3} E (fun (x : E) => ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (i : E) => ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] (c : F), Eq.{max (succ u3) (succ u2)} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c)) (OfNat.ofNat.{max u3 u2} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) 0 (Zero.toOfNat0.{max u3 u2} (E -> (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))) (Pi.instZero.{u3, max u3 u2} E (fun (x : E) => ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fun (i : E) => ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))))
+Case conversion may be inaccurate. Consider using '#align fderiv_const fderiv_constₓ'. -/
@[simp]
theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 :=
by
@@ -1097,6 +1919,12 @@ theorem fderiv_const (c : F) : (fderiv 𝕜 fun y : E => c) = 0 :=
rfl
#align fderiv_const fderiv_const
+/- warning: fderiv_within_const_apply -> fderivWithin_const_apply is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), (UniqueDiffWithinAt.{u1, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) s x) (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {x : E} {s : Set.{u2} E} (c : F), (UniqueDiffWithinAt.{u3, u2} 𝕜 _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u1)} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (fderivWithin.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (y : E) => c) s x) (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_const_apply fderivWithin_const_applyₓ'. -/
theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
fderivWithin 𝕜 (fun y => c) s x = 0 :=
by
@@ -1104,43 +1932,91 @@ theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
exact fderiv_const_apply _
#align fderiv_within_const_apply fderivWithin_const_apply
+/- warning: differentiable_const -> differentiable_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (c : F), Differentiable.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (c : F), Differentiable.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c)
+Case conversion may be inaccurate. Consider using '#align differentiable_const differentiable_constₓ'. -/
@[simp]
theorem differentiable_const (c : F) : Differentiable 𝕜 fun x : E => c := fun x =>
differentiableAt_const _
#align differentiable_const differentiable_const
+/- warning: differentiable_on_const -> differentiableOn_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {s : Set.{u2} E} (c : F), DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {s : Set.{u2} E} (c : F), DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => c) s
+Case conversion may be inaccurate. Consider using '#align differentiable_on_const differentiableOn_constₓ'. -/
theorem differentiableOn_const (c : F) : DifferentiableOn 𝕜 (fun x => c) s :=
(differentiable_const _).DifferentiableOn
#align differentiable_on_const differentiableOn_const
-theorem hasFderivWithinAt_singleton (f : E → F) (x : E) :
- HasFderivWithinAt f (0 : E →L[𝕜] F) {x} x := by
- simp only [HasFderivWithinAt, nhdsWithin_singleton, HasFderivAtFilter, is_o_pure,
+/- warning: has_fderiv_within_at_singleton -> hasFDerivWithinAt_singleton is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (f : E -> F) (x : E), HasFDerivWithinAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x) x
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (f : E -> F) (x : E), HasFDerivWithinAt.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u2 u1} (ContinuousLinearMap.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u3, u3, u2, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))) (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 (DivisionSemiring.toSemiring.{u3} 𝕜 (Semifield.toDivisionSemiring.{u3} 𝕜 (Field.toSemifield.{u3} 𝕜 (NormedField.toField.{u3} 𝕜 (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.instSingletonSet.{u2} E) x) x
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_singleton hasFDerivWithinAt_singletonₓ'. -/
+theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
+ HasFDerivWithinAt f (0 : E →L[𝕜] F) {x} x := by
+ simp only [HasFDerivWithinAt, nhdsWithin_singleton, HasFDerivAtFilter, is_o_pure,
ContinuousLinearMap.zero_apply, sub_self]
-#align has_fderiv_within_at_singleton hasFderivWithinAt_singleton
-
-theorem hasFderivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
- HasFderivAt f (0 : E →L[𝕜] F) x :=
+#align has_fderiv_within_at_singleton hasFDerivWithinAt_singleton
+
+/- warning: has_fderiv_at_of_subsingleton -> hasFDerivAt_of_subsingleton is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] [h : Subsingleton.{succ u2} E] (f : E -> F) (x : E), HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] [h : Subsingleton.{succ u3} E] (f : E -> F) (x : E), HasFDerivAt.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u1} (ContinuousLinearMap.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u2, u2, u3, u1} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))) (RingHom.id.{u2} 𝕜 (Semiring.toNonAssocSemiring.{u2} 𝕜 (DivisionSemiring.toSemiring.{u2} 𝕜 (Semifield.toDivisionSemiring.{u2} 𝕜 (Field.toSemifield.{u2} 𝕜 (NormedField.toField.{u2} 𝕜 (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)))) x
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingletonₓ'. -/
+theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
+ HasFDerivAt f (0 : E →L[𝕜] F) x :=
by
- rw [← hasFderivWithinAt_univ, subsingleton_univ.eq_singleton_of_mem (mem_univ x)]
- exact hasFderivWithinAt_singleton f x
-#align has_fderiv_at_of_subsingleton hasFderivAt_of_subsingleton
-
+ rw [← hasFDerivWithinAt_univ, subsingleton_univ.eq_singleton_of_mem (mem_univ x)]
+ exact hasFDerivWithinAt_singleton f x
+#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingleton
+
+/- warning: differentiable_on_empty -> differentiableOn_empty is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.hasEmptyc.{u2} E))
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F}, DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.instEmptyCollectionSet.{u2} E))
+Case conversion may be inaccurate. Consider using '#align differentiable_on_empty differentiableOn_emptyₓ'. -/
theorem differentiableOn_empty : DifferentiableOn 𝕜 f ∅ := fun x => False.elim
#align differentiable_on_empty differentiableOn_empty
+/- warning: differentiable_on_singleton -> differentiableOn_singleton is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E}, DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x)
+but is expected to have type
+ forall {𝕜 : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u3} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {x : E}, DifferentiableOn.{u3, u2, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.instSingletonSet.{u2} E) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_on_singleton differentiableOn_singletonₓ'. -/
theorem differentiableOn_singleton : DifferentiableOn 𝕜 f {x} :=
- forall_eq.2 (hasFderivWithinAt_singleton f x).DifferentiableWithinAt
+ forall_eq.2 (hasFDerivWithinAt_singleton f x).DifferentiableWithinAt
#align differentiable_on_singleton differentiableOn_singleton
+/- warning: set.subsingleton.differentiable_on -> Set.Subsingleton.differentiableOn is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {s : Set.{u2} E}, (Set.Subsingleton.{u2} E s) -> (DifferentiableOn.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+but is expected to have type
+ forall {𝕜 : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u2, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u2, u1} 𝕜 F (NontriviallyNormedField.toNormedField.{u2} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {f : E -> F} {s : Set.{u3} E}, (Set.Subsingleton.{u3} E s) -> (DifferentiableOn.{u2, u3, u1} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s)
+Case conversion may be inaccurate. Consider using '#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOnₓ'. -/
theorem Set.Subsingleton.differentiableOn (hs : s.Subsingleton) : DifferentiableOn 𝕜 f s :=
hs.inductionOn differentiableOn_empty fun x => differentiableOn_singleton
#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOn
-theorem hasFderivAt_zero_of_eventually_const (c : F) (hf : f =ᶠ[𝓝 x] fun y => c) :
- HasFderivAt f (0 : E →L[𝕜] F) x :=
- (hasFderivAt_const _ _).congr_of_eventuallyEq hf
-#align has_fderiv_at_zero_of_eventually_const hasFderivAt_zero_of_eventually_const
+/- warning: has_fderiv_at_zero_of_eventually_const -> hasFDerivAt_zero_of_eventually_const is a dubious translation:
+lean 3 declaration is
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F} {x : E} (c : F), (Filter.EventuallyEq.{u2, u3} E F (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x) f (fun (y : E) => c)) -> (HasFDerivAt.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (OfNat.mk.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) 0 (Zero.zero.{max u2 u3} (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))))) x)
+but is expected to have type
+ forall {𝕜 : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F} {x : E} (c : F), (Filter.EventuallyEq.{u3, u2} E F (nhds.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) x) f (fun (y : E) => c)) -> (HasFDerivAt.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (OfNat.ofNat.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) 0 (Zero.toOfNat0.{max u3 u2} (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)))) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_zero_of_eventually_const hasFDerivAt_zero_of_eventually_constₓ'. -/
+theorem hasFDerivAt_zero_of_eventually_const (c : F) (hf : f =ᶠ[𝓝 x] fun y => c) :
+ HasFDerivAt f (0 : E →L[𝕜] F) x :=
+ (hasFDerivAt_const _ _).congr_of_eventuallyEq hf
+#align has_fderiv_at_zero_of_eventually_const hasFDerivAt_zero_of_eventually_const
end Const
@@ -1156,6 +2032,12 @@ open Function
variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F}
+/- warning: support_fderiv_subset -> support_fderiv_subset is a dubious translation:
+lean 3 declaration is
+ forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) (Function.support.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u2, u3} E F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) f)
+but is expected to have type
+ forall (𝕜 : Type.{u1}) {E : Type.{u3}} {F : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, HasSubset.Subset.{u3} (Set.{u3} E) (Set.instHasSubsetSet.{u3} E) (Function.support.{u3, max u2 u3} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f)) (tsupport.{u3, u2} E F (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) f)
+Case conversion may be inaccurate. Consider using '#align support_fderiv_subset support_fderiv_subsetₓ'. -/
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
by
intro x
@@ -1165,6 +2047,12 @@ theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f :=
exact nmem_support.mpr (h2x.fderiv_eq.trans <| fderiv_const_apply 0)
#align support_fderiv_subset support_fderiv_subset
+/- warning: has_compact_support.fderiv -> HasCompactSupport.fderiv is a dubious translation:
+lean 3 declaration is
+ forall (𝕜 : Type.{u1}) {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {f : E -> F}, (HasCompactSupport.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (NormedAddGroup.toAddGroup.{u3} F (NormedAddCommGroup.toNormedAddGroup.{u3} F _inst_4)))))) f) -> (HasCompactSupport.{u2, max u2 u3} E (ContinuousLinearMap.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousLinearMap.zero.{u1, u1, u2, u3} 𝕜 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (Ring.toSemiring.{u1} 𝕜 (NormedRing.toRing.{u1} 𝕜 (NormedCommRing.toNormedRing.{u1} 𝕜 (NormedField.toNormedCommRing.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
+but is expected to have type
+ forall (𝕜 : Type.{u1}) {E : Type.{u3}} {F : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {f : E -> F}, (HasCompactSupport.{u3, u2} E F (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (NegZeroClass.toZero.{u2} F (SubNegZeroMonoid.toNegZeroClass.{u2} F (SubtractionMonoid.toSubNegZeroMonoid.{u2} F (SubtractionCommMonoid.toSubtractionMonoid.{u2} F (AddCommGroup.toDivisionAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)))))) f) -> (HasCompactSupport.{u3, max u2 u3} E (ContinuousLinearMap.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (ContinuousLinearMap.zero.{u1, u1, u3, u2} 𝕜 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))) (RingHom.id.{u1} 𝕜 (Semiring.toNonAssocSemiring.{u1} 𝕜 (DivisionSemiring.toSemiring.{u1} 𝕜 (Semifield.toDivisionSemiring.{u1} 𝕜 (Field.toSemifield.{u1} 𝕜 (NormedField.toField.{u1} 𝕜 (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} 𝕜 E (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} 𝕜 F (NontriviallyNormedField.toNormedField.{u1} 𝕜 _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, u3, u2} 𝕜 _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f))
+Case conversion may be inaccurate. Consider using '#align has_compact_support.fderiv HasCompactSupport.fderivₓ'. -/
theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) : HasCompactSupport (fderiv 𝕜 f) :=
hf.mono' <| support_fderiv_subset 𝕜
#align has_compact_support.fderiv HasCompactSupport.fderiv
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -336,7 +336,7 @@ only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood
theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) : ‖f'‖ ≤ C := by
refine' le_of_forall_pos_le_add fun ε ε0 => opNorm_le_of_nhds_zero _ _
- exact add_nonneg hC₀ ε0.le
+ · exact add_nonneg hC₀ ε0.le
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
filter_upwards [isLittleO_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
rw [add_sub_cancel_left] at hyC
@@ -342,7 +342,7 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
rw [add_sub_cancel_left] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
- _ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
+ _ ≤ C * ‖y‖ + ε * ‖y‖ := add_le_add hyC hy
_ = (C + ε) * ‖y‖ := (add_mul _ _ _).symm
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
@@ -218,7 +218,7 @@ theorem fderivWithin_zero_of_isolated (h : 𝓝[s \ {x}] x = ⊥) : fderivWithin
theorem fderivWithin_zero_of_nmem_closure (h : x ∉ closure s) : fderivWithin 𝕜 f s x = 0 := by
apply fderivWithin_zero_of_isolated
- simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne.def, Classical.not_not] at h
+ simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne, Classical.not_not] at h
rw [eq_bot_iff, ← h]
exact nhdsWithin_mono _ (diff_subset s {x})
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -256,7 +256,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type*} (l :
have : (fun y => f y - f x - f' (y - x)) =o[𝓝[s] x] fun y => y - x := h.isLittleO
have : (fun n => f (x + d n) - f x - f' (x + d n - x)) =o[l] fun n => x + d n - x :=
this.comp_tendsto tendsto_arg
- have : (fun n => f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel']
+ have : (fun n => f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel_left]
have : (fun n => c n • (f (x + d n) - f x - f' (d n))) =o[l] fun n => c n • d n :=
(isBigO_refl c l).smul_isLittleO this
have : (fun n => c n • (f (x + d n) - f x - f' (d n))) =o[l] fun _ => (1 : ℝ) :=
@@ -339,7 +339,7 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
exact add_nonneg hC₀ ε0.le
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
filter_upwards [isLittleO_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
- rw [add_sub_cancel'] at hyC
+ rw [add_sub_cancel_left] at hyC
calc
‖f' y‖ ≤ ‖f (x₀ + y) - f x₀‖ + ‖f (x₀ + y) - f x₀ - f' y‖ := norm_le_insert _ _
_ ≤ C * ‖y‖ + ε * ‖y‖ := (add_le_add hyC hy)
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -125,13 +125,9 @@ noncomputable section
section
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
-
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
-
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
-
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
-
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
/-- A function `f` has the continuous linear map `f'` as derivative along the filter `L` if
@@ -210,17 +206,11 @@ def Differentiable (f : E → F) :=
#align differentiable Differentiable
variable {𝕜}
-
variable {f f₀ f₁ g : E → F}
-
variable {f' f₀' f₁' g' : E →L[𝕜] F}
-
variable (e : E →L[𝕜] F)
-
variable {x : E}
-
variable {s t : Set E}
-
variable {L L₁ L₂ : Filter E}
theorem fderivWithin_zero_of_isolated (h : 𝓝[s \ {x}] x = ⊥) : fderivWithin 𝕜 f s x = 0 := by
Basic setup for fun_prop
for Differentiable(At/On/Within) and HasFDeriv(At/Within/Strict).
Mainly consists of marking theorems with fun_prop
attribute but I had to formulate appropriate _pi
and _apply
theorems. Proofs of _apply
theorems can probably be golfed into neater form.
@@ -146,12 +146,14 @@ structure HasFDerivAtFilter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : Fil
/-- A function `f` has the continuous linear map `f'` as derivative at `x` within a set `s` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x` inside `s`. -/
+@[fun_prop]
def HasFDerivWithinAt (f : E → F) (f' : E →L[𝕜] F) (s : Set E) (x : E) :=
HasFDerivAtFilter f f' x (𝓝[s] x)
#align has_fderiv_within_at HasFDerivWithinAt
/-- A function `f` has the continuous linear map `f'` as derivative at `x` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x`. -/
+@[fun_prop]
def HasFDerivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
HasFDerivAtFilter f f' x (𝓝 x)
#align has_fderiv_at HasFDerivAt
@@ -160,6 +162,7 @@ def HasFDerivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
if `f x - f y - f' (x - y) = o(x - y)` as `x, y → a`. This form of differentiability is required,
e.g., by the inverse function theorem. Any `C^1` function on a vector space over `ℝ` is strictly
differentiable but this definition works, e.g., for vector spaces over `p`-adic numbers. -/
+@[fun_prop]
def HasStrictFDerivAt (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
(fun p : E × E => f p.1 - f p.2 - f' (p.1 - p.2)) =o[𝓝 (x, x)] fun p : E × E => p.1 - p.2
#align has_strict_fderiv_at HasStrictFDerivAt
@@ -168,12 +171,14 @@ variable (𝕜)
/-- A function `f` is differentiable at a point `x` within a set `s` if it admits a derivative
there (possibly non-unique). -/
+@[fun_prop]
def DifferentiableWithinAt (f : E → F) (s : Set E) (x : E) :=
∃ f' : E →L[𝕜] F, HasFDerivWithinAt f f' s x
#align differentiable_within_at DifferentiableWithinAt
/-- A function `f` is differentiable at a point `x` if it admits a derivative there (possibly
non-unique). -/
+@[fun_prop]
def DifferentiableAt (f : E → F) (x : E) :=
∃ f' : E →L[𝕜] F, HasFDerivAt f f' x
#align differentiable_at DifferentiableAt
@@ -193,11 +198,13 @@ irreducible_def fderiv (f : E → F) (x : E) : E →L[𝕜] F :=
#align fderiv fderiv
/-- `DifferentiableOn 𝕜 f s` means that `f` is differentiable within `s` at any point of `s`. -/
+@[fun_prop]
def DifferentiableOn (f : E → F) (s : Set E) :=
∀ x ∈ s, DifferentiableWithinAt 𝕜 f s x
#align differentiable_on DifferentiableOn
/-- `Differentiable 𝕜 f` means that `f` is differentiable at any point. -/
+@[fun_prop]
def Differentiable (f : E → F) :=
∀ x, DifferentiableAt 𝕜 f x
#align differentiable Differentiable
@@ -386,15 +393,18 @@ theorem HasFDerivAt.hasFDerivAtFilter (h : HasFDerivAt f f' x) (hL : L ≤ 𝓝
h.mono hL
#align has_fderiv_at.has_fderiv_at_filter HasFDerivAt.hasFDerivAtFilter
+@[fun_prop]
theorem HasFDerivAt.hasFDerivWithinAt (h : HasFDerivAt f f' x) : HasFDerivWithinAt f f' s x :=
h.hasFDerivAtFilter inf_le_left
#align has_fderiv_at.has_fderiv_within_at HasFDerivAt.hasFDerivWithinAt
+@[fun_prop]
theorem HasFDerivWithinAt.differentiableWithinAt (h : HasFDerivWithinAt f f' s x) :
DifferentiableWithinAt 𝕜 f s x :=
⟨f', h⟩
#align has_fderiv_within_at.differentiable_within_at HasFDerivWithinAt.differentiableWithinAt
+@[fun_prop]
theorem HasFDerivAt.differentiableAt (h : HasFDerivAt f f' x) : DifferentiableAt 𝕜 f x :=
⟨f', h⟩
#align has_fderiv_at.differentiable_at HasFDerivAt.differentiableAt
@@ -452,6 +462,7 @@ theorem HasFDerivAtFilter.isBigO_sub (h : HasFDerivAtFilter f f' x L) :
set_option linter.uppercaseLean3 false in
#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_sub
+@[fun_prop]
protected theorem HasStrictFDerivAt.hasFDerivAt (hf : HasStrictFDerivAt f f' x) :
HasFDerivAt f f' x := by
rw [HasFDerivAt, hasFDerivAtFilter_iff_isLittleO, isLittleO_iff]
@@ -646,6 +657,7 @@ theorem DifferentiableAt.differentiableWithinAt (h : DifferentiableAt 𝕜 f x)
(differentiableWithinAt_univ.2 h).mono (subset_univ _)
#align differentiable_at.differentiable_within_at DifferentiableAt.differentiableWithinAt
+@[fun_prop]
theorem Differentiable.differentiableAt (h : Differentiable 𝕜 f) : DifferentiableAt 𝕜 f x :=
h x
#align differentiable.differentiable_at Differentiable.differentiableAt
@@ -664,6 +676,7 @@ theorem differentiableOn_univ : DifferentiableOn 𝕜 f univ ↔ Differentiable
forall_true_left]
#align differentiable_on_univ differentiableOn_univ
+@[fun_prop]
theorem Differentiable.differentiableOn (h : Differentiable 𝕜 f) : DifferentiableOn 𝕜 f s :=
(differentiableOn_univ.2 h).mono (subset_univ _)
#align differentiable.differentiable_on Differentiable.differentiableOn
@@ -794,21 +807,25 @@ theorem HasFDerivAt.continuousAt (h : HasFDerivAt f f' x) : ContinuousAt f x :=
HasFDerivAtFilter.tendsto_nhds le_rfl h
#align has_fderiv_at.continuous_at HasFDerivAt.continuousAt
+@[fun_prop]
theorem DifferentiableWithinAt.continuousWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
ContinuousWithinAt f s x :=
let ⟨_, hf'⟩ := h
hf'.continuousWithinAt
#align differentiable_within_at.continuous_within_at DifferentiableWithinAt.continuousWithinAt
+@[fun_prop]
theorem DifferentiableAt.continuousAt (h : DifferentiableAt 𝕜 f x) : ContinuousAt f x :=
let ⟨_, hf'⟩ := h
hf'.continuousAt
#align differentiable_at.continuous_at DifferentiableAt.continuousAt
+@[fun_prop]
theorem DifferentiableOn.continuousOn (h : DifferentiableOn 𝕜 f s) : ContinuousOn f s := fun x hx =>
(h x hx).continuousWithinAt
#align differentiable_on.continuous_on DifferentiableOn.continuousOn
+@[fun_prop]
theorem Differentiable.continuous (h : Differentiable 𝕜 f) : Continuous f :=
continuous_iff_continuousAt.2 fun x => (h x).continuousAt
#align differentiable.continuous Differentiable.continuous
@@ -1066,7 +1083,7 @@ section id
/-! ### Derivative of the identity -/
-
+@[fun_prop]
theorem hasStrictFDerivAt_id (x : E) : HasStrictFDerivAt id (id 𝕜 E) x :=
(isLittleO_zero _ _).congr_left <| by simp
#align has_strict_fderiv_at_id hasStrictFDerivAt_id
@@ -1075,15 +1092,17 @@ theorem hasFDerivAtFilter_id (x : E) (L : Filter E) : HasFDerivAtFilter id (id
.of_isLittleO <| (isLittleO_zero _ _).congr_left <| by simp
#align has_fderiv_at_filter_id hasFDerivAtFilter_id
+@[fun_prop]
theorem hasFDerivWithinAt_id (x : E) (s : Set E) : HasFDerivWithinAt id (id 𝕜 E) s x :=
hasFDerivAtFilter_id _ _
#align has_fderiv_within_at_id hasFDerivWithinAt_id
+@[fun_prop]
theorem hasFDerivAt_id (x : E) : HasFDerivAt id (id 𝕜 E) x :=
hasFDerivAtFilter_id _ _
#align has_fderiv_at_id hasFDerivAt_id
-@[simp]
+@[simp, fun_prop]
theorem differentiableAt_id : DifferentiableAt 𝕜 id x :=
(hasFDerivAt_id x).differentiableAt
#align differentiable_at_id differentiableAt_id
@@ -1093,11 +1112,12 @@ theorem differentiableAt_id' : DifferentiableAt 𝕜 (fun x => x) x :=
(hasFDerivAt_id x).differentiableAt
#align differentiable_at_id' differentiableAt_id'
+@[fun_prop]
theorem differentiableWithinAt_id : DifferentiableWithinAt 𝕜 id s x :=
differentiableAt_id.differentiableWithinAt
#align differentiable_within_at_id differentiableWithinAt_id
-@[simp]
+@[simp, fun_prop]
theorem differentiable_id : Differentiable 𝕜 (id : E → E) := fun _ => differentiableAt_id
#align differentiable_id differentiable_id
@@ -1105,6 +1125,7 @@ theorem differentiable_id : Differentiable 𝕜 (id : E → E) := fun _ => diffe
theorem differentiable_id' : Differentiable 𝕜 fun x : E => x := fun _ => differentiableAt_id
#align differentiable_id' differentiable_id'
+@[fun_prop]
theorem differentiableOn_id : DifferentiableOn 𝕜 id s :=
differentiable_id.differentiableOn
#align differentiable_on_id differentiableOn_id
@@ -1135,6 +1156,7 @@ section Const
/-! ### Derivative of a constant function -/
+@[fun_prop]
theorem hasStrictFDerivAt_const (c : F) (x : E) :
HasStrictFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
@@ -1145,20 +1167,23 @@ theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
.of_isLittleO <| (isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
#align has_fderiv_at_filter_const hasFDerivAtFilter_const
+@[fun_prop]
theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
HasFDerivWithinAt (fun _ => c) (0 : E →L[𝕜] F) s x :=
hasFDerivAtFilter_const _ _ _
#align has_fderiv_within_at_const hasFDerivWithinAt_const
+@[fun_prop]
theorem hasFDerivAt_const (c : F) (x : E) : HasFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
hasFDerivAtFilter_const _ _ _
#align has_fderiv_at_const hasFDerivAt_const
-@[simp]
+@[simp, fun_prop]
theorem differentiableAt_const (c : F) : DifferentiableAt 𝕜 (fun _ => c) x :=
⟨0, hasFDerivAt_const c x⟩
#align differentiable_at_const differentiableAt_const
+@[fun_prop]
theorem differentiableWithinAt_const (c : F) : DifferentiableWithinAt 𝕜 (fun _ => c) s x :=
DifferentiableAt.differentiableWithinAt (differentiableAt_const _)
#align differentiable_within_at_const differentiableWithinAt_const
@@ -1180,34 +1205,40 @@ theorem fderivWithin_const_apply (c : F) (hxs : UniqueDiffWithinAt 𝕜 s x) :
exact fderiv_const_apply _
#align fderiv_within_const_apply fderivWithin_const_apply
-@[simp]
+@[simp, fun_prop]
theorem differentiable_const (c : F) : Differentiable 𝕜 fun _ : E => c := fun _ =>
differentiableAt_const _
#align differentiable_const differentiable_const
+@[fun_prop]
theorem differentiableOn_const (c : F) : DifferentiableOn 𝕜 (fun _ => c) s :=
(differentiable_const _).differentiableOn
#align differentiable_on_const differentiableOn_const
+@[fun_prop]
theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) {x} x := by
simp only [HasFDerivWithinAt, nhdsWithin_singleton, hasFDerivAtFilter_iff_isLittleO,
isLittleO_pure, ContinuousLinearMap.zero_apply, sub_self]
#align has_fderiv_within_at_singleton hasFDerivWithinAt_singleton
+@[fun_prop]
theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
HasFDerivAt f (0 : E →L[𝕜] F) x := by
rw [← hasFDerivWithinAt_univ, subsingleton_univ.eq_singleton_of_mem (mem_univ x)]
exact hasFDerivWithinAt_singleton f x
#align has_fderiv_at_of_subsingleton hasFDerivAt_of_subsingleton
+@[fun_prop]
theorem differentiableOn_empty : DifferentiableOn 𝕜 f ∅ := fun _ => False.elim
#align differentiable_on_empty differentiableOn_empty
+@[fun_prop]
theorem differentiableOn_singleton : DifferentiableOn 𝕜 f {x} :=
forall_eq.2 (hasFDerivWithinAt_singleton f x).differentiableWithinAt
#align differentiable_on_singleton differentiableOn_singleton
+@[fun_prop]
theorem Set.Subsingleton.differentiableOn (hs : s.Subsingleton) : DifferentiableOn 𝕜 f s :=
hs.induction_on differentiableOn_empty fun _ => differentiableOn_singleton
#align set.subsingleton.differentiable_on Set.Subsingleton.differentiableOn
open Classical
(#11199)
We remove all but one open Classical
s, instead preferring to use open scoped Classical
. The only real side-effect this led to is moving a couple declarations to use Exists.choose
instead of Classical.choose
.
The first few commits are explicitly labelled regex replaces for ease of review.
@@ -117,7 +117,8 @@ derivative, differentiable, Fréchet, calculus
open Filter Asymptotics ContinuousLinearMap Set Metric
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Classical
+open Topology NNReal Filter Asymptotics ENNReal
noncomputable section
Split the 2300-line behemoth OperatorNorm.lean
into 8 smaller files, of which the largest is 600 lines.
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
import Mathlib.Analysis.Calculus.TangentCone
-import Mathlib.Analysis.NormedSpace.OperatorNorm
+import Mathlib.Analysis.NormedSpace.OperatorNorm.Asymptotics
#align_import analysis.calculus.fderiv.basic from "leanprover-community/mathlib"@"41bef4ae1254365bc190aee63b947674d2977f01"
have
, replace
and suffices
(#10640)
No changes to tactic file, it's just boring fixes throughout the library.
This follows on from #6964.
Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -696,8 +696,8 @@ theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x
theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f := by
ext1 x
nontriviality E
- have H : 𝓝[univ \ {x}] x ≠ ⊥
- · rw [← compl_eq_univ_diff, ← neBot_iff]
+ have H : 𝓝[univ \ {x}] x ≠ ⊥ := by
+ rw [← compl_eq_univ_diff, ← neBot_iff]
exact Module.punctured_nhds_neBot 𝕜 E x
simp [fderivWithin, fderiv, H]
#align fderiv_within_univ fderivWithin_univ
@@ -337,7 +337,7 @@ on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C
only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood of `x`. -/
theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) : ‖f'‖ ≤ C := by
- refine' le_of_forall_pos_le_add fun ε ε0 => op_norm_le_of_nhds_zero _ _
+ refine' le_of_forall_pos_le_add fun ε ε0 => opNorm_le_of_nhds_zero _ _
exact add_nonneg hC₀ ε0.le
rw [← map_add_left_nhds_zero x₀, eventually_map] at hlip
filter_upwards [isLittleO_iff.1 (hasFDerivAt_iff_isLittleO_nhds_zero.1 hf) ε0, hlip] with y hy hyC
f ^ n
(#9617)
This involves moving lemmas from Algebra.GroupPower.Ring
to Algebra.GroupWithZero.Basic
and changing some 0 < n
assumptions to n ≠ 0
.
From LeanAPAP
@@ -734,7 +734,7 @@ theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
(h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n) (hx₀ : x₀ ∈ s) (hn : 1 < n) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) s x₀ := by
simp_rw [HasFDerivWithinAt, hasFDerivAtFilter_iff_isLittleO,
- h.eq_zero_of_norm_pow_within hx₀ <| zero_lt_one.trans hn, zero_apply, sub_zero,
+ h.eq_zero_of_norm_pow_within hx₀ hn.ne_bot, zero_apply, sub_zero,
h.trans_isLittleO ((isLittleO_pow_sub_sub x₀ hn).mono nhdsWithin_le_nhds)]
set_option linter.uppercaseLean3 false in
#align asymptotics.is_O.has_fderiv_within_at Asymptotics.IsBigO.hasFDerivWithinAt
Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
@@ -779,7 +779,7 @@ theorem HasFDerivAtFilter.tendsto_nhds (hL : L ≤ 𝓝 x) (h : HasFDerivAtFilte
refine' h.isBigO_sub.trans_tendsto (Tendsto.mono_left _ hL)
rw [← sub_self x]
exact tendsto_id.sub tendsto_const_nhds
- have := this.add (@tendsto_const_nhds _ _ _ (f x) _)
+ have := this.add (tendsto_const_nhds (x := f x))
rw [zero_add (f x)] at this
exact this.congr (by simp only [sub_add_cancel, eq_self_iff_true, forall_const])
#align has_fderiv_at_filter.tendsto_nhds HasFDerivAtFilter.tendsto_nhds
@@ -3,7 +3,6 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
-import Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
import Mathlib.Analysis.Calculus.TangentCone
import Mathlib.Analysis.NormedSpace.OperatorNorm
After this PR, no file in Geometry
uses autoImplicit, and in Analysis
it's scoped to six declarations.
@@ -116,8 +116,6 @@ derivative, differentiable, Fréchet, calculus
-/
-set_option autoImplicit true
-
open Filter Asymptotics ContinuousLinearMap Set Metric
open Topology Classical NNReal Filter Asymptotics ENNReal
@@ -1241,7 +1239,7 @@ theorem HasFDerivAt.of_nmem_tsupport (h : x ∉ tsupport f) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
(HasStrictFDerivAt.of_nmem_tsupport 𝕜 h).hasFDerivAt
-theorem HasFDerivWithinAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
+theorem HasFDerivWithinAt.of_not_mem_tsupport {s : Set E} {x : E} (h : x ∉ tsupport f) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) s x :=
(HasFDerivAt.of_nmem_tsupport 𝕜 h).hasFDerivWithinAt
@@ -1026,17 +1026,17 @@ theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx :
simp only [fderivWithin, hs.hasFDerivWithinAt_iff hx]
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
-theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
+theorem Filter.EventuallyEq.fderivWithin' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
(eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
eventually_mem_nhdsWithin.mono fun _y hys hs =>
EventuallyEq.fderivWithin_eq (hs.filter_mono <| nhdsWithin_mono _ ht)
(hs.self_of_nhdsWithin hys)
-#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
+#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderivWithin'
protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
- hs.fderiv_within' Subset.rfl
+ hs.fderivWithin' Subset.rfl
#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
structure
(#8907)
This way we can easily change the definition so that it works for topological vector spaces without generalizing any of the theorems right away.
@@ -141,8 +141,9 @@ variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
is designed to be specialized for `L = 𝓝 x` (in `HasFDerivAt`), giving rise to the usual notion
of Fréchet derivative, and for `L = 𝓝[s] x` (in `HasFDerivWithinAt`), giving rise to
the notion of Fréchet derivative along the set `s`. -/
-def HasFDerivAtFilter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : Filter E) :=
- (fun x' => f x' - f x - f' (x' - x)) =o[L] fun x' => x' - x
+@[mk_iff hasFDerivAtFilter_iff_isLittleO]
+structure HasFDerivAtFilter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : Filter E) : Prop where
+ of_isLittleO :: isLittleO : (fun x' => f x' - f x - f' (x' - x)) =o[L] fun x' => x' - x
#align has_fderiv_at_filter HasFDerivAtFilter
/-- A function `f` has the continuous linear map `f'` as derivative at `x` within a set `s` if
@@ -257,7 +258,7 @@ theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type*} (l :
constructor
· apply tendsto_const_nhds.add (tangentConeAt.lim_zero l clim cdlim)
· rwa [tendsto_principal]
- have : (fun y => f y - f x - f' (y - x)) =o[𝓝[s] x] fun y => y - x := h
+ have : (fun y => f y - f x - f' (y - x)) =o[𝓝[s] x] fun y => y - x := h.isLittleO
have : (fun n => f (x + d n) - f x - f' (x + d n - x)) =o[l] fun n => x + d n - x :=
this.comp_tendsto tendsto_arg
have : (fun n => f (x + d n) - f x - f' (d n)) =o[l] d := by simpa only [add_sub_cancel']
@@ -312,8 +313,8 @@ theorem hasFDerivAtFilter_iff_tendsto :
have h : ∀ x', ‖x' - x‖ = 0 → ‖f x' - f x - f' (x' - x)‖ = 0 := fun x' hx' => by
rw [sub_eq_zero.1 (norm_eq_zero.1 hx')]
simp
- unfold HasFDerivAtFilter
- rw [← isLittleO_norm_left, ← isLittleO_norm_right, isLittleO_iff_tendsto h]
+ rw [hasFDerivAtFilter_iff_isLittleO, ← isLittleO_norm_left, ← isLittleO_norm_right,
+ isLittleO_iff_tendsto h]
exact tendsto_congr fun _ => div_eq_inv_mul _ _
#align has_fderiv_at_filter_iff_tendsto hasFDerivAtFilter_iff_tendsto
@@ -330,7 +331,7 @@ theorem hasFDerivAt_iff_tendsto :
theorem hasFDerivAt_iff_isLittleO_nhds_zero :
HasFDerivAt f f' x ↔ (fun h : E => f (x + h) - f x - f' h) =o[𝓝 0] fun h => h := by
- rw [HasFDerivAt, HasFDerivAtFilter, ← map_add_left_nhds_zero x, isLittleO_map]
+ rw [HasFDerivAt, hasFDerivAtFilter_iff_isLittleO, ← map_add_left_nhds_zero x, isLittleO_map]
simp [(· ∘ ·)]
#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zero
@@ -368,7 +369,7 @@ theorem HasFDerivAt.le_of_lipschitz {f : E → F} {f' : E →L[𝕜] F} {x₀ :
nonrec theorem HasFDerivAtFilter.mono (h : HasFDerivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
HasFDerivAtFilter f f' x L₁ :=
- h.mono hst
+ .of_isLittleO <| h.isLittleO.mono hst
#align has_fderiv_at_filter.mono HasFDerivAtFilter.mono
theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' t x) (hst : t ∈ 𝓝[s] x) :
@@ -420,7 +421,7 @@ lemma hasFDerivWithinAt_of_isOpen (h : IsOpen s) (hx : x ∈ s) :
theorem hasFDerivWithinAt_insert {y : E} :
HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x := by
rcases eq_or_ne x y with (rfl | h)
- · simp_rw [HasFDerivWithinAt, HasFDerivAtFilter]
+ · simp_rw [HasFDerivWithinAt, hasFDerivAtFilter_iff_isLittleO]
apply Asymptotics.isLittleO_insert
simp only [sub_self, map_zero]
refine' ⟨fun h => h.mono <| subset_insert y s, fun hf => hf.mono_of_mem _⟩
@@ -449,13 +450,13 @@ set_option linter.uppercaseLean3 false in
theorem HasFDerivAtFilter.isBigO_sub (h : HasFDerivAtFilter f f' x L) :
(fun x' => f x' - f x) =O[L] fun x' => x' - x :=
- h.isBigO.congr_of_sub.2 (f'.isBigO_sub _ _)
+ h.isLittleO.isBigO.congr_of_sub.2 (f'.isBigO_sub _ _)
set_option linter.uppercaseLean3 false in
#align has_fderiv_at_filter.is_O_sub HasFDerivAtFilter.isBigO_sub
protected theorem HasStrictFDerivAt.hasFDerivAt (hf : HasStrictFDerivAt f f' x) :
HasFDerivAt f f' x := by
- rw [HasFDerivAt, HasFDerivAtFilter, isLittleO_iff]
+ rw [HasFDerivAt, hasFDerivAtFilter_iff_isLittleO, isLittleO_iff]
exact fun c hc => tendsto_id.prod_mk_nhds tendsto_const_nhds (isLittleO_iff.1 hf hc)
#align has_strict_fderiv_at.has_fderiv_at HasStrictFDerivAt.hasFDerivAt
@@ -513,7 +514,7 @@ theorem hasFDerivWithinAt_inter (h : t ∈ 𝓝 x) :
theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
(ht : HasFDerivWithinAt f f' t x) : HasFDerivWithinAt f f' (s ∪ t) x := by
simp only [HasFDerivWithinAt, nhdsWithin_union]
- exact hs.sup ht
+ exact .of_isLittleO <| hs.isLittleO.sup ht.isLittleO
#align has_fderiv_within_at.union HasFDerivWithinAt.union
theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
@@ -530,7 +531,7 @@ theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜
as this statement is empty. -/
theorem HasFDerivWithinAt.of_nhdsWithin_eq_bot (h : 𝓝[s\{x}] x = ⊥) :
HasFDerivWithinAt f f' s x := by
- rw [← hasFDerivWithinAt_diff_singleton x, HasFDerivWithinAt, h]
+ rw [← hasFDerivWithinAt_diff_singleton x, HasFDerivWithinAt, h, hasFDerivAtFilter_iff_isLittleO]
apply isLittleO_bot
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
@@ -735,7 +736,7 @@ theorem fderivWithin_mem_iff {f : E → F} {t : Set E} {s : Set (E →L[𝕜] F)
theorem Asymptotics.IsBigO.hasFDerivWithinAt {s : Set E} {x₀ : E} {n : ℕ}
(h : f =O[𝓝[s] x₀] fun x => ‖x - x₀‖ ^ n) (hx₀ : x₀ ∈ s) (hn : 1 < n) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) s x₀ := by
- simp_rw [HasFDerivWithinAt, HasFDerivAtFilter,
+ simp_rw [HasFDerivWithinAt, hasFDerivAtFilter_iff_isLittleO,
h.eq_zero_of_norm_pow_within hx₀ <| zero_lt_one.trans hn, zero_apply, sub_zero,
h.trans_isLittleO ((isLittleO_pow_sub_sub x₀ hn).mono nhdsWithin_le_nhds)]
set_option linter.uppercaseLean3 false in
@@ -831,7 +832,7 @@ theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
have : (fun x' => x' - x) =O[L] fun x' => f' (x' - x) :=
isBigO_iff.2 ⟨C, eventually_of_forall fun _ => ZeroHomClass.bound_of_antilipschitz f' hf' _⟩
- (this.trans (hf.trans_isBigO this).right_isBigO_add).congr (fun _ => rfl) fun _ =>
+ (this.trans (hf.isLittleO.trans_isBigO this).right_isBigO_add).congr (fun _ => rfl) fun _ =>
sub_add_cancel _ _
set_option linter.uppercaseLean3 false in
#align has_fderiv_at_filter.is_O_sub_rev HasFDerivAtFilter.isBigO_sub_rev
@@ -915,9 +916,9 @@ theorem HasStrictFDerivAt.congr_of_eventuallyEq (h : HasStrictFDerivAt f f' x)
#align has_strict_fderiv_at.congr_of_eventually_eq HasStrictFDerivAt.congr_of_eventuallyEq
theorem Filter.EventuallyEq.hasFDerivAtFilter_iff (h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x)
- (h₁ : ∀ x, f₀' x = f₁' x) : HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L :=
- isLittleO_congr (h₀.mono fun y hy => by simp only [hy, h₁, hx])
- (eventually_of_forall fun _ => _root_.rfl)
+ (h₁ : ∀ x, f₀' x = f₁' x) : HasFDerivAtFilter f₀ f₀' x L ↔ HasFDerivAtFilter f₁ f₁' x L := by
+ simp only [hasFDerivAtFilter_iff_isLittleO]
+ exact isLittleO_congr (h₀.mono fun y hy => by simp only [hy, h₁, hx]) .rfl
#align filter.eventually_eq.has_fderiv_at_filter_iff Filter.EventuallyEq.hasFDerivAtFilter_iff
theorem HasFDerivAtFilter.congr_of_eventuallyEq (h : HasFDerivAtFilter f f' x L) (hL : f₁ =ᶠ[L] f)
@@ -1073,7 +1074,7 @@ theorem hasStrictFDerivAt_id (x : E) : HasStrictFDerivAt id (id 𝕜 E) x :=
#align has_strict_fderiv_at_id hasStrictFDerivAt_id
theorem hasFDerivAtFilter_id (x : E) (L : Filter E) : HasFDerivAtFilter id (id 𝕜 E) x L :=
- (isLittleO_zero _ _).congr_left <| by simp
+ .of_isLittleO <| (isLittleO_zero _ _).congr_left <| by simp
#align has_fderiv_at_filter_id hasFDerivAtFilter_id
theorem hasFDerivWithinAt_id (x : E) (s : Set E) : HasFDerivWithinAt id (id 𝕜 E) s x :=
@@ -1143,7 +1144,7 @@ theorem hasStrictFDerivAt_const (c : F) (x : E) :
theorem hasFDerivAtFilter_const (c : F) (x : E) (L : Filter E) :
HasFDerivAtFilter (fun _ => c) (0 : E →L[𝕜] F) x L :=
- (isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
+ .of_isLittleO <| (isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
#align has_fderiv_at_filter_const hasFDerivAtFilter_const
theorem hasFDerivWithinAt_const (c : F) (x : E) (s : Set E) :
@@ -1192,8 +1193,8 @@ theorem differentiableOn_const (c : F) : DifferentiableOn 𝕜 (fun _ => c) s :=
theorem hasFDerivWithinAt_singleton (f : E → F) (x : E) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) {x} x := by
- simp only [HasFDerivWithinAt, nhdsWithin_singleton, HasFDerivAtFilter, isLittleO_pure,
- ContinuousLinearMap.zero_apply, sub_self]
+ simp only [HasFDerivWithinAt, nhdsWithin_singleton, hasFDerivAtFilter_iff_isLittleO,
+ isLittleO_pure, ContinuousLinearMap.zero_apply, sub_self]
#align has_fderiv_within_at_singleton hasFDerivWithinAt_singleton
theorem hasFDerivAt_of_subsingleton [h : Subsingleton E] (f : E → F) (x : E) :
Assorted golf I did while working on a refactor. Submitting as a separate PR.
not_differentiableAt_abs_zero
to Calculus.Deriv.Add
, golf.HasFDerivWithinAt_of_nhdsWithin_eq_bot
to HasFDerivWithinAt.of_nhdsWithin_eq_bot
, golf.Filter.EventuallyEq.rfl
.@@ -528,32 +528,24 @@ theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜
/-- If `x` is isolated in `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
-theorem HasFDerivWithinAt_of_nhdsWithin_eq_bot (h : 𝓝[s\{x}] x = ⊥) :
+theorem HasFDerivWithinAt.of_nhdsWithin_eq_bot (h : 𝓝[s\{x}] x = ⊥) :
HasFDerivWithinAt f f' s x := by
- by_cases hx : x ∈ s
- · have : s = s\{x} ∪ {x} := by simpa using (insert_eq_self.2 hx).symm
- have A : 𝓝[s] x = 𝓝[s\{x}] x ⊔ 𝓟 {x} := by
- conv_lhs => rw [this]
- simp only [union_singleton, nhdsWithin_insert, sup_comm, principal_singleton]
- simp [HasFDerivWithinAt, HasFDerivAtFilter, A, h]
- · rw [diff_singleton_eq_self hx] at h
- simp [HasFDerivWithinAt, HasFDerivAtFilter, h]
+ rw [← hasFDerivWithinAt_diff_singleton x, HasFDerivWithinAt, h]
+ apply isLittleO_bot
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
-theorem hasFDerivWithinAt_of_nmem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x := by
- simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne.def, Classical.not_not] at h
- simp [HasFDerivWithinAt, HasFDerivAtFilter, h, IsLittleO, IsBigOWith]
+theorem hasFDerivWithinAt_of_nmem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x :=
+ .of_nhdsWithin_eq_bot <| eq_bot_mono (nhdsWithin_mono _ (diff_subset _ _)) <| by
+ rwa [mem_closure_iff_nhdsWithin_neBot, not_neBot] at h
#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_nmem_closure
theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x := by
by_cases H : 𝓝[s \ {x}] x = ⊥
- · exact HasFDerivWithinAt_of_nhdsWithin_eq_bot H
- · simp only [fderivWithin]
- rw [if_neg H]
- dsimp only [DifferentiableWithinAt] at h
- rw [dif_pos h]
+ · exact .of_nhdsWithin_eq_bot H
+ · unfold DifferentiableWithinAt at h
+ rw [fderivWithin, if_neg H, dif_pos h]
exact Classical.choose_spec h
#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
@@ -705,15 +697,11 @@ theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x
@[simp]
theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f := by
ext1 x
- by_cases H : 𝓝[univ \ {x}] x = ⊥
- · have : Subsingleton E := by
- apply not_nontrivial_iff_subsingleton.1
- contrapose! H
- have : (𝓝[{x}ᶜ] x).NeBot := Module.punctured_nhds_neBot 𝕜 E x
- rw [compl_eq_univ_diff] at this
- exact NeBot.ne this
- exact Subsingleton.elim _ _
- · simp [fderivWithin, fderiv, H]
+ nontriviality E
+ have H : 𝓝[univ \ {x}] x ≠ ⊥
+ · rw [← compl_eq_univ_diff, ← neBot_iff]
+ exact Module.punctured_nhds_neBot 𝕜 E x
+ simp [fderivWithin, fderiv, H]
#align fderiv_within_univ fderivWithin_univ
theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
@@ -905,7 +893,7 @@ theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x := by
- refine' isLittleO_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall fun _ => _root_.rfl)
+ refine' isLittleO_congr ((h.prod_mk_nhds h).mono _) .rfl
rintro p ⟨hp₁, hp₂⟩
simp only [*]
#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iff
@@ -1148,7 +1136,6 @@ section Const
/-! ### Derivative of a constant function -/
-
theorem hasStrictFDerivAt_const (c : F) (x : E) :
HasStrictFDerivAt (fun _ => c) (0 : E →L[𝕜] F) x :=
(isLittleO_zero _ _).congr_left fun _ => by simp only [zero_apply, sub_self]
DifferentiableAt.isBigO_sub
(#8352)
HasFDerivWithinAt.isBigO
to HasFDerivWithinAt.isBigO_sub
;HasFDerivAt.isBigO
to HasFDerivAt.isBigO_sub
;DifferentiableWithinAt.isBigO_sub
;DifferentiableAt.isBigO_sub
.@@ -760,17 +760,25 @@ theorem Asymptotics.IsBigO.hasFDerivAt {x₀ : E} {n : ℕ} (h : f =O[𝓝 x₀]
set_option linter.uppercaseLean3 false in
#align asymptotics.is_O.has_fderiv_at Asymptotics.IsBigO.hasFDerivAt
-nonrec theorem HasFDerivWithinAt.isBigO {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
- (h : HasFDerivWithinAt f f' s x₀) : (fun x => f x - f x₀) =O[𝓝[s] x₀] fun x => x - x₀ := by
- simpa only [sub_add_cancel] using h.isBigO.add (isBigO_sub f' (𝓝[s] x₀) x₀)
+nonrec theorem HasFDerivWithinAt.isBigO_sub {f : E → F} {s : Set E} {x₀ : E} {f' : E →L[𝕜] F}
+ (h : HasFDerivWithinAt f f' s x₀) : (f · - f x₀) =O[𝓝[s] x₀] (· - x₀) :=
+ h.isBigO_sub
set_option linter.uppercaseLean3 false in
-#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO
+#align has_fderiv_within_at.is_O HasFDerivWithinAt.isBigO_sub
-nonrec theorem HasFDerivAt.isBigO {f : E → F} {x₀ : E} {f' : E →L[𝕜] F} (h : HasFDerivAt f f' x₀) :
- (fun x => f x - f x₀) =O[𝓝 x₀] fun x => x - x₀ := by
- simpa only [sub_add_cancel] using h.isBigO.add (isBigO_sub f' (𝓝 x₀) x₀)
+lemma DifferentiableWithinAt.isBigO_sub {f : E → F} {s : Set E} {x₀ : E}
+ (h : DifferentiableWithinAt 𝕜 f s x₀) : (f · - f x₀) =O[𝓝[s] x₀] (· - x₀) :=
+ h.hasFDerivWithinAt.isBigO_sub
+
+nonrec theorem HasFDerivAt.isBigO_sub {f : E → F} {x₀ : E} {f' : E →L[𝕜] F}
+ (h : HasFDerivAt f f' x₀) : (f · - f x₀) =O[𝓝 x₀] (· - x₀) :=
+ h.isBigO_sub
set_option linter.uppercaseLean3 false in
-#align has_fderiv_at.is_O HasFDerivAt.isBigO
+#align has_fderiv_at.is_O HasFDerivAt.isBigO_sub
+
+nonrec theorem DifferentiableAt.isBigO_sub {f : E → F} {x₀ : E} (h : DifferentiableAt 𝕜 f x₀) :
+ (f · - f x₀) =O[𝓝 x₀] (· - x₀) :=
+ h.hasFDerivAt.isBigO_sub
end FDerivProperties
@@ -409,6 +409,14 @@ theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f
alias ⟨HasFDerivWithinAt.hasFDerivAt_of_univ, _⟩ := hasFDerivWithinAt_univ
#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
+theorem hasFDerivWithinAt_of_mem_nhds (h : s ∈ 𝓝 x) :
+ HasFDerivWithinAt f f' s x ↔ HasFDerivAt f f' x := by
+ rw [HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.mpr h]
+
+lemma hasFDerivWithinAt_of_isOpen (h : IsOpen s) (hx : x ∈ s) :
+ HasFDerivWithinAt f f' s x ↔ HasFDerivAt f f' x :=
+ hasFDerivWithinAt_of_mem_nhds (h.mem_nhds hx)
+
theorem hasFDerivWithinAt_insert {y : E} :
HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x := by
rcases eq_or_ne x y with (rfl | h)
@@ -712,9 +720,9 @@ theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x =
rw [← fderivWithin_univ, ← univ_inter s, fderivWithin_inter h]
#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
-theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
+theorem fderivWithin_of_isOpen (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (hs.mem_nhds hx)
-#align fderiv_within_of_open fderivWithin_of_open
+#align fderiv_within_of_open fderivWithin_of_isOpen
theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : DifferentiableAt 𝕜 f x) :
fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
Currently, when x
is isolated in the set s
, then fderivWithin k f s x
can be anything. We modify the definition by ensuring that it is equal to 0
in this case. This ensures that the range of derivWithin
is always contained in the closure of the span of the range of f
.
@@ -180,14 +180,16 @@ def DifferentiableAt (f : E → F) (x : E) :=
#align differentiable_at DifferentiableAt
/-- If `f` has a derivative at `x` within `s`, then `fderivWithin 𝕜 f s x` is such a derivative.
-Otherwise, it is set to `0`. -/
-def fderivWithin (f : E → F) (s : Set E) (x : E) : E →L[𝕜] F :=
+Otherwise, it is set to `0`. If `x` is isolated in `s`, we take the derivative within `s` to
+be zero for convenience. -/
+irreducible_def fderivWithin (f : E → F) (s : Set E) (x : E) : E →L[𝕜] F :=
+ if 𝓝[s \ {x}] x = ⊥ then 0 else
if h : ∃ f', HasFDerivWithinAt f f' s x then Classical.choose h else 0
#align fderiv_within fderivWithin
/-- If `f` has a derivative at `x`, then `fderiv 𝕜 f x` is such a derivative. Otherwise, it is
set to `0`. -/
-def fderiv (f : E → F) (x : E) : E →L[𝕜] F :=
+irreducible_def fderiv (f : E → F) (x : E) : E →L[𝕜] F :=
if h : ∃ f', HasFDerivAt f f' x then Classical.choose h else 0
#align fderiv fderiv
@@ -215,6 +217,15 @@ variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
+theorem fderivWithin_zero_of_isolated (h : 𝓝[s \ {x}] x = ⊥) : fderivWithin 𝕜 f s x = 0 := by
+ rw [fderivWithin, if_pos h]
+
+theorem fderivWithin_zero_of_nmem_closure (h : x ∉ closure s) : fderivWithin 𝕜 f s x = 0 := by
+ apply fderivWithin_zero_of_isolated
+ simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne.def, Classical.not_not] at h
+ rw [eq_bot_iff, ← h]
+ exact nhdsWithin_mono _ (diff_subset s {x})
+
theorem fderivWithin_zero_of_not_differentiableWithinAt (h : ¬DifferentiableWithinAt 𝕜 f s x) :
fderivWithin 𝕜 f s x = 0 := by
have : ¬∃ f', HasFDerivWithinAt f f' s x := h
@@ -507,19 +518,41 @@ theorem DifferentiableWithinAt.differentiableAt (h : DifferentiableWithinAt 𝕜
h.imp fun _ hf' => hf'.hasFDerivAt hs
#align differentiable_within_at.differentiable_at DifferentiableWithinAt.differentiableAt
+/-- If `x` is isolated in `s`, then `f` has any derivative at `x` within `s`,
+as this statement is empty. -/
+theorem HasFDerivWithinAt_of_nhdsWithin_eq_bot (h : 𝓝[s\{x}] x = ⊥) :
+ HasFDerivWithinAt f f' s x := by
+ by_cases hx : x ∈ s
+ · have : s = s\{x} ∪ {x} := by simpa using (insert_eq_self.2 hx).symm
+ have A : 𝓝[s] x = 𝓝[s\{x}] x ⊔ 𝓟 {x} := by
+ conv_lhs => rw [this]
+ simp only [union_singleton, nhdsWithin_insert, sup_comm, principal_singleton]
+ simp [HasFDerivWithinAt, HasFDerivAtFilter, A, h]
+ · rw [diff_singleton_eq_self hx] at h
+ simp [HasFDerivWithinAt, HasFDerivAtFilter, h]
+
+/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
+as this statement is empty. -/
+theorem hasFDerivWithinAt_of_nmem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x := by
+ simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne.def, Classical.not_not] at h
+ simp [HasFDerivWithinAt, HasFDerivAtFilter, h, IsLittleO, IsBigOWith]
+#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_nmem_closure
+
theorem DifferentiableWithinAt.hasFDerivWithinAt (h : DifferentiableWithinAt 𝕜 f s x) :
HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x := by
- dsimp only [fderivWithin]
- dsimp only [DifferentiableWithinAt] at h
- rw [dif_pos h]
- exact Classical.choose_spec h
+ by_cases H : 𝓝[s \ {x}] x = ⊥
+ · exact HasFDerivWithinAt_of_nhdsWithin_eq_bot H
+ · simp only [fderivWithin]
+ rw [if_neg H]
+ dsimp only [DifferentiableWithinAt] at h
+ rw [dif_pos h]
+ exact Classical.choose_spec h
#align differentiable_within_at.has_fderiv_within_at DifferentiableWithinAt.hasFDerivWithinAt
theorem DifferentiableAt.hasFDerivAt (h : DifferentiableAt 𝕜 f x) :
HasFDerivAt f (fderiv 𝕜 f x) x := by
- dsimp only [fderiv]
dsimp only [DifferentiableAt] at h
- rw [dif_pos h]
+ rw [fderiv, dif_pos h]
exact Classical.choose_spec h
#align differentiable_at.has_fderiv_at DifferentiableAt.hasFDerivAt
@@ -584,13 +617,6 @@ protected theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x
(hxs.eq h h.differentiableWithinAt.hasFDerivWithinAt).symm
#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithin
-/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
-as this statement is empty. -/
-theorem hasFDerivWithinAt_of_not_mem_closure (h : x ∉ closure s) : HasFDerivWithinAt f f' s x := by
- simp only [mem_closure_iff_nhdsWithin_neBot, neBot_iff, Ne.def, Classical.not_not] at h
- simp [HasFDerivWithinAt, HasFDerivAtFilter, h, IsLittleO, IsBigOWith]
-#align has_fderiv_within_at_of_not_mem_closure hasFDerivWithinAt_of_not_mem_closure
-
theorem DifferentiableWithinAt.mono (h : DifferentiableWithinAt 𝕜 f t x) (st : s ⊆ t) :
DifferentiableWithinAt 𝕜 f s x := by
rcases h with ⟨f', hf'⟩
@@ -662,18 +688,30 @@ theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
#align fderiv_within_subset fderivWithin_subset
theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
- simp only [fderivWithin, hasFDerivWithinAt_inter ht]
+ have A : 𝓝[(s ∩ t) \ {x}] x = 𝓝[s \ {x}] x := by
+ have : (s ∩ t) \ {x} = (s \ {x}) ∩ t := by rw [inter_comm, inter_diff_assoc, inter_comm]
+ rw [this, ← nhdsWithin_restrict' _ ht]
+ simp [fderivWithin, A, hasFDerivWithinAt_inter ht]
#align fderiv_within_inter fderivWithin_inter
-theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
- simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
-#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
-
@[simp]
-theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
- funext fun _ => fderivWithin_of_mem_nhds univ_mem
+theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f := by
+ ext1 x
+ by_cases H : 𝓝[univ \ {x}] x = ⊥
+ · have : Subsingleton E := by
+ apply not_nontrivial_iff_subsingleton.1
+ contrapose! H
+ have : (𝓝[{x}ᶜ] x).NeBot := Module.punctured_nhds_neBot 𝕜 E x
+ rw [compl_eq_univ_diff] at this
+ exact NeBot.ne this
+ exact Subsingleton.elim _ _
+ · simp [fderivWithin, fderiv, H]
#align fderiv_within_univ fderivWithin_univ
+theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
+ rw [← fderivWithin_univ, ← univ_inter s, fderivWithin_inter h]
+#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
+
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
fderivWithin_of_mem_nhds (hs.mem_nhds hx)
#align fderiv_within_of_open fderivWithin_of_open
@@ -828,7 +866,11 @@ theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
- simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
+ have : s =ᶠ[𝓝[{x}ᶜ] x] t := nhdsWithin_compl_singleton_le x y h
+ have : 𝓝[s \ {x}] x = 𝓝[t \ {x}] x := by
+ simpa only [set_eventuallyEq_iff_inf_principal, ← nhdsWithin_inter', diff_eq,
+ inter_comm] using this
+ simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h, this]
#align fderiv_within_congr_set' fderivWithin_congr_set'
theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
@@ -1186,21 +1228,21 @@ open Function
variable (𝕜 : Type*) {E F : Type*} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F} {x : E}
-theorem HasStrictFDerivAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
+theorem HasStrictFDerivAt.of_nmem_tsupport (h : x ∉ tsupport f) :
HasStrictFDerivAt f (0 : E →L[𝕜] F) x := by
rw [not_mem_tsupport_iff_eventuallyEq] at h
exact (hasStrictFDerivAt_const (0 : F) x).congr_of_eventuallyEq h.symm
-theorem HasFDerivAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
+theorem HasFDerivAt.of_nmem_tsupport (h : x ∉ tsupport f) :
HasFDerivAt f (0 : E →L[𝕜] F) x :=
- (HasStrictFDerivAt.of_not_mem_tsupport 𝕜 h).hasFDerivAt
+ (HasStrictFDerivAt.of_nmem_tsupport 𝕜 h).hasFDerivAt
theorem HasFDerivWithinAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
HasFDerivWithinAt f (0 : E →L[𝕜] F) s x :=
- (HasFDerivAt.of_not_mem_tsupport 𝕜 h).hasFDerivWithinAt
+ (HasFDerivAt.of_nmem_tsupport 𝕜 h).hasFDerivWithinAt
theorem fderiv_of_not_mem_tsupport (h : x ∉ tsupport f) : fderiv 𝕜 f x = 0 :=
- (HasFDerivAt.of_not_mem_tsupport 𝕜 h).fderiv
+ (HasFDerivAt.of_nmem_tsupport 𝕜 h).fderiv
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f := fun x ↦ by
rw [← not_imp_not, nmem_support]
@@ -342,11 +342,18 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C`. -/
-theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
+theorem HasFDerivAt.le_of_lipschitzOn
+ {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖f'‖ ≤ C := by
refine' hf.le_of_lip' C.coe_nonneg _
- filter_upwards [hs]with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
-#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lip
+ filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
+#align has_fderiv_at.le_of_lip HasFDerivAt.le_of_lipschitzOn
+
+/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
+then its derivative at `x₀` has norm bounded by `C`. -/
+theorem HasFDerivAt.le_of_lipschitz {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
+ {C : ℝ≥0} (hlip : LipschitzWith C f) : ‖f'‖ ≤ C :=
+ hf.le_of_lipschitzOn univ_mem (lipschitzOn_univ.2 hlip)
nonrec theorem HasFDerivAtFilter.mono (h : HasFDerivAtFilter f f' x L₂) (hst : L₁ ≤ L₂) :
HasFDerivAtFilter f f' x L₁ :=
@@ -540,14 +547,37 @@ theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x
funext fun x => (h x).fderiv
#align fderiv_eq fderiv_eq
-/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
+variable (𝕜)
+
+/-- Converse to the mean value inequality: if `f` is `C`-lipschitz
+on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C`. This version
+only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood of `x`. -/
+theorem norm_fderiv_le_of_lip' {f : E → F} {x₀ : E}
+ {C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) :
+ ‖fderiv 𝕜 f x₀‖ ≤ C := by
+ by_cases hf : DifferentiableAt 𝕜 f x₀
+ · exact hf.hasFDerivAt.le_of_lip' hC₀ hlip
+ · rw [fderiv_zero_of_not_differentiableAt hf]
+ simp [hC₀]
+
+/-- Converse to the mean value inequality: if `f` is `C`-lipschitz
on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C`.
Version using `fderiv`. -/
-- Porting note: renamed so that dot-notation makes sense
-theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : DifferentiableAt 𝕜 f x₀)
- {s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖fderiv 𝕜 f x₀‖ ≤ C :=
- hf.hasFDerivAt.le_of_lip hs hlip
-#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
+theorem norm_fderiv_le_of_lipschitzOn {f : E → F} {x₀ : E} {s : Set E} (hs : s ∈ 𝓝 x₀)
+ {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖fderiv 𝕜 f x₀‖ ≤ C := by
+ refine' norm_fderiv_le_of_lip' 𝕜 C.coe_nonneg _
+ filter_upwards [hs] with x hx using hlip.norm_sub_le hx (mem_of_mem_nhds hs)
+#align fderiv_at.le_of_lip norm_fderiv_le_of_lipschitzOn
+
+/-- Converse to the mean value inequality: if `f` is `C`-lipschitz then
+its derivative at `x₀` has norm bounded by `C`.
+Version using `fderiv`. -/
+theorem norm_fderiv_le_of_lipschitz {f : E → F} {x₀ : E}
+ {C : ℝ≥0} (hlip : LipschitzWith C f) : ‖fderiv 𝕜 f x₀‖ ≤ C :=
+ norm_fderiv_le_of_lipschitzOn 𝕜 univ_mem (lipschitzOn_univ.2 hlip)
+
+variable {𝕜}
protected theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = f' :=
Also rename dimH_image_le_of_locally_lipschitz_on
to dimH_image_le_of_locally_lipschitzOn
.
@@ -87,7 +87,7 @@ characterized in terms of the `Tendsto` relation.
We also introduce predicates `DifferentiableWithinAt 𝕜 f s x` (where `𝕜` is the base field,
`f` the function to be differentiated, `x` the point at which the derivative is asserted to exist,
and `s` the set along which the derivative is defined), as well as `DifferentiableAt 𝕜 f x`,
-`Differentiable_on 𝕜 f s` and `Differentiable 𝕜 f` to express the existence of a derivative.
+`DifferentiableOn 𝕜 f s` and `Differentiable 𝕜 f` to express the existence of a derivative.
To be able to compute with derivatives, we write `fderivWithin 𝕜 f s x` and `fderiv 𝕜 f x`
for some choice of a derivative if it exists, and the zero function otherwise. This choice only
This is a perfect duplicate of HasFDerivWithinAt.mono_of_mem
.
Same thing with Deriv
instead of FDeriv
.
@@ -357,6 +357,7 @@ theorem HasFDerivWithinAt.mono_of_mem (h : HasFDerivWithinAt f f' t x) (hst : t
HasFDerivWithinAt f f' s x :=
h.mono <| nhdsWithin_le_iff.mpr hst
#align has_fderiv_within_at.mono_of_mem HasFDerivWithinAt.mono_of_mem
+#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.mono_of_mem
nonrec theorem HasFDerivWithinAt.mono (h : HasFDerivWithinAt f f' t x) (hst : s ⊆ t) :
HasFDerivWithinAt f f' s x :=
@@ -489,11 +490,6 @@ theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
exact hs.sup ht
#align has_fderiv_within_at.union HasFDerivWithinAt.union
-protected theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
- HasFDerivWithinAt f f' t x :=
- (hasFDerivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
-#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithin
-
theorem HasFDerivWithinAt.hasFDerivAt (h : HasFDerivWithinAt f f' s x) (hs : s ∈ 𝓝 x) :
HasFDerivAt f f' x := by
rwa [← univ_inter s, hasFDerivWithinAt_inter hs, hasFDerivWithinAt_univ] at h
@@ -387,7 +387,7 @@ theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f
rfl
#align has_fderiv_within_at_univ hasFDerivWithinAt_univ
-alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
+alias ⟨HasFDerivWithinAt.hasFDerivAt_of_univ, _⟩ := hasFDerivWithinAt_univ
#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
theorem hasFDerivWithinAt_insert {y : E} :
@@ -400,7 +400,7 @@ theorem hasFDerivWithinAt_insert {y : E} :
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
-alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt.insert'
+alias ⟨HasFDerivWithinAt.of_insert, HasFDerivWithinAt.insert'⟩ := hasFDerivWithinAt_insert
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.
The intent of this PR is to make autoImplicit
opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true
in the few files that rely on it.
That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.
I claim that many of the uses of autoImplicit
in these files are accidental; situations such as:
variables
are in scope, but pasting the lemma in the wrong sectionHaving set_option autoImplicit false
as the default prevents these types of mistake being made in the 90% of files where autoImplicit
s are not used at all, and causes them to be caught by CI during review.
I think there were various points during the port where we encouraged porters to delete the universes u v
lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.
A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18
as the no:dontcare:yes
vote ratio.
While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true
has been placed locally within a section, rather than at the top of the file.
@@ -116,6 +116,8 @@ derivative, differentiable, Fréchet, calculus
-/
+set_option autoImplicit true
+
open Filter Asymptotics ContinuousLinearMap Set Metric
open Topology Classical NNReal Filter Asymptotics ENNReal
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -124,15 +124,15 @@ noncomputable section
section
-variable {𝕜 : Type _} [NontriviallyNormedField 𝕜]
+variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
-variable {E : Type _} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
+variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
-variable {F : Type _} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
+variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
-variable {G : Type _} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
+variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
-variable {G' : Type _} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
+variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
/-- A function `f` has the continuous linear map `f'` as derivative along the filter `L` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` converges along the filter `L`. This definition
@@ -234,7 +234,7 @@ i.e., `n (f (x + (1/n) v) - f x)` converges to `f' v`. More generally, if `c n`
and `c n * d n` tends to `v`, then `c n * (f (x + d n) - f x)` tends to `f' v`. This lemma expresses
this fact, for functions having a derivative within a set. Its specific formulation is useful for
tangent cone related discussions. -/
-theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type _} (l : Filter α)
+theorem HasFDerivWithinAt.lim (h : HasFDerivWithinAt f f' s x) {α : Type*} (l : Filter α)
{c : α → 𝕜} {d : α → E} {v : E} (dtop : ∀ᶠ n in l, x + d n ∈ s)
(clim : Tendsto (fun n => ‖c n‖) l atTop) (cdlim : Tendsto (fun n => c n • d n) l (𝓝 v)) :
Tendsto (fun n => c n • (f (x + d n) - f x)) l (𝓝 (f' v)) := by
@@ -455,7 +455,7 @@ theorem HasStrictFDerivAt.exists_lipschitzOnWith (hf : HasStrictFDerivAt f f' x)
#align has_strict_fderiv_at.exists_lipschitz_on_with HasStrictFDerivAt.exists_lipschitzOnWith
/-- Directional derivative agrees with `HasFDeriv`. -/
-theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type _} {c : α → 𝕜} {l : Filter α}
+theorem HasFDerivAt.lim (hf : HasFDerivAt f f' x) (v : E) {α : Type*} {c : α → 𝕜} {l : Filter α}
(hc : Tendsto (fun n => ‖c n‖) l atTop) :
Tendsto (fun n => c n • (f (x + (c n)⁻¹ • v) - f x)) l (𝓝 (f' v)) := by
refine' (hasFDerivWithinAt_univ.2 hf).lim _ univ_mem hc _
@@ -1155,7 +1155,7 @@ section Support
open Function
-variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
+variable (𝕜 : Type*) {E F : Type*} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F} {x : E}
theorem HasStrictFDerivAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
@@ -1151,17 +1151,32 @@ end
/-! ### Support of derivatives -/
-
section Support
open Function
variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
- [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F}
+ [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F} {x : E}
+
+theorem HasStrictFDerivAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
+ HasStrictFDerivAt f (0 : E →L[𝕜] F) x := by
+ rw [not_mem_tsupport_iff_eventuallyEq] at h
+ exact (hasStrictFDerivAt_const (0 : F) x).congr_of_eventuallyEq h.symm
+
+theorem HasFDerivAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
+ HasFDerivAt f (0 : E →L[𝕜] F) x :=
+ (HasStrictFDerivAt.of_not_mem_tsupport 𝕜 h).hasFDerivAt
+
+theorem HasFDerivWithinAt.of_not_mem_tsupport (h : x ∉ tsupport f) :
+ HasFDerivWithinAt f (0 : E →L[𝕜] F) s x :=
+ (HasFDerivAt.of_not_mem_tsupport 𝕜 h).hasFDerivWithinAt
+
+theorem fderiv_of_not_mem_tsupport (h : x ∉ tsupport f) : fderiv 𝕜 f x = 0 :=
+ (HasFDerivAt.of_not_mem_tsupport 𝕜 h).fderiv
theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f := fun x ↦ by
- rw [← not_imp_not, not_mem_tsupport_iff_eventuallyEq, nmem_support]
- exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
+ rw [← not_imp_not, nmem_support]
+ exact fderiv_of_not_mem_tsupport _
#align support_fderiv_subset support_fderiv_subset
theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
Prove that inversion is smooth away from the center and its derivative is a scaled reflection.
Co-authored-by: Oliver Nash <github@olivernash.org>
@@ -824,6 +824,17 @@ theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (
simp only [*]
#align filter.eventually_eq.has_strict_fderiv_at_iff Filter.EventuallyEq.hasStrictFDerivAt_iff
+theorem HasStrictFDerivAt.congr_fderiv (h : HasStrictFDerivAt f f' x) (h' : f' = g') :
+ HasStrictFDerivAt f g' x :=
+ h' ▸ h
+
+theorem HasFDerivAt.congr_fderiv (h : HasFDerivAt f f' x) (h' : f' = g') : HasFDerivAt f g' x :=
+ h' ▸ h
+
+theorem HasFDerivWithinAt.congr_fderiv (h : HasFDerivWithinAt f f' s x) (h' : f' = g') :
+ HasFDerivWithinAt f g' s x :=
+ h' ▸ h
+
theorem HasStrictFDerivAt.congr_of_eventuallyEq (h : HasStrictFDerivAt f f' x)
(h₁ : f =ᶠ[𝓝 x] f₁) : HasStrictFDerivAt f₁ f' x :=
(h₁.hasStrictFDerivAt_iff fun _ => rfl).1 h
protected
to *.insert
theorems (#6142)
Otherwise code like
theorem ContMDiffWithinAt.mythm (h : x ∈ insert y s) : _ = _
interprets insert
as ContMDiffWithinAt.insert
, not Insert.insert
.
@@ -402,7 +402,7 @@ alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
-theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt g g' s x) :
+protected theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt g g' s x) :
HasFDerivWithinAt g g' (insert x s) x :=
h.insert'
#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
@@ -322,7 +322,7 @@ theorem hasFDerivAt_iff_isLittleO_nhds_zero :
#align has_fderiv_at_iff_is_o_nhds_zero hasFDerivAt_iff_isLittleO_nhds_zero
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
-on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. This version
+on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C`. This version
only assumes that `‖f x - f x₀‖ ≤ C * ‖x - x₀‖` in a neighborhood of `x`. -/
theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{C : ℝ} (hC₀ : 0 ≤ C) (hlip : ∀ᶠ x in 𝓝 x₀, ‖f x - f x₀‖ ≤ C * ‖x - x₀‖) : ‖f'‖ ≤ C := by
@@ -339,7 +339,7 @@ theorem HasFDerivAt.le_of_lip' {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (h
#align has_fderiv_at.le_of_lip' HasFDerivAt.le_of_lip'
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
-on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`. -/
+on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C`. -/
theorem HasFDerivAt.le_of_lip {f : E → F} {f' : E →L[𝕜] F} {x₀ : E} (hf : HasFDerivAt f f' x₀)
{s : Set E} (hs : s ∈ 𝓝 x₀) {C : ℝ≥0} (hlip : LipschitzOnWith C f s) : ‖f'‖ ≤ C := by
refine' hf.le_of_lip' C.coe_nonneg _
@@ -543,7 +543,7 @@ theorem fderiv_eq {f' : E → E →L[𝕜] F} (h : ∀ x, HasFDerivAt f (f' x) x
#align fderiv_eq fderiv_eq
/-- Converse to the mean value inequality: if `f` is differentiable at `x₀` and `C`-lipschitz
-on a neighborhood of `x₀` then it its derivative at `x₀` has norm bounded by `C`.
+on a neighborhood of `x₀` then its derivative at `x₀` has norm bounded by `C`.
Version using `fderiv`. -/
-- Porting note: renamed so that dot-notation makes sense
theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : DifferentiableAt 𝕜 f x₀)
@@ -2,16 +2,13 @@
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit 41bef4ae1254365bc190aee63b947674d2977f01
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
import Mathlib.Analysis.Calculus.TangentCone
import Mathlib.Analysis.NormedSpace.OperatorNorm
+#align_import analysis.calculus.fderiv.basic from "leanprover-community/mathlib"@"41bef4ae1254365bc190aee63b947674d2977f01"
+
/-!
# The Fréchet derivative
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit 3a69562db5a458db8322b190ec8d9a8bbd8a5b14
+! leanprover-community/mathlib commit 41bef4ae1254365bc190aee63b947674d2977f01
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -763,8 +763,7 @@ set_option linter.uppercaseLean3 false in
theorem HasFDerivAtFilter.isBigO_sub_rev (hf : HasFDerivAtFilter f f' x L) {C}
(hf' : AntilipschitzWith C f') : (fun x' => x' - x) =O[L] fun x' => f x' - f x :=
have : (fun x' => x' - x) =O[L] fun x' => f' (x' - x) :=
- isBigO_iff.2
- ⟨C, eventually_of_forall fun _ => AddMonoidHomClass.bound_of_antilipschitz f' hf' _⟩
+ isBigO_iff.2 ⟨C, eventually_of_forall fun _ => ZeroHomClass.bound_of_antilipschitz f' hf' _⟩
(this.trans (hf.trans_isBigO this).right_isBigO_add).congr (fun _ => rfl) fun _ =>
sub_add_cancel _ _
set_option linter.uppercaseLean3 false in
@@ -1029,6 +1029,7 @@ theorem differentiableOn_id : DifferentiableOn 𝕜 id s :=
differentiable_id.differentiableOn
#align differentiable_on_id differentiableOn_id
+@[simp]
theorem fderiv_id : fderiv 𝕜 id x = id 𝕜 E :=
HasFDerivAt.fderiv (hasFDerivAt_id x)
#align fderiv_id fderiv_id
@@ -68,11 +68,11 @@ The simplifier is set up to prove automatically that some functions are differen
differentiable at a point (but not differentiable on a set or within a set at a point, as checking
automatically that the good domains are mapped one to the other when using composition is not
something the simplifier can easily do). This means that one can write
-`example (x : ℝ) : Differentiable ℝ (λ x, sin (exp (3 + x^2)) - 5 * cos x) := by simp`.
+`example (x : ℝ) : Differentiable ℝ (fun x ↦ sin (exp (3 + x^2)) - 5 * cos x) := by simp`.
If there are divisions, one needs to supply to the simplifier proofs that the denominators do
not vanish, as in
```lean
-example (x : ℝ) (h : 1 + sin x ≠ 0) : DifferentiableAt ℝ (λ x, exp x / (1 + sin x)) x :=
+example (x : ℝ) (h : 1 + sin x ≠ 0) : DifferentiableAt ℝ (fun x ↦ exp x / (1 + sin x)) x :=
by simp [h]
```
Of course, these examples only work once `exp`, `cos` and `sin` have been shown to be
@@ -107,7 +107,7 @@ functions is differentiable, as well as their product, their cartesian product,
exception is the chain rule: we do not mark as a simp lemma the fact that, if `f` and `g` are
differentiable, then their composition also is: `simp` would always be able to match this lemma,
by taking `f` or `g` to be the identity. Instead, for every reasonable function (say, `exp`),
-we add a lemma that if `f` is differentiable then so is `(λ x, exp (f x))`. This means adding
+we add a lemma that if `f` is differentiable then so is `(fun x ↦ exp (f x))`. This means adding
some boilerplate lemmas, but these can also be useful in their own right.
Tests for this ability of the simplifier (with more examples) are provided in
fix-comments.py
on all files.@@ -72,7 +72,7 @@ something the simplifier can easily do). This means that one can write
If there are divisions, one needs to supply to the simplifier proofs that the denominators do
not vanish, as in
```lean
-example (x : ℝ) (h : 1 + sin x ≠ 0) : differentiable_at ℝ (λ x, exp x / (1 + sin x)) x :=
+example (x : ℝ) (h : 1 + sin x ≠ 0) : DifferentiableAt ℝ (λ x, exp x / (1 + sin x)) x :=
by simp [h]
```
Of course, these examples only work once `exp`, `cos` and `sin` have been shown to be
fderivWithin
(#4330)
This is a partial forward-port of leanprover-community/mathlib#19045.
I only forward-ported 1 file that was already merged into
master
. I'll do some git history rewrites in pending PRs instead.
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.basic
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit 3a69562db5a458db8322b190ec8d9a8bbd8a5b14
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -391,13 +391,13 @@ theorem hasFDerivWithinAt_univ : HasFDerivWithinAt f f' univ x ↔ HasFDerivAt f
alias hasFDerivWithinAt_univ ↔ HasFDerivWithinAt.hasFDerivAt_of_univ _
#align has_fderiv_within_at.has_fderiv_at_of_univ HasFDerivWithinAt.hasFDerivAt_of_univ
-theorem hasFDerivWithinAt_insert {y : E} {g' : E →L[𝕜] F} :
- HasFDerivWithinAt g g' (insert y s) x ↔ HasFDerivWithinAt g g' s x := by
+theorem hasFDerivWithinAt_insert {y : E} :
+ HasFDerivWithinAt f f' (insert y s) x ↔ HasFDerivWithinAt f f' s x := by
rcases eq_or_ne x y with (rfl | h)
· simp_rw [HasFDerivWithinAt, HasFDerivAtFilter]
apply Asymptotics.isLittleO_insert
- simp only [sub_self, g'.map_zero]
- refine' ⟨fun h => h.mono <| subset_insert y s, fun hg => hg.mono_of_mem _⟩
+ simp only [sub_self, map_zero]
+ refine' ⟨fun h => h.mono <| subset_insert y s, fun hf => hf.mono_of_mem _⟩
simp_rw [nhdsWithin_insert_of_ne h, self_mem_nhdsWithin]
#align has_fderiv_within_at_insert hasFDerivWithinAt_insert
@@ -405,11 +405,16 @@ alias hasFDerivWithinAt_insert ↔ HasFDerivWithinAt.of_insert HasFDerivWithinAt
#align has_fderiv_within_at.of_insert HasFDerivWithinAt.of_insert
#align has_fderiv_within_at.insert' HasFDerivWithinAt.insert'
-theorem HasFDerivWithinAt.insert {g' : E →L[𝕜] F} (h : HasFDerivWithinAt g g' s x) :
+theorem HasFDerivWithinAt.insert (h : HasFDerivWithinAt g g' s x) :
HasFDerivWithinAt g g' (insert x s) x :=
h.insert'
#align has_fderiv_within_at.insert HasFDerivWithinAt.insert
+theorem hasFDerivWithinAt_diff_singleton (y : E) :
+ HasFDerivWithinAt f f' (s \ {y}) x ↔ HasFDerivWithinAt f f' s x := by
+ rw [← hasFDerivWithinAt_insert, insert_diff_singleton, hasFDerivWithinAt_insert]
+#align has_fderiv_within_at_diff_singleton hasFDerivWithinAt_diff_singleton
+
theorem HasStrictFDerivAt.isBigO_sub (hf : HasStrictFDerivAt f f' x) :
(fun p : E × E => f p.1 - f p.2) =O[𝓝 (x, x)] fun p : E × E => p.1 - p.2 :=
hf.isBigO.congr_of_sub.2 (f'.isBigO_comp _ _)
@@ -568,7 +573,7 @@ theorem DifferentiableWithinAt.mono (h : DifferentiableWithinAt 𝕜 f t x) (st
#align differentiable_within_at.mono DifferentiableWithinAt.mono
theorem DifferentiableWithinAt.mono_of_mem (h : DifferentiableWithinAt 𝕜 f s x) {t : Set E}
- (hst : s ∈ nhdsWithin x t) : DifferentiableWithinAt 𝕜 f t x :=
+ (hst : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x :=
(h.hasFDerivWithinAt.mono_of_mem hst).differentiableWithinAt
#align differentiable_within_at.mono_of_mem DifferentiableWithinAt.mono_of_mem
@@ -578,28 +583,14 @@ theorem differentiableWithinAt_univ : DifferentiableWithinAt 𝕜 f univ x ↔ D
theorem differentiableWithinAt_inter (ht : t ∈ 𝓝 x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
- simp only [DifferentiableWithinAt, HasFDerivWithinAt, HasFDerivAtFilter,
- nhdsWithin_restrict' s ht]
+ simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter ht]
#align differentiable_within_at_inter differentiableWithinAt_inter
theorem differentiableWithinAt_inter' (ht : t ∈ 𝓝[s] x) :
DifferentiableWithinAt 𝕜 f (s ∩ t) x ↔ DifferentiableWithinAt 𝕜 f s x := by
- simp only [DifferentiableWithinAt, HasFDerivWithinAt, HasFDerivAtFilter,
- nhdsWithin_restrict'' s ht]
+ simp only [DifferentiableWithinAt, hasFDerivWithinAt_inter' ht]
#align differentiable_within_at_inter' differentiableWithinAt_inter'
-theorem DifferentiableWithinAt.antimono (h : DifferentiableWithinAt 𝕜 f s x) (hst : s ⊆ t)
- (hx : s ∈ 𝓝[t] x) : DifferentiableWithinAt 𝕜 f t x := by
- rwa [← differentiableWithinAt_inter' hx, inter_eq_self_of_subset_right hst]
-#align differentiable_within_at.antimono DifferentiableWithinAt.antimono
-
-theorem HasFDerivWithinAt.antimono (h : HasFDerivWithinAt f f' s x) (hst : s ⊆ t)
- (hs : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x) : HasFDerivWithinAt f f' t x := by
- have h' : HasFDerivWithinAt f _ t x :=
- (h.differentiableWithinAt.antimono hst hx).hasFDerivWithinAt
- rwa [hs.eq h (h'.mono hst)]
-#align has_fderiv_within_at.antimono HasFDerivWithinAt.antimono
-
theorem DifferentiableAt.differentiableWithinAt (h : DifferentiableAt 𝕜 f x) :
DifferentiableWithinAt 𝕜 f s x :=
(differentiableWithinAt_univ.2 h).mono (subset_univ _)
@@ -635,45 +626,31 @@ theorem differentiableOn_of_locally_differentiableOn
exact (differentiableWithinAt_inter (IsOpen.mem_nhds t_open xt)).1 (ht x ⟨xs, xt⟩)
#align differentiable_on_of_locally_differentiable_on differentiableOn_of_locally_differentiableOn
+theorem fderivWithin_of_mem (st : t ∈ 𝓝[s] x) (ht : UniqueDiffWithinAt 𝕜 s x)
+ (h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
+ ((DifferentiableWithinAt.hasFDerivWithinAt h).mono_of_mem st).fderivWithin ht
+#align fderiv_within_of_mem fderivWithin_of_mem
+
theorem fderivWithin_subset (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x)
(h : DifferentiableWithinAt 𝕜 f t x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
- ((DifferentiableWithinAt.hasFDerivWithinAt h).mono st).fderivWithin ht
+ fderivWithin_of_mem (nhdsWithin_mono _ st self_mem_nhdsWithin) ht h
#align fderiv_within_subset fderivWithin_subset
-theorem fderivWithin_subset' (st : s ⊆ t) (ht : UniqueDiffWithinAt 𝕜 s x) (hx : s ∈ 𝓝[t] x)
- (h : DifferentiableWithinAt 𝕜 f s x) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
- fderivWithin_subset st ht (h.antimono st hx)
-#align fderiv_within_subset' fderivWithin_subset'
-
-@[simp]
-theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f := by
- ext x : 1
- by_cases h : DifferentiableAt 𝕜 f x
- · apply HasFDerivWithinAt.fderivWithin _ uniqueDiffWithinAt_univ
- rw [hasFDerivWithinAt_univ]
- apply h.hasFDerivAt
- · have : ¬DifferentiableWithinAt 𝕜 f univ x := by rwa [differentiableWithinAt_univ]
- rw [fderiv_zero_of_not_differentiableAt h, fderivWithin_zero_of_not_differentiableWithinAt this]
-#align fderiv_within_univ fderivWithin_univ
-
-theorem fderivWithin_inter (ht : t ∈ 𝓝 x) (hs : UniqueDiffWithinAt 𝕜 s x) :
- fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
- by_cases h : DifferentiableWithinAt 𝕜 f (s ∩ t) x
- · apply fderivWithin_subset (inter_subset_left _ _) _ ((differentiableWithinAt_inter ht).1 h)
- apply hs.inter ht
- · have : ¬DifferentiableWithinAt 𝕜 f s x := by rwa [← differentiableWithinAt_inter ht]
- rw [fderivWithin_zero_of_not_differentiableWithinAt h,
- fderivWithin_zero_of_not_differentiableWithinAt this]
+theorem fderivWithin_inter (ht : t ∈ 𝓝 x) : fderivWithin 𝕜 f (s ∩ t) x = fderivWithin 𝕜 f s x := by
+ simp only [fderivWithin, hasFDerivWithinAt_inter ht]
#align fderiv_within_inter fderivWithin_inter
theorem fderivWithin_of_mem_nhds (h : s ∈ 𝓝 x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x := by
- have : s = univ ∩ s := by simp only [univ_inter]
- rw [this, ← fderivWithin_univ]
- exact fderivWithin_inter h (uniqueDiffOn_univ _ (mem_univ _))
+ simp only [fderiv, fderivWithin, HasFDerivAt, HasFDerivWithinAt, nhdsWithin_eq_nhds.2 h]
#align fderiv_within_of_mem_nhds fderivWithin_of_mem_nhds
+@[simp]
+theorem fderivWithin_univ : fderivWithin 𝕜 f univ = fderiv 𝕜 f :=
+ funext fun _ => fderivWithin_of_mem_nhds univ_mem
+#align fderiv_within_univ fderivWithin_univ
+
theorem fderivWithin_of_open (hs : IsOpen s) (hx : x ∈ s) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
- fderivWithin_of_mem_nhds (IsOpen.mem_nhds hs hx)
+ fderivWithin_of_mem_nhds (hs.mem_nhds hx)
#align fderiv_within_of_open fderivWithin_of_open
theorem fderivWithin_eq_fderiv (hs : UniqueDiffWithinAt 𝕜 s x) (h : DifferentiableAt 𝕜 f x) :
@@ -798,7 +775,51 @@ end Continuous
section congr
/-! ### congr properties of the derivative -/
-
+theorem hasFDerivWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
+ calc
+ HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' (s \ {y}) x :=
+ (hasFDerivWithinAt_diff_singleton _).symm
+ _ ↔ HasFDerivWithinAt f f' (t \ {y}) x := by
+ suffices 𝓝[s \ {y}] x = 𝓝[t \ {y}] x by simp only [HasFDerivWithinAt, this]
+ simpa only [set_eventuallyEq_iff_inf_principal, ← nhdsWithin_inter', diff_eq,
+ inter_comm] using h
+ _ ↔ HasFDerivWithinAt f f' t x := hasFDerivWithinAt_diff_singleton _
+#align has_fderiv_within_at_congr_set' hasFDerivWithinAt_congr_set'
+
+theorem hasFDerivWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
+ HasFDerivWithinAt f f' s x ↔ HasFDerivWithinAt f f' t x :=
+ hasFDerivWithinAt_congr_set' x <| h.filter_mono inf_le_left
+#align has_fderiv_within_at_congr_set hasFDerivWithinAt_congr_set
+
+theorem differentiableWithinAt_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
+ exists_congr fun _ => hasFDerivWithinAt_congr_set' _ h
+#align differentiable_within_at_congr_set' differentiableWithinAt_congr_set'
+
+theorem differentiableWithinAt_congr_set (h : s =ᶠ[𝓝 x] t) :
+ DifferentiableWithinAt 𝕜 f s x ↔ DifferentiableWithinAt 𝕜 f t x :=
+ exists_congr fun _ => hasFDerivWithinAt_congr_set h
+#align differentiable_within_at_congr_set differentiableWithinAt_congr_set
+
+theorem fderivWithin_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x := by
+ simp only [fderivWithin, hasFDerivWithinAt_congr_set' y h]
+#align fderiv_within_congr_set' fderivWithin_congr_set'
+
+theorem fderivWithin_congr_set (h : s =ᶠ[𝓝 x] t) : fderivWithin 𝕜 f s x = fderivWithin 𝕜 f t x :=
+ fderivWithin_congr_set' x <| h.filter_mono inf_le_left
+#align fderiv_within_congr_set fderivWithin_congr_set
+
+theorem fderivWithin_eventually_congr_set' (y : E) (h : s =ᶠ[𝓝[{y}ᶜ] x] t) :
+ fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
+ (eventually_nhds_nhdsWithin.2 h).mono fun _ => fderivWithin_congr_set' y
+#align fderiv_within_eventually_congr_set' fderivWithin_eventually_congr_set'
+
+theorem fderivWithin_eventually_congr_set (h : s =ᶠ[𝓝 x] t) :
+ fderivWithin 𝕜 f s =ᶠ[𝓝 x] fderivWithin 𝕜 f t :=
+ fderivWithin_eventually_congr_set' x <| h.filter_mono inf_le_left
+#align fderiv_within_eventually_congr_set fderivWithin_eventually_congr_set
theorem Filter.EventuallyEq.hasStrictFDerivAt_iff (h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
HasStrictFDerivAt f₀ f₀' x ↔ HasStrictFDerivAt f₁ f₁' x := by
@@ -853,19 +874,19 @@ theorem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem (h : f₀ =ᶠ[
h.differentiableWithinAt_iff (h.eq_of_nhdsWithin hx)
#align filter.eventually_eq.differentiable_within_at_iff_of_mem Filter.EventuallyEq.differentiableWithinAt_iff_of_mem
-theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : ∀ x ∈ t, f₁ x = f x)
+theorem HasFDerivWithinAt.congr_mono (h : HasFDerivWithinAt f f' s x) (ht : EqOn f₁ f t)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : HasFDerivWithinAt f₁ f' t x :=
HasFDerivAtFilter.congr_of_eventuallyEq (h.mono h₁) (Filter.mem_inf_of_right ht) hx
#align has_fderiv_within_at.congr_mono HasFDerivWithinAt.congr_mono
-theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
+theorem HasFDerivWithinAt.congr (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s)
(hx : f₁ x = f x) : HasFDerivWithinAt f₁ f' s x :=
h.congr_mono hs hx (Subset.refl _)
#align has_fderiv_within_at.congr HasFDerivWithinAt.congr
-theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : ∀ x ∈ s, f₁ x = f x)
- (hx : x ∈ s) : HasFDerivWithinAt f₁ f' s x :=
- h.congr hs (hs x hx)
+theorem HasFDerivWithinAt.congr' (h : HasFDerivWithinAt f f' s x) (hs : EqOn f₁ f s) (hx : x ∈ s) :
+ HasFDerivWithinAt f₁ f' s x :=
+ h.congr hs (hs hx)
#align has_fderiv_within_at.congr' HasFDerivWithinAt.congr'
theorem HasFDerivWithinAt.congr_of_eventuallyEq (h : HasFDerivWithinAt f f' s x)
@@ -878,8 +899,8 @@ theorem HasFDerivAt.congr_of_eventuallyEq (h : HasFDerivAt f f' x) (h₁ : f₁
HasFDerivAtFilter.congr_of_eventuallyEq h h₁ (mem_of_mem_nhds h₁ : _)
#align has_fderiv_at.congr_of_eventually_eq HasFDerivAt.congr_of_eventuallyEq
-theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
- (ht : ∀ x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
+theorem DifferentiableWithinAt.congr_mono (h : DifferentiableWithinAt 𝕜 f s x) (ht : EqOn f₁ f t)
+ (hx : f₁ x = f x) (h₁ : t ⊆ s) : DifferentiableWithinAt 𝕜 f₁ t x :=
(HasFDerivWithinAt.congr_mono h.hasFDerivWithinAt ht hx h₁).differentiableWithinAt
#align differentiable_within_at.congr_mono DifferentiableWithinAt.congr_mono
@@ -913,44 +934,46 @@ theorem DifferentiableAt.congr_of_eventuallyEq (h : DifferentiableAt 𝕜 f x) (
#align differentiable_at.congr_of_eventually_eq DifferentiableAt.congr_of_eventuallyEq
theorem DifferentiableWithinAt.fderivWithin_congr_mono (h : DifferentiableWithinAt 𝕜 f s x)
- (hs : ∀ x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
+ (hs : EqOn f₁ f t) (hx : f₁ x = f x) (hxt : UniqueDiffWithinAt 𝕜 t x) (h₁ : t ⊆ s) :
fderivWithin 𝕜 f₁ t x = fderivWithin 𝕜 f s x :=
(HasFDerivWithinAt.congr_mono h.hasFDerivWithinAt hs hx h₁).fderivWithin hxt
#align differentiable_within_at.fderiv_within_congr_mono DifferentiableWithinAt.fderivWithin_congr_mono
-theorem Filter.EventuallyEq.fderivWithin_eq (hs : UniqueDiffWithinAt 𝕜 s x) (hL : f₁ =ᶠ[𝓝[s] x] f)
- (hx : f₁ x = f x) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- if h : DifferentiableWithinAt 𝕜 f s x then
- HasFDerivWithinAt.fderivWithin (h.hasFDerivWithinAt.congr_of_eventuallyEq hL hx) hs
- else by
- have h' : ¬DifferentiableWithinAt 𝕜 f₁ s x :=
- mt (fun h => h.congr_of_eventuallyEq (hL.mono fun x => Eq.symm) hx.symm) h
- rw [fderivWithin_zero_of_not_differentiableWithinAt h,
- fderivWithin_zero_of_not_differentiableWithinAt h']
+theorem Filter.EventuallyEq.fderivWithin_eq (hs : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
+ simp only [fderivWithin, hs.hasFDerivWithinAt_iff hx]
#align filter.eventually_eq.fderiv_within_eq Filter.EventuallyEq.fderivWithin_eq
-theorem Filter.EventuallyEq.fderivWithin_eq_nhds (hs : UniqueDiffWithinAt 𝕜 s x)
- (hL : f₁ =ᶠ[𝓝 x] f) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- (show f₁ =ᶠ[𝓝[s] x] f from nhdsWithin_le_nhds hL).fderivWithin_eq hs (mem_of_mem_nhds hL : _)
+theorem Filter.EventuallyEq.fderiv_within' (hs : f₁ =ᶠ[𝓝[s] x] f) (ht : t ⊆ s) :
+ fderivWithin 𝕜 f₁ t =ᶠ[𝓝[s] x] fderivWithin 𝕜 f t :=
+ (eventually_nhdsWithin_nhdsWithin.2 hs).mp <|
+ eventually_mem_nhdsWithin.mono fun _y hys hs =>
+ EventuallyEq.fderivWithin_eq (hs.filter_mono <| nhdsWithin_mono _ ht)
+ (hs.self_of_nhdsWithin hys)
+#align filter.eventually_eq.fderiv_within' Filter.EventuallyEq.fderiv_within'
+
+protected theorem Filter.EventuallyEq.fderivWithin (hs : f₁ =ᶠ[𝓝[s] x] f) :
+ fderivWithin 𝕜 f₁ s =ᶠ[𝓝[s] x] fderivWithin 𝕜 f s :=
+ hs.fderiv_within' Subset.rfl
+#align filter.eventually_eq.fderiv_within Filter.EventuallyEq.fderivWithin
+
+theorem Filter.EventuallyEq.fderivWithin_eq_nhds (h : f₁ =ᶠ[𝓝 x] f) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
+ (h.filter_mono nhdsWithin_le_nhds).fderivWithin_eq h.self_of_nhds
#align filter.eventually_eq.fderiv_within_eq_nhds Filter.EventuallyEq.fderivWithin_eq_nhds
-theorem fderivWithin_congr (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s, f₁ y = f y)
- (hx : f₁ x = f x) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x := by
- apply Filter.EventuallyEq.fderivWithin_eq hs _ hx
- apply mem_of_superset self_mem_nhdsWithin
- exact hL
+theorem fderivWithin_congr (hs : EqOn f₁ f s) (hx : f₁ x = f x) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
+ (hs.eventuallyEq.filter_mono inf_le_right).fderivWithin_eq hx
#align fderiv_within_congr fderivWithin_congr
-theorem fderivWithin_congr' (hs : UniqueDiffWithinAt 𝕜 s x) (hL : ∀ y ∈ s, f₁ y = f y)
- (hx : x ∈ s) : fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
- fderivWithin_congr hs hL (hL x hx)
+theorem fderivWithin_congr' (hs : EqOn f₁ f s) (hx : x ∈ s) :
+ fderivWithin 𝕜 f₁ s x = fderivWithin 𝕜 f s x :=
+ fderivWithin_congr hs (hs hx)
#align fderiv_within_congr' fderivWithin_congr'
-theorem Filter.EventuallyEq.fderiv_eq (hL : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := by
- have A : f₁ x = f x := hL.eq_of_nhds
- rw [← fderivWithin_univ, ← fderivWithin_univ]
- rw [← nhdsWithin_univ] at hL
- exact hL.fderivWithin_eq uniqueDiffWithinAt_univ A
+theorem Filter.EventuallyEq.fderiv_eq (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ x = fderiv 𝕜 f x := by
+ rw [← fderivWithin_univ, ← fderivWithin_univ, h.fderivWithin_eq_nhds]
#align filter.eventually_eq.fderiv_eq Filter.EventuallyEq.fderiv_eq
protected theorem Filter.EventuallyEq.fderiv (h : f₁ =ᶠ[𝓝 x] f) : fderiv 𝕜 f₁ =ᶠ[𝓝 x] fderiv 𝕜 f :=
@@ -1128,14 +1151,15 @@ open Function
variable (𝕜 : Type _) {E F : Type _} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E]
[NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : E → F}
-theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f := by
- intro x
- rw [← not_imp_not]
- intro h2x
- rw [not_mem_tsupport_iff_eventuallyEq] at h2x
- exact nmem_support.mpr (h2x.fderiv_eq.trans <| fderiv_const_apply 0)
+theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f := fun x ↦ by
+ rw [← not_imp_not, not_mem_tsupport_iff_eventuallyEq, nmem_support]
+ exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
#align support_fderiv_subset support_fderiv_subset
+theorem tsupport_fderiv_subset : tsupport (fderiv 𝕜 f) ⊆ tsupport f :=
+ closure_minimal (support_fderiv_subset 𝕜) isClosed_closure
+#align tsupport_fderiv_subset tsupport_fderiv_subset
+
protected theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) :
HasCompactSupport (fderiv 𝕜 f) :=
hf.mono' <| support_fderiv_subset 𝕜
IsBoundedBilinearMap
(#4239)
Add IsBoundedBilinearMap.toContinuousLinearMap
and use it to golf
proofs by reusing facts about bundled bilinear maps
E →L[𝕜] F →L[𝕜] G
.
IsBoundedBilinearMap.toContinuousLinearMap
.IsBoundedBilinearMap.is_O'
to
IsBoundedBilinearMap.isBigO'
.isBoundedBilinearMap_deriv_coe
to
IsBoundedBilinearMap.deriv_apply
.LinearMap.mkContinuousOfExistsBound₂
, a bilinear map version
of LinearMap.mkContinuousOfExistsBound
and use it to redefine
LinearMap.mkContinuous₂
. The new definition is definitionally
equal to the old one.Mathlib.Analysis.NormedSpace.OperatorNorm
instead of
Mathlib.Analysis.NormedSpace.BoundedLinearMaps
in
Mathlib.Analysis.Calculus.FDeriv.Basic
.@@ -10,7 +10,7 @@ Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
import Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
import Mathlib.Analysis.Calculus.TangentCone
-import Mathlib.Analysis.NormedSpace.BoundedLinearMaps
+import Mathlib.Analysis.NormedSpace.OperatorNorm
/-!
# The Fréchet derivative
ContinuousLinearMap.hasStrictFderivAt
to
ContinuousLinearMap.hasStrictFDerivAt
.Analysis/Calculus/FDeriv/Basic
.@@ -485,7 +485,7 @@ theorem HasFDerivWithinAt.union (hs : HasFDerivWithinAt f f' s x)
exact hs.sup ht
#align has_fderiv_within_at.union HasFDerivWithinAt.union
-theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
+protected theorem HasFDerivWithinAt.nhdsWithin (h : HasFDerivWithinAt f f' s x) (ht : s ∈ 𝓝[t] x) :
HasFDerivWithinAt f f' t x :=
(hasFDerivWithinAt_inter' ht).1 (h.mono (inter_subset_right _ _))
#align has_fderiv_within_at.nhds_within HasFDerivWithinAt.nhdsWithin
@@ -531,7 +531,7 @@ theorem DifferentiableOn.eventually_differentiableAt (h : DifferentiableOn 𝕜
(eventually_eventually_nhds.2 hs).mono fun _ => h.differentiableAt
#align differentiable_on.eventually_differentiable_at DifferentiableOn.eventually_differentiableAt
-theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' := by
+protected theorem HasFDerivAt.fderiv (h : HasFDerivAt f f' x) : fderiv 𝕜 f x = f' := by
ext
rw [h.unique h.differentiableAt.hasFDerivAt]
#align has_fderiv_at.fderiv HasFDerivAt.fderiv
@@ -549,7 +549,7 @@ theorem DifferentiableAt.le_of_lip {f : E → F} {x₀ : E} (hf : Differentiable
hf.hasFDerivAt.le_of_lip hs hlip
#align fderiv_at.le_of_lip DifferentiableAt.le_of_lip
-theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
+protected theorem HasFDerivWithinAt.fderivWithin (h : HasFDerivWithinAt f f' s x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = f' :=
(hxs.eq h h.differentiableWithinAt.hasFDerivWithinAt).symm
#align has_fderiv_within_at.fderiv_within HasFDerivWithinAt.fderivWithin
@@ -609,7 +609,7 @@ theorem Differentiable.differentiableAt (h : Differentiable 𝕜 f) : Differenti
h x
#align differentiable.differentiable_at Differentiable.differentiableAt
-theorem DifferentiableAt.fderivWithin (h : DifferentiableAt 𝕜 f x)
+protected theorem DifferentiableAt.fderivWithin (h : DifferentiableAt 𝕜 f x)
(hxs : UniqueDiffWithinAt 𝕜 s x) : fderivWithin 𝕜 f s x = fderiv 𝕜 f x :=
h.hasFDerivAt.hasFDerivWithinAt.fderivWithin hxs
#align differentiable_at.fderiv_within DifferentiableAt.fderivWithin
@@ -1136,7 +1136,8 @@ theorem support_fderiv_subset : support (fderiv 𝕜 f) ⊆ tsupport f := by
exact nmem_support.mpr (h2x.fderiv_eq.trans <| fderiv_const_apply 0)
#align support_fderiv_subset support_fderiv_subset
-theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) : HasCompactSupport (fderiv 𝕜 f) :=
+protected theorem HasCompactSupport.fderiv (hf : HasCompactSupport f) :
+ HasCompactSupport (fderiv 𝕜 f) :=
hf.mono' <| support_fderiv_subset 𝕜
#align has_compact_support.fderiv HasCompactSupport.fderiv
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file