analysis.calculus.fderiv.comp ⟷ Mathlib.Analysis.Calculus.FDeriv.Comp

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 -/
-import Analysis.Calculus.Fderiv.Basic
+import Analysis.Calculus.FDeriv.Basic
 
 #align_import analysis.calculus.fderiv.comp from "leanprover-community/mathlib"@"38df578a6450a8c5142b3727e3ae894c2300cae0"
 
@@ -260,7 +260,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   by
   induction' n with n ihn
   Β· exact hasFDerivAtFilter_id x L
-  Β· rw [Function.iterate_succ, pow_succ']
+  Β· rw [Function.iterate_succ, pow_succ]
     rw [← hx] at ihn
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
@@ -293,7 +293,7 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   by
   induction' n with n ihn
   Β· exact hasStrictFDerivAt_id x
-  Β· rw [Function.iterate_succ, pow_succ']
+  Β· rw [Function.iterate_succ, pow_succ]
     rw [← hx] at ihn
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
Diff
@@ -78,7 +78,7 @@ theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter
 example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (L.map f))
     (hf : HasFDerivAtFilter f f' x L) : HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
   by
-  unfold HasFDerivAtFilter at hg 
+  unfold HasFDerivAtFilter at hg
   have :=
     calc
       (fun x' => g (f x') - g (f x) - g' (f x' - f x)) =o[L] fun x' => f x' - f x :=
@@ -261,7 +261,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   induction' n with n ihn
   Β· exact hasFDerivAtFilter_id x L
   Β· rw [Function.iterate_succ, pow_succ']
-    rw [← hx] at ihn 
+    rw [← hx] at ihn
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 -/
@@ -294,7 +294,7 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   induction' n with n ihn
   Β· exact hasStrictFDerivAt_id x
   Β· rw [Function.iterate_succ, pow_succ']
-    rw [← hx] at ihn 
+    rw [← hx] at ihn
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 -/
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 -/
-import Mathbin.Analysis.Calculus.Fderiv.Basic
+import Analysis.Calculus.Fderiv.Basic
 
 #align_import analysis.calculus.fderiv.comp from "leanprover-community/mathlib"@"38df578a6450a8c5142b3727e3ae894c2300cae0"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.comp
-! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.Calculus.Fderiv.Basic
 
+#align_import analysis.calculus.fderiv.comp from "leanprover-community/mathlib"@"38df578a6450a8c5142b3727e3ae894c2300cae0"
+
 /-!
 # The derivative of a composition (chain rule)
 
Diff
@@ -65,6 +65,7 @@ get confused since there are too many possibilities for composition -/
 
 variable (x)
 
+#print HasFDerivAtFilter.comp /-
 theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
     (hg : HasFDerivAtFilter g g' (f x) L') (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L') :
     HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
@@ -73,6 +74,7 @@ theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter
   let eqβ‚‚ := (hg.comp_tendsto hL).trans_isBigO hf.isBigO_sub
   refine' eqβ‚‚.triangle (eq₁.congr_left fun x' => _); simp
 #align has_fderiv_at_filter.comp HasFDerivAtFilter.comp
+-/
 
 /- A readable version of the previous theorem,
    a general form of the chain rule. -/
@@ -93,58 +95,77 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
     _ =O[L] fun x' => f x' - f x - f' (x' - x) := (g'.is_O_comp _ _)
     _ =o[L] fun x' => x' - x := hf
 
+#print HasFDerivWithinAt.comp /-
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf <| hf.ContinuousWithinAt.tendsto_nhdsWithin hst
 #align has_fderiv_within_at.comp HasFDerivWithinAt.comp
+-/
 
+#print HasFDerivAt.comp_hasFDerivWithinAt /-
 theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasFDerivAt g g' (f x)) (hf : HasFDerivWithinAt f f' s x) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf hf.ContinuousWithinAt
 #align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAt
+-/
 
+#print HasFDerivWithinAt.comp_of_mem /-
 theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x)
     (hst : Tendsto f (𝓝[s] x) (𝓝[t] f x)) : HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   HasFDerivAtFilter.comp x hg hf hst
 #align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_mem
+-/
 
+#print HasFDerivAt.comp /-
 /-- The chain rule. -/
 theorem HasFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAt g g' (f x))
     (hf : HasFDerivAt f f' x) : HasFDerivAt (g ∘ f) (g'.comp f') x :=
   hg.comp x hf hf.ContinuousAt
 #align has_fderiv_at.comp HasFDerivAt.comp
+-/
 
+#print DifferentiableWithinAt.comp /-
 theorem DifferentiableWithinAt.comp {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x)
     (h : MapsTo f s t) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).DifferentiableWithinAt
 #align differentiable_within_at.comp DifferentiableWithinAt.comp
+-/
 
+#print DifferentiableWithinAt.comp' /-
 theorem DifferentiableWithinAt.comp' {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x) :
     DifferentiableWithinAt π•œ (g ∘ f) (s ∩ f ⁻¹' t) x :=
   hg.comp x (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _)
 #align differentiable_within_at.comp' DifferentiableWithinAt.comp'
+-/
 
+#print DifferentiableAt.comp /-
 theorem DifferentiableAt.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableAt π•œ f x) : DifferentiableAt π•œ (g ∘ f) x :=
   (hg.HasFDerivAt.comp x hf.HasFDerivAt).DifferentiableAt
 #align differentiable_at.comp DifferentiableAt.comp
+-/
 
+#print DifferentiableAt.comp_differentiableWithinAt /-
 theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   hg.DifferentiableWithinAt.comp x hf (mapsTo_univ _ _)
 #align differentiable_at.comp_differentiable_within_at DifferentiableAt.comp_differentiableWithinAt
+-/
 
+#print fderivWithin.comp /-
 theorem fderivWithin.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableWithinAt π•œ g t (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (h : MapsTo f s t) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderivWithin π•œ g t (f x)).comp (fderivWithin π•œ f s x) :=
   (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).fderivWithin hxs
 #align fderiv_within.comp fderivWithin.comp
+-/
 
+#print fderivWithin_fderivWithin /-
 /-- A version of `fderiv_within.comp` that is useful to rewrite the composition of two derivatives
   into a single derivative. This version always applies, but creates a new side-goal `f x = y`. -/
 theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s : Set E} {t : Set F}
@@ -153,7 +174,9 @@ theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s
     fderivWithin π•œ g t y (fderivWithin π•œ f s x v) = fderivWithin π•œ (g ∘ f) s x v := by subst y;
   rw [fderivWithin.comp x hg hf h hxs]; rfl
 #align fderiv_within_fderiv_within fderivWithin_fderivWithin
+-/
 
+#print fderivWithin.comp₃ /-
 /-- Ternary version of `fderiv_within.comp`, with equality assumptions of basepoints added, in
   order to apply more easily as a rewrite from right-to-left. -/
 theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set G} {y : F} {y' : G}
@@ -169,32 +192,44 @@ theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set
           h2g.comp h2f).fderivWithin
       hxs
 #align fderiv_within.comp₃ fderivWithin.comp₃
+-/
 
+#print fderiv.comp /-
 theorem fderiv.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x)) (hf : DifferentiableAt π•œ f x) :
     fderiv π•œ (g ∘ f) x = (fderiv π•œ g (f x)).comp (fderiv π•œ f x) :=
   (hg.HasFDerivAt.comp x hf.HasFDerivAt).fderiv
 #align fderiv.comp fderiv.comp
+-/
 
+#print fderiv.comp_fderivWithin /-
 theorem fderiv.comp_fderivWithin {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderiv π•œ g (f x)).comp (fderivWithin π•œ f s x) :=
   (hg.HasFDerivAt.comp_hasFDerivWithinAt x hf.HasFDerivWithinAt).fderivWithin hxs
 #align fderiv.comp_fderiv_within fderiv.comp_fderivWithin
+-/
 
+#print DifferentiableOn.comp /-
 theorem DifferentiableOn.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableOn π•œ g t)
     (hf : DifferentiableOn π•œ f s) (st : MapsTo f s t) : DifferentiableOn π•œ (g ∘ f) s := fun x hx =>
   DifferentiableWithinAt.comp x (hg (f x) (st hx)) (hf x hx) st
 #align differentiable_on.comp DifferentiableOn.comp
+-/
 
+#print Differentiable.comp /-
 theorem Differentiable.comp {g : F β†’ G} (hg : Differentiable π•œ g) (hf : Differentiable π•œ f) :
     Differentiable π•œ (g ∘ f) := fun x => DifferentiableAt.comp x (hg (f x)) (hf x)
 #align differentiable.comp Differentiable.comp
+-/
 
+#print Differentiable.comp_differentiableOn /-
 theorem Differentiable.comp_differentiableOn {g : F β†’ G} (hg : Differentiable π•œ g)
     (hf : DifferentiableOn π•œ f s) : DifferentiableOn π•œ (g ∘ f) s :=
   hg.DifferentiableOn.comp hf (mapsTo_univ _ _)
 #align differentiable.comp_differentiable_on Differentiable.comp_differentiableOn
+-/
 
+#print HasStrictFDerivAt.comp /-
 /-- The chain rule for derivatives in the sense of strict differentiability. -/
 protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasStrictFDerivAt g g' (f x)) (hf : HasStrictFDerivAt f f' x) :
@@ -203,19 +238,25 @@ protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
         hf.isBigO_sub).triangle <|
     by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_isLittleO hf
 #align has_strict_fderiv_at.comp HasStrictFDerivAt.comp
+-/
 
+#print Differentiable.iterate /-
 protected theorem Differentiable.iterate {f : E β†’ E} (hf : Differentiable π•œ f) (n : β„•) :
     Differentiable π•œ (f^[n]) :=
   Nat.recOn n differentiable_id fun n ihn => ihn.comp hf
 #align differentiable.iterate Differentiable.iterate
+-/
 
+#print DifferentiableOn.iterate /-
 protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn π•œ f s)
     (hs : MapsTo f s s) (n : β„•) : DifferentiableOn π•œ (f^[n]) s :=
   Nat.recOn n differentiableOn_id fun n ihn => ihn.comp hf hs
 #align differentiable_on.iterate DifferentiableOn.iterate
+-/
 
 variable {x}
 
+#print HasFDerivAtFilter.iterate /-
 protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
     HasFDerivAtFilter (f^[n]) (f' ^ n) x L :=
@@ -226,7 +267,9 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     rw [← hx] at ihn 
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
+-/
 
+#print HasFDerivAt.iterate /-
 protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
     (hx : f x = x) (n : β„•) : HasFDerivAt (f^[n]) (f' ^ n) x :=
   by
@@ -234,7 +277,9 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
   convert hf.continuous_at
   exact hx.symm
 #align has_fderiv_at.iterate HasFDerivAt.iterate
+-/
 
+#print HasFDerivWithinAt.iterate /-
 protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
     HasFDerivWithinAt (f^[n]) (f' ^ n) s x :=
@@ -243,7 +288,9 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   convert tendsto_inf.2 ⟨hf.continuous_within_at, _⟩
   exacts [hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
 #align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
+-/
 
+#print HasStrictFDerivAt.iterate /-
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) : HasStrictFDerivAt (f^[n]) (f' ^ n) x :=
   by
@@ -253,16 +300,21 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     rw [← hx] at ihn 
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
+-/
 
+#print DifferentiableAt.iterate /-
 protected theorem DifferentiableAt.iterate {f : E β†’ E} (hf : DifferentiableAt π•œ f x) (hx : f x = x)
     (n : β„•) : DifferentiableAt π•œ (f^[n]) x :=
   (hf.HasFDerivAt.iterate hx n).DifferentiableAt
 #align differentiable_at.iterate DifferentiableAt.iterate
+-/
 
+#print DifferentiableWithinAt.iterate /-
 protected theorem DifferentiableWithinAt.iterate {f : E β†’ E} (hf : DifferentiableWithinAt π•œ f s x)
     (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ (f^[n]) s x :=
   (hf.HasFDerivWithinAt.iterate hx hs n).DifferentiableWithinAt
 #align differentiable_within_at.iterate DifferentiableWithinAt.iterate
+-/
 
 end Composition
 
Diff
@@ -85,7 +85,6 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
       (fun x' => g (f x') - g (f x) - g' (f x' - f x)) =o[L] fun x' => f x' - f x :=
         hg.comp_tendsto le_rfl
       _ =O[L] fun x' => x' - x := hf.is_O_sub
-      
   refine' this.triangle _
   calc
     (fun x' : E => g' (f x' - f x) - g'.comp f' (x' - x)) =αΆ [L] fun x' =>
@@ -93,7 +92,6 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
       eventually_of_forall fun x' => by simp
     _ =O[L] fun x' => f x' - f x - f' (x' - x) := (g'.is_O_comp _ _)
     _ =o[L] fun x' => x' - x := hf
-    
 
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
Diff
@@ -79,7 +79,7 @@ theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter
 example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (L.map f))
     (hf : HasFDerivAtFilter f f' x L) : HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
   by
-  unfold HasFDerivAtFilter at hg
+  unfold HasFDerivAtFilter at hg 
   have :=
     calc
       (fun x' => g (f x') - g (f x) - g' (f x' - f x)) =o[L] fun x' => f x' - f x :=
@@ -225,7 +225,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   induction' n with n ihn
   Β· exact hasFDerivAtFilter_id x L
   Β· rw [Function.iterate_succ, pow_succ']
-    rw [← hx] at ihn
+    rw [← hx] at ihn 
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
@@ -243,7 +243,7 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   by
   refine' hf.iterate _ hx n
   convert tendsto_inf.2 ⟨hf.continuous_within_at, _⟩
-  exacts[hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
+  exacts [hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
 #align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
 
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
@@ -252,7 +252,7 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   induction' n with n ihn
   Β· exact hasStrictFDerivAt_id x
   Β· rw [Function.iterate_succ, pow_succ']
-    rw [← hx] at ihn
+    rw [← hx] at ihn 
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 
Diff
@@ -26,7 +26,7 @@ composition of functions (the chain rule).
 
 open Filter Asymptotics ContinuousLinearMap Set Metric
 
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Topology Classical NNReal Filter Asymptotics ENNReal
 
 noncomputable section
 
Diff
@@ -65,9 +65,6 @@ get confused since there are too many possibilities for composition -/
 
 variable (x)
 
-/- warning: has_fderiv_at_filter.comp -> HasFDerivAtFilter.comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.comp HasFDerivAtFilter.compβ‚“'. -/
 theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
     (hg : HasFDerivAtFilter g g' (f x) L') (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L') :
     HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
@@ -98,100 +95,58 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
     _ =o[L] fun x' => x' - x := hf
     
 
-/- warning: has_fderiv_within_at.comp -> HasFDerivWithinAt.comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.comp HasFDerivWithinAt.compβ‚“'. -/
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf <| hf.ContinuousWithinAt.tendsto_nhdsWithin hst
 #align has_fderiv_within_at.comp HasFDerivWithinAt.comp
 
-/- warning: has_fderiv_at.comp_has_fderiv_within_at -> HasFDerivAt.comp_hasFDerivWithinAt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAtβ‚“'. -/
 theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasFDerivAt g g' (f x)) (hf : HasFDerivWithinAt f f' s x) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf hf.ContinuousWithinAt
 #align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAt
 
-/- warning: has_fderiv_within_at.comp_of_mem -> HasFDerivWithinAt.comp_of_mem is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_memβ‚“'. -/
 theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x)
     (hst : Tendsto f (𝓝[s] x) (𝓝[t] f x)) : HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   HasFDerivAtFilter.comp x hg hf hst
 #align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_mem
 
-/- warning: has_fderiv_at.comp -> HasFDerivAt.comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.comp HasFDerivAt.compβ‚“'. -/
 /-- The chain rule. -/
 theorem HasFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAt g g' (f x))
     (hf : HasFDerivAt f f' x) : HasFDerivAt (g ∘ f) (g'.comp f') x :=
   hg.comp x hf hf.ContinuousAt
 #align has_fderiv_at.comp HasFDerivAt.comp
 
-/- warning: differentiable_within_at.comp -> DifferentiableWithinAt.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x)
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u1, u4} E F f s t) -> (DifferentiableWithinAt.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.comp DifferentiableWithinAt.compβ‚“'. -/
 theorem DifferentiableWithinAt.comp {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x)
     (h : MapsTo f s t) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).DifferentiableWithinAt
 #align differentiable_within_at.comp DifferentiableWithinAt.comp
 
-/- warning: differentiable_within_at.comp' -> DifferentiableWithinAt.comp' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s (Set.preimage.{u2, u3} E F f t)) x)
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) s (Set.preimage.{u1, u4} E F f t)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.comp' DifferentiableWithinAt.comp'β‚“'. -/
 theorem DifferentiableWithinAt.comp' {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x) :
     DifferentiableWithinAt π•œ (g ∘ f) (s ∩ f ⁻¹' t) x :=
   hg.comp x (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _)
 #align differentiable_within_at.comp' DifferentiableWithinAt.comp'
 
-/- warning: differentiable_at.comp -> DifferentiableAt.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.comp DifferentiableAt.compβ‚“'. -/
 theorem DifferentiableAt.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableAt π•œ f x) : DifferentiableAt π•œ (g ∘ f) x :=
   (hg.HasFDerivAt.comp x hf.HasFDerivAt).DifferentiableAt
 #align differentiable_at.comp DifferentiableAt.comp
 
-/- warning: differentiable_at.comp_differentiable_within_at -> DifferentiableAt.comp_differentiableWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.comp_differentiable_within_at DifferentiableAt.comp_differentiableWithinAtβ‚“'. -/
 theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   hg.DifferentiableWithinAt.comp x hf (mapsTo_univ _ _)
 #align differentiable_at.comp_differentiable_within_at DifferentiableAt.comp_differentiableWithinAt
 
-/- warning: fderiv_within.comp -> fderivWithin.comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within.comp fderivWithin.compβ‚“'. -/
 theorem fderivWithin.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableWithinAt π•œ g t (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (h : MapsTo f s t) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderivWithin π•œ g t (f x)).comp (fderivWithin π•œ f s x) :=
   (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).fderivWithin hxs
 #align fderiv_within.comp fderivWithin.comp
 
-/- warning: fderiv_within_fderiv_within -> fderivWithin_fderivWithin is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_fderiv_within fderivWithin_fderivWithinβ‚“'. -/
 /-- A version of `fderiv_within.comp` that is useful to rewrite the composition of two derivatives
   into a single derivative. This version always applies, but creates a new side-goal `f x = y`. -/
 theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s : Set E} {t : Set F}
@@ -201,9 +156,6 @@ theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s
   rw [fderivWithin.comp x hg hf h hxs]; rfl
 #align fderiv_within_fderiv_within fderivWithin_fderivWithin
 
-/- warning: fderiv_within.comp₃ -> fderivWithin.comp₃ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within.comp₃ fderivWithin.comp₃ₓ'. -/
 /-- Ternary version of `fderiv_within.comp`, with equality assumptions of basepoints added, in
   order to apply more easily as a rewrite from right-to-left. -/
 theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set G} {y : F} {y' : G}
@@ -220,58 +172,31 @@ theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set
       hxs
 #align fderiv_within.comp₃ fderivWithin.comp₃
 
-/- warning: fderiv.comp -> fderiv.comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv.comp fderiv.compβ‚“'. -/
 theorem fderiv.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x)) (hf : DifferentiableAt π•œ f x) :
     fderiv π•œ (g ∘ f) x = (fderiv π•œ g (f x)).comp (fderiv π•œ f x) :=
   (hg.HasFDerivAt.comp x hf.HasFDerivAt).fderiv
 #align fderiv.comp fderiv.comp
 
-/- warning: fderiv.comp_fderiv_within -> fderiv.comp_fderivWithin is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv.comp_fderiv_within fderiv.comp_fderivWithinβ‚“'. -/
 theorem fderiv.comp_fderivWithin {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderiv π•œ g (f x)).comp (fderivWithin π•œ f s x) :=
   (hg.HasFDerivAt.comp_hasFDerivWithinAt x hf.HasFDerivWithinAt).fderivWithin hxs
 #align fderiv.comp_fderiv_within fderiv.comp_fderivWithin
 
-/- warning: differentiable_on.comp -> DifferentiableOn.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableOn.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t) -> (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Set.MapsTo.{u2, u3} E F f s t) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s)
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableOn.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t) -> (DifferentiableOn.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Set.MapsTo.{u1, u4} E F f s t) -> (DifferentiableOn.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.comp DifferentiableOn.compβ‚“'. -/
 theorem DifferentiableOn.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableOn π•œ g t)
     (hf : DifferentiableOn π•œ f s) (st : MapsTo f s t) : DifferentiableOn π•œ (g ∘ f) s := fun x hx =>
   DifferentiableWithinAt.comp x (hg (f x) (st hx)) (hf x hx) st
 #align differentiable_on.comp DifferentiableOn.comp
 
-/- warning: differentiable.comp -> Differentiable.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {g : F -> G}, (Differentiable.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (Differentiable.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {g : F -> G}, (Differentiable.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (Differentiable.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Differentiable.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f))
-Case conversion may be inaccurate. Consider using '#align differentiable.comp Differentiable.compβ‚“'. -/
 theorem Differentiable.comp {g : F β†’ G} (hg : Differentiable π•œ g) (hf : Differentiable π•œ f) :
     Differentiable π•œ (g ∘ f) := fun x => DifferentiableAt.comp x (hg (f x)) (hf x)
 #align differentiable.comp Differentiable.comp
 
-/- warning: differentiable.comp_differentiable_on -> Differentiable.comp_differentiableOn is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {s : Set.{u2} E} {g : F -> G}, (Differentiable.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {s : Set.{u1} E} {g : F -> G}, (Differentiable.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (DifferentiableOn.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (DifferentiableOn.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) s)
-Case conversion may be inaccurate. Consider using '#align differentiable.comp_differentiable_on Differentiable.comp_differentiableOnβ‚“'. -/
 theorem Differentiable.comp_differentiableOn {g : F β†’ G} (hg : Differentiable π•œ g)
     (hf : DifferentiableOn π•œ f s) : DifferentiableOn π•œ (g ∘ f) s :=
   hg.DifferentiableOn.comp hf (mapsTo_univ _ _)
 #align differentiable.comp_differentiable_on Differentiable.comp_differentiableOn
 
-/- warning: has_strict_fderiv_at.comp -> HasStrictFDerivAt.comp is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.comp HasStrictFDerivAt.compβ‚“'. -/
 /-- The chain rule for derivatives in the sense of strict differentiability. -/
 protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasStrictFDerivAt g g' (f x)) (hf : HasStrictFDerivAt f f' x) :
@@ -281,23 +206,11 @@ protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_isLittleO hf
 #align has_strict_fderiv_at.comp HasStrictFDerivAt.comp
 
-/- warning: differentiable.iterate -> Differentiable.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {f : E -> E}, (Differentiable.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f) -> (forall (n : Nat), Differentiable.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n))
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {f : E -> E}, (Differentiable.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f) -> (forall (n : Nat), Differentiable.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n))
-Case conversion may be inaccurate. Consider using '#align differentiable.iterate Differentiable.iterateβ‚“'. -/
 protected theorem Differentiable.iterate {f : E β†’ E} (hf : Differentiable π•œ f) (n : β„•) :
     Differentiable π•œ (f^[n]) :=
   Nat.recOn n differentiable_id fun n ihn => ihn.comp hf
 #align differentiable.iterate Differentiable.iterate
 
-/- warning: differentiable_on.iterate -> DifferentiableOn.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E} {f : E -> E}, (DifferentiableOn.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), DifferentiableOn.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {s : Set.{u1} E} {f : E -> E}, (DifferentiableOn.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), DifferentiableOn.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.iterate DifferentiableOn.iterateβ‚“'. -/
 protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn π•œ f s)
     (hs : MapsTo f s s) (n : β„•) : DifferentiableOn π•œ (f^[n]) s :=
   Nat.recOn n differentiableOn_id fun n ihn => ihn.comp hf hs
@@ -305,9 +218,6 @@ protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn
 
 variable {x}
 
-/- warning: has_fderiv_at_filter.iterate -> HasFDerivAtFilter.iterate is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterateβ‚“'. -/
 protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
     HasFDerivAtFilter (f^[n]) (f' ^ n) x L :=
@@ -319,9 +229,6 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
-/- warning: has_fderiv_at.iterate -> HasFDerivAt.iterate is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.iterate HasFDerivAt.iterateβ‚“'. -/
 protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
     (hx : f x = x) (n : β„•) : HasFDerivAt (f^[n]) (f' ^ n) x :=
   by
@@ -330,9 +237,6 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
   exact hx.symm
 #align has_fderiv_at.iterate HasFDerivAt.iterate
 
-/- warning: has_fderiv_within_at.iterate -> HasFDerivWithinAt.iterate is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.iterate HasFDerivWithinAt.iterateβ‚“'. -/
 protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
     HasFDerivWithinAt (f^[n]) (f' ^ n) s x :=
@@ -342,9 +246,6 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   exacts[hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
 #align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
 
-/- warning: has_strict_fderiv_at.iterate -> HasStrictFDerivAt.iterate is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterateβ‚“'. -/
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) : HasStrictFDerivAt (f^[n]) (f' ^ n) x :=
   by
@@ -355,23 +256,11 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 
-/- warning: differentiable_at.iterate -> DifferentiableAt.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E}, (DifferentiableAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), DifferentiableAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) x)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E}, (DifferentiableAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), DifferentiableAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.iterate DifferentiableAt.iterateβ‚“'. -/
 protected theorem DifferentiableAt.iterate {f : E β†’ E} (hf : DifferentiableAt π•œ f x) (hx : f x = x)
     (n : β„•) : DifferentiableAt π•œ (f^[n]) x :=
   (hf.HasFDerivAt.iterate hx n).DifferentiableAt
 #align differentiable_at.iterate DifferentiableAt.iterate
 
-/- warning: differentiable_within_at.iterate -> DifferentiableWithinAt.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {f : E -> E}, (DifferentiableWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s x) -> (Eq.{succ u2} E (f x) x) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), DifferentiableWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) s x)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E} {f : E -> E}, (DifferentiableWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s x) -> (Eq.{succ u1} E (f x) x) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), DifferentiableWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.iterate DifferentiableWithinAt.iterateβ‚“'. -/
 protected theorem DifferentiableWithinAt.iterate {f : E β†’ E} (hf : DifferentiableWithinAt π•œ f s x)
     (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ (f^[n]) s x :=
   (hf.HasFDerivWithinAt.iterate hx hs n).DifferentiableWithinAt
Diff
@@ -74,8 +74,7 @@ theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter
   by
   let eq₁ := (g'.isBigO_comp _ _).trans_isLittleO hf
   let eqβ‚‚ := (hg.comp_tendsto hL).trans_isBigO hf.isBigO_sub
-  refine' eqβ‚‚.triangle (eq₁.congr_left fun x' => _)
-  simp
+  refine' eqβ‚‚.triangle (eq₁.congr_left fun x' => _); simp
 #align has_fderiv_at_filter.comp HasFDerivAtFilter.comp
 
 /- A readable version of the previous theorem,
@@ -198,11 +197,8 @@ Case conversion may be inaccurate. Consider using '#align fderiv_within_fderiv_w
 theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s : Set E} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t y) (hf : DifferentiableWithinAt π•œ f s x) (h : MapsTo f s t)
     (hxs : UniqueDiffWithinAt π•œ s x) (hy : f x = y) (v : E) :
-    fderivWithin π•œ g t y (fderivWithin π•œ f s x v) = fderivWithin π•œ (g ∘ f) s x v :=
-  by
-  subst y
-  rw [fderivWithin.comp x hg hf h hxs]
-  rfl
+    fderivWithin π•œ g t y (fderivWithin π•œ f s x v) = fderivWithin π•œ (g ∘ f) s x v := by subst y;
+  rw [fderivWithin.comp x hg hf h hxs]; rfl
 #align fderiv_within_fderiv_within fderivWithin_fderivWithin
 
 /- warning: fderiv_within.comp₃ -> fderivWithin.comp₃ is a dubious translation:
Diff
@@ -66,10 +66,7 @@ get confused since there are too many possibilities for composition -/
 variable (x)
 
 /- warning: has_fderiv_at_filter.comp -> HasFDerivAtFilter.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {L : Filter.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)} {L' : Filter.{u3} F}, (HasFDerivAtFilter.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x) L') -> (HasFDerivAtFilter.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u2, u3} E F f L L') -> (HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') x L)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {L : Filter.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)} {L' : Filter.{u3} F}, (HasFDerivAtFilter.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x) L') -> (HasFDerivAtFilter.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u1, u3} E F f L L') -> (HasFDerivAtFilter.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.comp HasFDerivAtFilter.compβ‚“'. -/
 theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
     (hg : HasFDerivAtFilter g g' (f x) L') (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L') :
@@ -103,10 +100,7 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
     
 
 /- warning: has_fderiv_within_at.comp -> HasFDerivWithinAt.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.MapsTo.{u1, u3} E F f s t) -> (HasFDerivWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.comp HasFDerivWithinAt.compβ‚“'. -/
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
@@ -115,10 +109,7 @@ theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
 #align has_fderiv_within_at.comp HasFDerivWithinAt.comp
 
 /- warning: has_fderiv_at.comp_has_fderiv_within_at -> HasFDerivAt.comp_hasFDerivWithinAt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAtβ‚“'. -/
 theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasFDerivAt g g' (f x)) (hf : HasFDerivWithinAt f f' s x) :
@@ -127,10 +118,7 @@ theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
 #align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAt
 
 /- warning: has_fderiv_within_at.comp_of_mem -> HasFDerivWithinAt.comp_of_mem is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.Tendsto.{u2, u3} E F f (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (nhdsWithin.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (f x) t)) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.Tendsto.{u1, u3} E F f (nhdsWithin.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) x s) (nhdsWithin.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (f x) t)) -> (HasFDerivWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_memβ‚“'. -/
 theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x)
@@ -139,10 +127,7 @@ theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : S
 #align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_mem
 
 /- warning: has_fderiv_at.comp -> HasFDerivAt.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.comp HasFDerivAt.compβ‚“'. -/
 /-- The chain rule. -/
 theorem HasFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAt g g' (f x))
@@ -197,10 +182,7 @@ theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : Differe
 #align differentiable_at.comp_differentiable_within_at DifferentiableAt.comp_differentiableWithinAt
 
 /- warning: fderiv_within.comp -> fderivWithin.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderivWithin.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u1, u4} E F f s t) -> (UniqueDiffWithinAt.{u3, u1} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u3, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)) (fderivWithin.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) s x) (ContinuousLinearMap.comp.{u3, u3, u3, u1, u4, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u4} F (PseudoMetricSpace.toUniformSpace.{u4} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F (NormedAddCommGroup.toAddCommGroup.{u4} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4) _inst_5) (NormedSpace.toModule.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1)))))))) (fderivWithin.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) (fderivWithin.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within.comp fderivWithin.compβ‚“'. -/
 theorem fderivWithin.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableWithinAt π•œ g t (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (h : MapsTo f s t) (hxs : UniqueDiffWithinAt π•œ s x) :
@@ -209,10 +191,7 @@ theorem fderivWithin.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableWithinAt
 #align fderiv_within.comp fderivWithin.comp
 
 /- warning: fderiv_within_fderiv_within -> fderivWithin_fderivWithin is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {g : F -> G} {f : E -> F} {x : E} {y : F} {s : Set.{u2} E} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{succ u3} F (f x) y) -> (forall (v : E), Eq.{succ u4} G (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fun (_x : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) => F -> G) (ContinuousLinearMap.toFun.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) v)) (coeFn.{max (succ u2) (succ u4), max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) => E -> G) (ContinuousLinearMap.toFun.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x) v))
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {g : F -> G} {f : E -> F} {x : E} {y : F} {s : Set.{u4} E} {t : Set.{u3} F}, (DifferentiableWithinAt.{u2, u3, u1} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u2, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u4, u3} E F f s t) -> (UniqueDiffWithinAt.{u2, u4} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) s x) -> (Eq.{succ u3} F (f x) y) -> (forall (v : E), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : F) => G) (FunLike.coe.{max (succ u4) (succ u3), succ u4, succ u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E (fun (a : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (ContinuousMapClass.toFunLike.{max u4 u3, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u3, u2, u2, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))) (fderivWithin.{u2, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) v)) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (ContinuousLinearMap.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) F (fun (_x : F) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : F) => G) _x) (ContinuousMapClass.toFunLike.{max u3 u1, u3, u1} (ContinuousLinearMap.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u1, u2, u2, u3, u1} (ContinuousLinearMap.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)))) (fderivWithin.{u2, u3, u1} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (FunLike.coe.{max (succ u4) (succ u3), succ u4, succ u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u3, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u3, u2, u2, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))) (fderivWithin.{u2, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) v)) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => G) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) E G (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u2, u2, u4, u1} (ContinuousLinearMap.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)))) (fderivWithin.{u2, u4, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u4, succ u3, succ u1} E F G g f) s x) v))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within_fderiv_within fderivWithin_fderivWithinβ‚“'. -/
 /-- A version of `fderiv_within.comp` that is useful to rewrite the composition of two derivatives
   into a single derivative. This version always applies, but creates a new side-goal `f x = y`. -/
@@ -227,10 +206,7 @@ theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s
 #align fderiv_within_fderiv_within fderivWithin_fderivWithin
 
 /- warning: fderiv_within.comp₃ -> fderivWithin.comp₃ is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} (x : E) {s : Set.{u2} E} {g' : G -> G'} {g : F -> G} {t : Set.{u3} F} {u : Set.{u4} G} {y : F} {y' : G}, (DifferentiableWithinAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') -> (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u3, u4} F G g t u) -> (Set.MapsTo.{u2, u3} E F f s t) -> (Eq.{succ u4} G (g y) y') -> (Eq.{succ u3} F (f x) y) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u5)} (ContinuousLinearMap.{u1, u1, u2, u5} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)) (fderivWithin.{u1, u2, u5} π•œ _inst_1 E _inst_2 _inst_3 G' _inst_8 _inst_9 (Function.comp.{succ u2, succ u4, succ u5} E G G' g' (Function.comp.{succ u2, succ u3, succ u4} E F G g f)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u4, u5} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderivWithin.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderivWithin.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))))
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u5}} [_inst_4 : NormedAddCommGroup.{u5} F] [_inst_5 : NormedSpace.{u3, u5} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u3, u4} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u2}} [_inst_8 : NormedAddCommGroup.{u2} G'] [_inst_9 : NormedSpace.{u3, u2} π•œ G' (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8)] {f : E -> F} (x : E) {s : Set.{u1} E} {g' : G -> G'} {g : F -> G} {t : Set.{u5} F} {u : Set.{u4} G} {y : F} {y' : G}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') -> (DifferentiableWithinAt.{u3, u5, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u3, u1, u5} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u5, u4} F G g t u) -> (Set.MapsTo.{u1, u5} E F f s t) -> (Eq.{succ u4} G (g y) y') -> (Eq.{succ u5} F (f x) y) -> (UniqueDiffWithinAt.{u3, u1} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u3, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G' (UniformSpace.toTopologicalSpace.{u2} G' (PseudoMetricSpace.toUniformSpace.{u2} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u2} G' (NormedAddCommGroup.toAddCommGroup.{u2} G' _inst_8)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π•œ G' (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8) _inst_9)) (fderivWithin.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G' _inst_8 _inst_9 (Function.comp.{succ u1, succ u4, succ u2} E G G' g' (Function.comp.{succ u1, succ u5, succ u4} E F G g f)) s x) (ContinuousLinearMap.comp.{u3, u3, u3, u1, u4, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u2} G' (PseudoMetricSpace.toUniformSpace.{u2} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u2} G' (NormedAddCommGroup.toAddCommGroup.{u2} G' _inst_8)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u4} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u3, u2} π•œ G' (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8) _inst_9) (RingHomCompTriple.ids.{u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1)))))))) (fderivWithin.{u3, u4, u2} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') (ContinuousLinearMap.comp.{u3, u3, u3, u1, u5, u4} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u5} F (PseudoMetricSpace.toUniformSpace.{u5} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} F (NormedAddCommGroup.toAddCommGroup.{u5} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u5} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} F _inst_4) _inst_5) (NormedSpace.toModule.{u3, u4} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1)))))))) (fderivWithin.{u3, u5, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (fderivWithin.{u3, u1, u5} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within.comp₃ fderivWithin.comp₃ₓ'. -/
 /-- Ternary version of `fderiv_within.comp`, with equality assumptions of basepoints added, in
   order to apply more easily as a rewrite from right-to-left. -/
@@ -249,10 +225,7 @@ theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set
 #align fderiv_within.comp₃ fderivWithin.comp₃
 
 /- warning: fderiv.comp -> fderiv.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderiv.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderiv.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u4, u4, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)) (fderiv.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) x) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (fderiv.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderiv.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv.comp fderiv.compβ‚“'. -/
 theorem fderiv.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x)) (hf : DifferentiableAt π•œ f x) :
     fderiv π•œ (g ∘ f) x = (fderiv π•œ g (f x)).comp (fderiv π•œ f x) :=
@@ -260,10 +233,7 @@ theorem fderiv.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x)) (hf : Dif
 #align fderiv.comp fderiv.comp
 
 /- warning: fderiv.comp_fderiv_within -> fderiv.comp_fderivWithin is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderiv.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (UniqueDiffWithinAt.{u4, u1} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u4, u4, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)) (fderivWithin.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (fderiv.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderivWithin.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv.comp_fderiv_within fderiv.comp_fderivWithinβ‚“'. -/
 theorem fderiv.comp_fderivWithin {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (hxs : UniqueDiffWithinAt π•œ s x) :
@@ -304,10 +274,7 @@ theorem Differentiable.comp_differentiableOn {g : F β†’ G} (hg : Differentiable
 #align differentiable.comp_differentiable_on Differentiable.comp_differentiableOn
 
 /- warning: has_strict_fderiv_at.comp -> HasStrictFDerivAt.comp is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => g (f x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasStrictFDerivAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasStrictFDerivAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => g (f x)) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.comp HasStrictFDerivAt.compβ‚“'. -/
 /-- The chain rule for derivatives in the sense of strict differentiability. -/
 protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
@@ -343,10 +310,7 @@ protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn
 variable {x}
 
 /- warning: has_fderiv_at_filter.iterate -> HasFDerivAtFilter.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u2, u2} E E f L L) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x L)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {L : Filter.{u1} E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u1, u1} E E f L L) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterateβ‚“'. -/
 protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
@@ -360,10 +324,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
 /- warning: has_fderiv_at.iterate -> HasFDerivAt.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.iterate HasFDerivAt.iterateβ‚“'. -/
 protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
     (hx : f x = x) (n : β„•) : HasFDerivAt (f^[n]) (f' ^ n) x :=
@@ -374,10 +335,7 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
 #align has_fderiv_at.iterate HasFDerivAt.iterate
 
 /- warning: has_fderiv_within_at.iterate -> HasFDerivWithinAt.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u2} E (f x) x) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) s x)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u1} E (f x) x) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.iterate HasFDerivWithinAt.iterateβ‚“'. -/
 protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
@@ -389,10 +347,7 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 #align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
 
 /- warning: has_strict_fderiv_at.iterate -> HasStrictFDerivAt.iterate is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterateβ‚“'. -/
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) : HasStrictFDerivAt (f^[n]) (f' ^ n) x :=
Diff
@@ -344,7 +344,7 @@ variable {x}
 
 /- warning: has_fderiv_at_filter.iterate -> HasFDerivAtFilter.iterate is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u2, u2} E E f L L) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x L)
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u2, u2} E E f L L) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x L)
 but is expected to have type
   forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {L : Filter.{u1} E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u1, u1} E E f L L) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x L)
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterateβ‚“'. -/
@@ -361,7 +361,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 
 /- warning: has_fderiv_at.iterate -> HasFDerivAt.iterate is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
 but is expected to have type
   forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x)
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.iterate HasFDerivAt.iterateβ‚“'. -/
@@ -375,7 +375,7 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
 
 /- warning: has_fderiv_within_at.iterate -> HasFDerivWithinAt.iterate is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u2} E (f x) x) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) s x)
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u2} E (f x) x) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) s x)
 but is expected to have type
   forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u1} E (f x) x) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) s x)
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.iterate HasFDerivWithinAt.iterateβ‚“'. -/
@@ -390,7 +390,7 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 
 /- warning: has_strict_fderiv_at.iterate -> HasStrictFDerivAt.iterate is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
 but is expected to have type
   forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x)
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterateβ‚“'. -/
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.calculus.fderiv.comp
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.Analysis.Calculus.Fderiv.Basic
 /-!
 # The derivative of a composition (chain rule)
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 For detailed documentation of the FrΓ©chet derivative,
 see the module docstring of `analysis/calculus/fderiv/basic.lean`.
 
Diff
@@ -62,6 +62,12 @@ get confused since there are too many possibilities for composition -/
 
 variable (x)
 
+/- warning: has_fderiv_at_filter.comp -> HasFDerivAtFilter.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {L : Filter.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)} {L' : Filter.{u3} F}, (HasFDerivAtFilter.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x) L') -> (HasFDerivAtFilter.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u2, u3} E F f L L') -> (HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') x L)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {L : Filter.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)} {L' : Filter.{u3} F}, (HasFDerivAtFilter.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x) L') -> (HasFDerivAtFilter.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x L) -> (Filter.Tendsto.{u1, u3} E F f L L') -> (HasFDerivAtFilter.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.comp HasFDerivAtFilter.compβ‚“'. -/
 theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
     (hg : HasFDerivAtFilter g g' (f x) L') (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L') :
     HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
@@ -93,58 +99,118 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
     _ =o[L] fun x' => x' - x := hf
     
 
+/- warning: has_fderiv_within_at.comp -> HasFDerivWithinAt.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Set.MapsTo.{u1, u3} E F f s t) -> (HasFDerivWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.comp HasFDerivWithinAt.compβ‚“'. -/
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf <| hf.ContinuousWithinAt.tendsto_nhdsWithin hst
 #align has_fderiv_within_at.comp HasFDerivWithinAt.comp
 
+/- warning: has_fderiv_at.comp_has_fderiv_within_at -> HasFDerivAt.comp_hasFDerivWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (HasFDerivWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAtβ‚“'. -/
 theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasFDerivAt g g' (f x)) (hf : HasFDerivWithinAt f f' s x) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf hf.ContinuousWithinAt
 #align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAt
 
+/- warning: has_fderiv_within_at.comp_of_mem -> HasFDerivWithinAt.comp_of_mem is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u2} E} {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.Tendsto.{u2, u3} E F f (nhdsWithin.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) x s) (nhdsWithin.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (f x) t)) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {s : Set.{u1} E} {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)} {t : Set.{u3} F}, (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' t (f x)) -> (HasFDerivWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' s x) -> (Filter.Tendsto.{u1, u3} E F f (nhdsWithin.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) x s) (nhdsWithin.{u3} F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (f x) t)) -> (HasFDerivWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_memβ‚“'. -/
 theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x)
     (hst : Tendsto f (𝓝[s] x) (𝓝[t] f x)) : HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   HasFDerivAtFilter.comp x hg hf hst
 #align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_mem
 
+/- warning: has_fderiv_at.comp -> HasFDerivAt.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasFDerivAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasFDerivAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.comp HasFDerivAt.compβ‚“'. -/
 /-- The chain rule. -/
 theorem HasFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAt g g' (f x))
     (hf : HasFDerivAt f f' x) : HasFDerivAt (g ∘ f) (g'.comp f') x :=
   hg.comp x hf hf.ContinuousAt
 #align has_fderiv_at.comp HasFDerivAt.comp
 
+/- warning: differentiable_within_at.comp -> DifferentiableWithinAt.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x)
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u1, u4} E F f s t) -> (DifferentiableWithinAt.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.comp DifferentiableWithinAt.compβ‚“'. -/
 theorem DifferentiableWithinAt.comp {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x)
     (h : MapsTo f s t) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).DifferentiableWithinAt
 #align differentiable_within_at.comp DifferentiableWithinAt.comp
 
+/- warning: differentiable_within_at.comp' -> DifferentiableWithinAt.comp' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s (Set.preimage.{u2, u3} E F f t)) x)
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) s (Set.preimage.{u1, u4} E F f t)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.comp' DifferentiableWithinAt.comp'β‚“'. -/
 theorem DifferentiableWithinAt.comp' {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x) :
     DifferentiableWithinAt π•œ (g ∘ f) (s ∩ f ⁻¹' t) x :=
   hg.comp x (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _)
 #align differentiable_within_at.comp' DifferentiableWithinAt.comp'
 
+/- warning: differentiable_at.comp -> DifferentiableAt.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (DifferentiableAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.comp DifferentiableAt.compβ‚“'. -/
 theorem DifferentiableAt.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableAt π•œ f x) : DifferentiableAt π•œ (g ∘ f) x :=
   (hg.HasFDerivAt.comp x hf.HasFDerivAt).DifferentiableAt
 #align differentiable_at.comp DifferentiableAt.comp
 
+/- warning: differentiable_at.comp_differentiable_within_at -> DifferentiableAt.comp_differentiableWithinAt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (DifferentiableWithinAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.comp_differentiable_within_at DifferentiableAt.comp_differentiableWithinAtβ‚“'. -/
 theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   hg.DifferentiableWithinAt.comp x hf (mapsTo_univ _ _)
 #align differentiable_at.comp_differentiable_within_at DifferentiableAt.comp_differentiableWithinAt
 
+/- warning: fderiv_within.comp -> fderivWithin.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderivWithin.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) -> (DifferentiableWithinAt.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u1, u4} E F f s t) -> (UniqueDiffWithinAt.{u3, u1} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u3, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)) (fderivWithin.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) s x) (ContinuousLinearMap.comp.{u3, u3, u3, u1, u4, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u4} F (PseudoMetricSpace.toUniformSpace.{u4} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u4} F (NormedAddCommGroup.toAddCommGroup.{u4} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4) _inst_5) (NormedSpace.toModule.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1)))))))) (fderivWithin.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t (f x)) (fderivWithin.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within.comp fderivWithin.compβ‚“'. -/
 theorem fderivWithin.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableWithinAt π•œ g t (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (h : MapsTo f s t) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderivWithin π•œ g t (f x)).comp (fderivWithin π•œ f s x) :=
   (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).fderivWithin hxs
 #align fderiv_within.comp fderivWithin.comp
 
+/- warning: fderiv_within_fderiv_within -> fderivWithin_fderivWithin is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {g : F -> G} {f : E -> F} {x : E} {y : F} {s : Set.{u2} E} {t : Set.{u3} F}, (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u2, u3} E F f s t) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{succ u3} F (f x) y) -> (forall (v : E), Eq.{succ u4} G (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fun (_x : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) => F -> G) (ContinuousLinearMap.toFun.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) v)) (coeFn.{max (succ u2) (succ u4), max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) => E -> G) (ContinuousLinearMap.toFun.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x) v))
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {g : F -> G} {f : E -> F} {x : E} {y : F} {s : Set.{u4} E} {t : Set.{u3} F}, (DifferentiableWithinAt.{u2, u3, u1} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u2, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u4, u3} E F f s t) -> (UniqueDiffWithinAt.{u2, u4} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) s x) -> (Eq.{succ u3} F (f x) y) -> (forall (v : E), Eq.{succ u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : F) => G) (FunLike.coe.{max (succ u4) (succ u3), succ u4, succ u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E (fun (a : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (ContinuousMapClass.toFunLike.{max u4 u3, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u3, u2, u2, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))) (fderivWithin.{u2, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) v)) (FunLike.coe.{max (succ u3) (succ u1), succ u3, succ u1} (ContinuousLinearMap.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) F (fun (_x : F) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : F) => G) _x) (ContinuousMapClass.toFunLike.{max u3 u1, u3, u1} (ContinuousLinearMap.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u1, u2, u2, u3, u1} (ContinuousLinearMap.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)))) (fderivWithin.{u2, u3, u1} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (FunLike.coe.{max (succ u4) (succ u3), succ u4, succ u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u3, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u3, u2, u2, u4, u3} (ContinuousLinearMap.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u3} π•œ F (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))) (fderivWithin.{u2, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) v)) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => G) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) E G (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u2, u2, u4, u1} (ContinuousLinearMap.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u4, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u2, u4} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ G (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)))) (fderivWithin.{u2, u4, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u4, succ u3, succ u1} E F G g f) s x) v))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_fderiv_within fderivWithin_fderivWithinβ‚“'. -/
 /-- A version of `fderiv_within.comp` that is useful to rewrite the composition of two derivatives
   into a single derivative. This version always applies, but creates a new side-goal `f x = y`. -/
 theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s : Set E} {t : Set F}
@@ -157,6 +223,12 @@ theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s
   rfl
 #align fderiv_within_fderiv_within fderivWithin_fderivWithin
 
+/- warning: fderiv_within.comp₃ -> fderivWithin.comp₃ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} (x : E) {s : Set.{u2} E} {g' : G -> G'} {g : F -> G} {t : Set.{u3} F} {u : Set.{u4} G} {y : F} {y' : G}, (DifferentiableWithinAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') -> (DifferentiableWithinAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u3, u4} F G g t u) -> (Set.MapsTo.{u2, u3} E F f s t) -> (Eq.{succ u4} G (g y) y') -> (Eq.{succ u3} F (f x) y) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u5)} (ContinuousLinearMap.{u1, u1, u2, u5} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)) (fderivWithin.{u1, u2, u5} π•œ _inst_1 E _inst_2 _inst_3 G' _inst_8 _inst_9 (Function.comp.{succ u2, succ u4, succ u5} E G G' g' (Function.comp.{succ u2, succ u3, succ u4} E F G g f)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u4, u5} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderivWithin.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderivWithin.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))))
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u5}} [_inst_4 : NormedAddCommGroup.{u5} F] [_inst_5 : NormedSpace.{u3, u5} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u3, u4} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u2}} [_inst_8 : NormedAddCommGroup.{u2} G'] [_inst_9 : NormedSpace.{u3, u2} π•œ G' (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8)] {f : E -> F} (x : E) {s : Set.{u1} E} {g' : G -> G'} {g : F -> G} {t : Set.{u5} F} {u : Set.{u4} G} {y : F} {y' : G}, (DifferentiableWithinAt.{u3, u4, u2} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') -> (DifferentiableWithinAt.{u3, u5, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) -> (DifferentiableWithinAt.{u3, u1, u5} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (Set.MapsTo.{u5, u4} F G g t u) -> (Set.MapsTo.{u1, u5} E F f s t) -> (Eq.{succ u4} G (g y) y') -> (Eq.{succ u5} F (f x) y) -> (UniqueDiffWithinAt.{u3, u1} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u3, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G' (UniformSpace.toTopologicalSpace.{u2} G' (PseudoMetricSpace.toUniformSpace.{u2} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u2} G' (NormedAddCommGroup.toAddCommGroup.{u2} G' _inst_8)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π•œ G' (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8) _inst_9)) (fderivWithin.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G' _inst_8 _inst_9 (Function.comp.{succ u1, succ u4, succ u2} E G G' g' (Function.comp.{succ u1, succ u5, succ u4} E F G g f)) s x) (ContinuousLinearMap.comp.{u3, u3, u3, u1, u4, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u2} G' (PseudoMetricSpace.toUniformSpace.{u2} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u2} G' (NormedAddCommGroup.toAddCommGroup.{u2} G' _inst_8)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u4} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u3, u2} π•œ G' (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G' _inst_8) _inst_9) (RingHomCompTriple.ids.{u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1)))))))) (fderivWithin.{u3, u4, u2} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 g' u y') (ContinuousLinearMap.comp.{u3, u3, u3, u1, u5, u4} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u5} F (PseudoMetricSpace.toUniformSpace.{u5} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u5} F (NormedAddCommGroup.toAddCommGroup.{u5} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u5} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} F _inst_4) _inst_5) (NormedSpace.toModule.{u3, u4} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) (RingHom.id.{u3} π•œ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1)))))))) (fderivWithin.{u3, u5, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t y) (fderivWithin.{u3, u1, u5} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x))))
+Case conversion may be inaccurate. Consider using '#align fderiv_within.comp₃ fderivWithin.comp₃ₓ'. -/
 /-- Ternary version of `fderiv_within.comp`, with equality assumptions of basepoints added, in
   order to apply more easily as a rewrite from right-to-left. -/
 theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set G} {y : F} {y' : G}
@@ -173,31 +245,67 @@ theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set
       hxs
 #align fderiv_within.comp₃ fderivWithin.comp₃
 
+/- warning: fderiv.comp -> fderiv.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderiv.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderiv.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u4, u4, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)) (fderiv.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) x) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (fderiv.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderiv.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f x)))
+Case conversion may be inaccurate. Consider using '#align fderiv.comp fderiv.compβ‚“'. -/
 theorem fderiv.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x)) (hf : DifferentiableAt π•œ f x) :
     fderiv π•œ (g ∘ f) x = (fderiv π•œ g (f x)).comp (fderiv π•œ f x) :=
   (hg.HasFDerivAt.comp x hf.HasFDerivAt).fderiv
 #align fderiv.comp fderiv.comp
 
+/- warning: fderiv.comp_fderiv_within -> fderiv.comp_fderivWithin is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u2} E} {g : F -> G}, (DifferentiableAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (fderiv.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} (x : E) {s : Set.{u1} E} {g : F -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) -> (DifferentiableWithinAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x) -> (UniqueDiffWithinAt.{u4, u1} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) s x) -> (Eq.{max (succ u1) (succ u2)} (ContinuousLinearMap.{u4, u4, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)) (fderivWithin.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (fderiv.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g (f x)) (fderivWithin.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv.comp_fderiv_within fderiv.comp_fderivWithinβ‚“'. -/
 theorem fderiv.comp_fderivWithin {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderiv π•œ g (f x)).comp (fderivWithin π•œ f s x) :=
   (hg.HasFDerivAt.comp_hasFDerivWithinAt x hf.HasFDerivWithinAt).fderivWithin hxs
 #align fderiv.comp_fderiv_within fderiv.comp_fderivWithin
 
+/- warning: differentiable_on.comp -> DifferentiableOn.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {s : Set.{u2} E} {g : F -> G} {t : Set.{u3} F}, (DifferentiableOn.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t) -> (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Set.MapsTo.{u2, u3} E F f s t) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s)
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u4}} [_inst_4 : NormedAddCommGroup.{u4} F] [_inst_5 : NormedSpace.{u3, u4} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u3, u2} π•œ G (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {s : Set.{u1} E} {g : F -> G} {t : Set.{u4} F}, (DifferentiableOn.{u3, u4, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g t) -> (DifferentiableOn.{u3, u1, u4} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (Set.MapsTo.{u1, u4} E F f s t) -> (DifferentiableOn.{u3, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u4, succ u2} E F G g f) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.comp DifferentiableOn.compβ‚“'. -/
 theorem DifferentiableOn.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableOn π•œ g t)
     (hf : DifferentiableOn π•œ f s) (st : MapsTo f s t) : DifferentiableOn π•œ (g ∘ f) s := fun x hx =>
   DifferentiableWithinAt.comp x (hg (f x) (st hx)) (hf x hx) st
 #align differentiable_on.comp DifferentiableOn.comp
 
+/- warning: differentiable.comp -> Differentiable.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {g : F -> G}, (Differentiable.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (Differentiable.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {g : F -> G}, (Differentiable.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (Differentiable.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f) -> (Differentiable.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f))
+Case conversion may be inaccurate. Consider using '#align differentiable.comp Differentiable.compβ‚“'. -/
 theorem Differentiable.comp {g : F β†’ G} (hg : Differentiable π•œ g) (hf : Differentiable π•œ f) :
     Differentiable π•œ (g ∘ f) := fun x => DifferentiableAt.comp x (hg (f x)) (hf x)
 #align differentiable.comp Differentiable.comp
 
+/- warning: differentiable.comp_differentiable_on -> Differentiable.comp_differentiableOn is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {s : Set.{u2} E} {g : F -> G}, (Differentiable.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u2, succ u3, succ u4} E F G g f) s)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {s : Set.{u1} E} {g : F -> G}, (Differentiable.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g) -> (DifferentiableOn.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f s) -> (DifferentiableOn.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (Function.comp.{succ u1, succ u3, succ u2} E F G g f) s)
+Case conversion may be inaccurate. Consider using '#align differentiable.comp_differentiable_on Differentiable.comp_differentiableOnβ‚“'. -/
 theorem Differentiable.comp_differentiableOn {g : F β†’ G} (hg : Differentiable π•œ g)
     (hf : DifferentiableOn π•œ f s) : DifferentiableOn π•œ (g ∘ f) s :=
   hg.DifferentiableOn.comp hf (mapsTo_univ _ _)
 #align differentiable.comp_differentiable_on Differentiable.comp_differentiableOn
 
+/- warning: has_strict_fderiv_at.comp -> HasStrictFDerivAt.comp is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u1, u3, u4} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => g (f x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, u3, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) g' f') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {f : E -> F} {f' : ContinuousLinearMap.{u4, u4, u1, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} (x : E) {g : F -> G} {g' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u4, u3, u2} π•œ _inst_1 F _inst_4 _inst_5 G _inst_6 _inst_7 g g' (f x)) -> (HasStrictFDerivAt.{u4, u1, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' x) -> (HasStrictFDerivAt.{u4, u1, u2} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => g (f x)) (ContinuousLinearMap.comp.{u4, u4, u4, u1, u3, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) (NormedSpace.toModule.{u4, u1} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u3} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u2} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) g' f') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.comp HasStrictFDerivAt.compβ‚“'. -/
 /-- The chain rule for derivatives in the sense of strict differentiability. -/
 protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasStrictFDerivAt g g' (f x)) (hf : HasStrictFDerivAt f f' x) :
@@ -207,11 +315,23 @@ protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_isLittleO hf
 #align has_strict_fderiv_at.comp HasStrictFDerivAt.comp
 
+/- warning: differentiable.iterate -> Differentiable.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {f : E -> E}, (Differentiable.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f) -> (forall (n : Nat), Differentiable.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n))
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {f : E -> E}, (Differentiable.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f) -> (forall (n : Nat), Differentiable.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n))
+Case conversion may be inaccurate. Consider using '#align differentiable.iterate Differentiable.iterateβ‚“'. -/
 protected theorem Differentiable.iterate {f : E β†’ E} (hf : Differentiable π•œ f) (n : β„•) :
     Differentiable π•œ (f^[n]) :=
   Nat.recOn n differentiable_id fun n ihn => ihn.comp hf
 #align differentiable.iterate Differentiable.iterate
 
+/- warning: differentiable_on.iterate -> DifferentiableOn.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E} {f : E -> E}, (DifferentiableOn.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), DifferentiableOn.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {s : Set.{u1} E} {f : E -> E}, (DifferentiableOn.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), DifferentiableOn.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.iterate DifferentiableOn.iterateβ‚“'. -/
 protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn π•œ f s)
     (hs : MapsTo f s s) (n : β„•) : DifferentiableOn π•œ (f^[n]) s :=
   Nat.recOn n differentiableOn_id fun n ihn => ihn.comp hf hs
@@ -219,6 +339,12 @@ protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn
 
 variable {x}
 
+/- warning: has_fderiv_at_filter.iterate -> HasFDerivAtFilter.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u2, u2} E E f L L) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x L)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {L : Filter.{u1} E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivAtFilter.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x L) -> (Filter.Tendsto.{u1, u1} E E f L L) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasFDerivAtFilter.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterateβ‚“'. -/
 protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
     HasFDerivAtFilter (f^[n]) (f' ^ n) x L :=
@@ -230,6 +356,12 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
+/- warning: has_fderiv_at.iterate -> HasFDerivAt.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.iterate HasFDerivAt.iterateβ‚“'. -/
 protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
     (hx : f x = x) (n : β„•) : HasFDerivAt (f^[n]) (f' ^ n) x :=
   by
@@ -238,6 +370,12 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
   exact hx.symm
 #align has_fderiv_at.iterate HasFDerivAt.iterate
 
+/- warning: has_fderiv_within_at.iterate -> HasFDerivWithinAt.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u2} E (f x) x) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) s x)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasFDerivWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' s x) -> (Eq.{succ u1} E (f x) x) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), HasFDerivWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.iterate HasFDerivWithinAt.iterateβ‚“'. -/
 protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
     HasFDerivWithinAt (f^[n]) (f' ^ n) s x :=
@@ -247,6 +385,12 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   exacts[hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
 #align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
 
+/- warning: has_strict_fderiv_at.iterate -> HasStrictFDerivAt.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) (HPow.hPow.{u2, 0, u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (instHPow.{u2, 0} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (Ring.toMonoid.{u2} (ContinuousLinearMap.{u1, u1, u2, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (ContinuousLinearMap.ring.{u1, u2} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) f' n) x)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E} {f' : ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)}, (HasStrictFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f f' x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), HasStrictFDerivAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) (HPow.hPow.{u1, 0, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (instHPow.{u1, 0} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) Nat (Monoid.Pow.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (MonoidWithZero.toMonoid.{u1} (ContinuousLinearMap.{u2, u2, u1, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)) (ContinuousLinearMap.monoidWithZero.{u2, u1} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))))) f' n) x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterateβ‚“'. -/
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) : HasStrictFDerivAt (f^[n]) (f' ^ n) x :=
   by
@@ -257,11 +401,23 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 
+/- warning: differentiable_at.iterate -> DifferentiableAt.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {f : E -> E}, (DifferentiableAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f x) -> (Eq.{succ u2} E (f x) x) -> (forall (n : Nat), DifferentiableAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) x)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {f : E -> E}, (DifferentiableAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f x) -> (Eq.{succ u1} E (f x) x) -> (forall (n : Nat), DifferentiableAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.iterate DifferentiableAt.iterateβ‚“'. -/
 protected theorem DifferentiableAt.iterate {f : E β†’ E} (hf : DifferentiableAt π•œ f x) (hx : f x = x)
     (n : β„•) : DifferentiableAt π•œ (f^[n]) x :=
   (hf.HasFDerivAt.iterate hx n).DifferentiableAt
 #align differentiable_at.iterate DifferentiableAt.iterate
 
+/- warning: differentiable_within_at.iterate -> DifferentiableWithinAt.iterate is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {f : E -> E}, (DifferentiableWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s x) -> (Eq.{succ u2} E (f x) x) -> (Set.MapsTo.{u2, u2} E E f s s) -> (forall (n : Nat), DifferentiableWithinAt.{u1, u2, u2} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u2} E f n) s x)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {s : Set.{u1} E} {f : E -> E}, (DifferentiableWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 f s x) -> (Eq.{succ u1} E (f x) x) -> (Set.MapsTo.{u1, u1} E E f s s) -> (forall (n : Nat), DifferentiableWithinAt.{u2, u1, u1} π•œ _inst_1 E _inst_2 _inst_3 E _inst_2 _inst_3 (Nat.iterate.{succ u1} E f n) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.iterate DifferentiableWithinAt.iterateβ‚“'. -/
 protected theorem DifferentiableWithinAt.iterate {f : E β†’ E} (hf : DifferentiableWithinAt π•œ f s x)
     (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ (f^[n]) s x :=
   (hf.HasFDerivWithinAt.iterate hx hs n).DifferentiableWithinAt
Diff
@@ -62,22 +62,22 @@ get confused since there are too many possibilities for composition -/
 
 variable (x)
 
-theorem HasFderivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
-    (hg : HasFderivAtFilter g g' (f x) L') (hf : HasFderivAtFilter f f' x L) (hL : Tendsto f L L') :
-    HasFderivAtFilter (g ∘ f) (g'.comp f') x L :=
+theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
+    (hg : HasFDerivAtFilter g g' (f x) L') (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L') :
+    HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
   by
   let eq₁ := (g'.isBigO_comp _ _).trans_isLittleO hf
   let eqβ‚‚ := (hg.comp_tendsto hL).trans_isBigO hf.isBigO_sub
   refine' eqβ‚‚.triangle (eq₁.congr_left fun x' => _)
   simp
-#align has_fderiv_at_filter.comp HasFderivAtFilter.comp
+#align has_fderiv_at_filter.comp HasFDerivAtFilter.comp
 
 /- A readable version of the previous theorem,
    a general form of the chain rule. -/
-example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFderivAtFilter g g' (f x) (L.map f))
-    (hf : HasFderivAtFilter f f' x L) : HasFderivAtFilter (g ∘ f) (g'.comp f') x L :=
+example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (L.map f))
+    (hf : HasFDerivAtFilter f f' x L) : HasFDerivAtFilter (g ∘ f) (g'.comp f') x L :=
   by
-  unfold HasFderivAtFilter at hg
+  unfold HasFDerivAtFilter at hg
   have :=
     calc
       (fun x' => g (f x') - g (f x) - g' (f x' - f x)) =o[L] fun x' => f x' - f x :=
@@ -93,34 +93,34 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFderivAtFilter g g' (f x) (
     _ =o[L] fun x' => x' - x := hf
     
 
-theorem HasFderivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
-    (hg : HasFderivWithinAt g g' t (f x)) (hf : HasFderivWithinAt f f' s x) (hst : MapsTo f s t) :
-    HasFderivWithinAt (g ∘ f) (g'.comp f') s x :=
+theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
+    (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
+    HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf <| hf.ContinuousWithinAt.tendsto_nhdsWithin hst
-#align has_fderiv_within_at.comp HasFderivWithinAt.comp
+#align has_fderiv_within_at.comp HasFDerivWithinAt.comp
 
-theorem HasFderivAt.comp_hasFderivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
-    (hg : HasFderivAt g g' (f x)) (hf : HasFderivWithinAt f f' s x) :
-    HasFderivWithinAt (g ∘ f) (g'.comp f') s x :=
+theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
+    (hg : HasFDerivAt g g' (f x)) (hf : HasFDerivWithinAt f f' s x) :
+    HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf hf.ContinuousWithinAt
-#align has_fderiv_at.comp_has_fderiv_within_at HasFderivAt.comp_hasFderivWithinAt
+#align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAt
 
-theorem HasFderivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
-    (hg : HasFderivWithinAt g g' t (f x)) (hf : HasFderivWithinAt f f' s x)
-    (hst : Tendsto f (𝓝[s] x) (𝓝[t] f x)) : HasFderivWithinAt (g ∘ f) (g'.comp f') s x :=
-  HasFderivAtFilter.comp x hg hf hst
-#align has_fderiv_within_at.comp_of_mem HasFderivWithinAt.comp_of_mem
+theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
+    (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x)
+    (hst : Tendsto f (𝓝[s] x) (𝓝[t] f x)) : HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
+  HasFDerivAtFilter.comp x hg hf hst
+#align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_mem
 
 /-- The chain rule. -/
-theorem HasFderivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFderivAt g g' (f x))
-    (hf : HasFderivAt f f' x) : HasFderivAt (g ∘ f) (g'.comp f') x :=
+theorem HasFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAt g g' (f x))
+    (hf : HasFDerivAt f f' x) : HasFDerivAt (g ∘ f) (g'.comp f') x :=
   hg.comp x hf hf.ContinuousAt
-#align has_fderiv_at.comp HasFderivAt.comp
+#align has_fderiv_at.comp HasFDerivAt.comp
 
 theorem DifferentiableWithinAt.comp {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x)
     (h : MapsTo f s t) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
-  (hg.HasFderivWithinAt.comp x hf.HasFderivWithinAt h).DifferentiableWithinAt
+  (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).DifferentiableWithinAt
 #align differentiable_within_at.comp DifferentiableWithinAt.comp
 
 theorem DifferentiableWithinAt.comp' {g : F β†’ G} {t : Set F}
@@ -131,7 +131,7 @@ theorem DifferentiableWithinAt.comp' {g : F β†’ G} {t : Set F}
 
 theorem DifferentiableAt.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableAt π•œ f x) : DifferentiableAt π•œ (g ∘ f) x :=
-  (hg.HasFderivAt.comp x hf.HasFderivAt).DifferentiableAt
+  (hg.HasFDerivAt.comp x hf.HasFDerivAt).DifferentiableAt
 #align differentiable_at.comp DifferentiableAt.comp
 
 theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
@@ -142,7 +142,7 @@ theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : Differe
 theorem fderivWithin.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableWithinAt π•œ g t (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (h : MapsTo f s t) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderivWithin π•œ g t (f x)).comp (fderivWithin π•œ f s x) :=
-  (hg.HasFderivWithinAt.comp x hf.HasFderivWithinAt h).fderivWithin hxs
+  (hg.HasFDerivWithinAt.comp x hf.HasFDerivWithinAt h).fderivWithin hxs
 #align fderiv_within.comp fderivWithin.comp
 
 /-- A version of `fderiv_within.comp` that is useful to rewrite the composition of two derivatives
@@ -175,13 +175,13 @@ theorem fderivWithin.comp₃ {g' : G β†’ G'} {g : F β†’ G} {t : Set F} {u : Set
 
 theorem fderiv.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x)) (hf : DifferentiableAt π•œ f x) :
     fderiv π•œ (g ∘ f) x = (fderiv π•œ g (f x)).comp (fderiv π•œ f x) :=
-  (hg.HasFderivAt.comp x hf.HasFderivAt).fderiv
+  (hg.HasFDerivAt.comp x hf.HasFDerivAt).fderiv
 #align fderiv.comp fderiv.comp
 
 theorem fderiv.comp_fderivWithin {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (g ∘ f) s x = (fderiv π•œ g (f x)).comp (fderivWithin π•œ f s x) :=
-  (hg.HasFderivAt.comp_hasFderivWithinAt x hf.HasFderivWithinAt).fderivWithin hxs
+  (hg.HasFDerivAt.comp_hasFDerivWithinAt x hf.HasFDerivWithinAt).fderivWithin hxs
 #align fderiv.comp_fderiv_within fderiv.comp_fderivWithin
 
 theorem DifferentiableOn.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableOn π•œ g t)
@@ -199,13 +199,13 @@ theorem Differentiable.comp_differentiableOn {g : F β†’ G} (hg : Differentiable
 #align differentiable.comp_differentiable_on Differentiable.comp_differentiableOn
 
 /-- The chain rule for derivatives in the sense of strict differentiability. -/
-protected theorem HasStrictFderivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
-    (hg : HasStrictFderivAt g g' (f x)) (hf : HasStrictFderivAt f f' x) :
-    HasStrictFderivAt (fun x => g (f x)) (g'.comp f') x :=
+protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
+    (hg : HasStrictFDerivAt g g' (f x)) (hf : HasStrictFDerivAt f f' x) :
+    HasStrictFDerivAt (fun x => g (f x)) (g'.comp f') x :=
   ((hg.comp_tendsto (hf.ContinuousAt.prod_map' hf.ContinuousAt)).trans_isBigO
         hf.isBigO_sub).triangle <|
     by simpa only [g'.map_sub, f'.coe_comp'] using (g'.is_O_comp _ _).trans_isLittleO hf
-#align has_strict_fderiv_at.comp HasStrictFderivAt.comp
+#align has_strict_fderiv_at.comp HasStrictFDerivAt.comp
 
 protected theorem Differentiable.iterate {f : E β†’ E} (hf : Differentiable π•œ f) (n : β„•) :
     Differentiable π•œ (f^[n]) :=
@@ -219,52 +219,52 @@ protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn
 
 variable {x}
 
-protected theorem HasFderivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
-    (hf : HasFderivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
-    HasFderivAtFilter (f^[n]) (f' ^ n) x L :=
+protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
+    (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
+    HasFDerivAtFilter (f^[n]) (f' ^ n) x L :=
   by
   induction' n with n ihn
-  Β· exact hasFderivAtFilter_id x L
+  Β· exact hasFDerivAtFilter_id x L
   Β· rw [Function.iterate_succ, pow_succ']
     rw [← hx] at ihn
     exact ihn.comp x hf hL
-#align has_fderiv_at_filter.iterate HasFderivAtFilter.iterate
+#align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
-protected theorem HasFderivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFderivAt f f' x)
-    (hx : f x = x) (n : β„•) : HasFderivAt (f^[n]) (f' ^ n) x :=
+protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
+    (hx : f x = x) (n : β„•) : HasFDerivAt (f^[n]) (f' ^ n) x :=
   by
   refine' hf.iterate _ hx n
   convert hf.continuous_at
   exact hx.symm
-#align has_fderiv_at.iterate HasFderivAt.iterate
+#align has_fderiv_at.iterate HasFDerivAt.iterate
 
-protected theorem HasFderivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
-    (hf : HasFderivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
-    HasFderivWithinAt (f^[n]) (f' ^ n) s x :=
+protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
+    (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
+    HasFDerivWithinAt (f^[n]) (f' ^ n) s x :=
   by
   refine' hf.iterate _ hx n
   convert tendsto_inf.2 ⟨hf.continuous_within_at, _⟩
   exacts[hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
-#align has_fderiv_within_at.iterate HasFderivWithinAt.iterate
+#align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
 
-protected theorem HasStrictFderivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
-    (hf : HasStrictFderivAt f f' x) (hx : f x = x) (n : β„•) : HasStrictFderivAt (f^[n]) (f' ^ n) x :=
+protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
+    (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) : HasStrictFDerivAt (f^[n]) (f' ^ n) x :=
   by
   induction' n with n ihn
-  Β· exact hasStrictFderivAt_id x
+  Β· exact hasStrictFDerivAt_id x
   Β· rw [Function.iterate_succ, pow_succ']
     rw [← hx] at ihn
     exact ihn.comp x hf
-#align has_strict_fderiv_at.iterate HasStrictFderivAt.iterate
+#align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 
 protected theorem DifferentiableAt.iterate {f : E β†’ E} (hf : DifferentiableAt π•œ f x) (hx : f x = x)
     (n : β„•) : DifferentiableAt π•œ (f^[n]) x :=
-  (hf.HasFderivAt.iterate hx n).DifferentiableAt
+  (hf.HasFDerivAt.iterate hx n).DifferentiableAt
 #align differentiable_at.iterate DifferentiableAt.iterate
 
 protected theorem DifferentiableWithinAt.iterate {f : E β†’ E} (hf : DifferentiableWithinAt π•œ f s x)
     (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ (f^[n]) s x :=
-  (hf.HasFderivWithinAt.iterate hx hs n).DifferentiableWithinAt
+  (hf.HasFDerivWithinAt.iterate hx hs n).DifferentiableWithinAt
 #align differentiable_within_at.iterate DifferentiableWithinAt.iterate
 
 end Composition

Changes in mathlib4

mathlib3
mathlib4
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -71,7 +71,7 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
   calc
     (fun x' : E => g' (f x' - f x) - g'.comp f' (x' - x))
     _ =αΆ [L] fun x' => g' (f x' - f x - f' (x' - x)) := eventually_of_forall fun x' => by simp
-    _ =O[L] fun x' => f x' - f x - f' (x' - x) := (g'.isBigO_comp _ _)
+    _ =O[L] fun x' => f x' - f x - f' (x' - x) := g'.isBigO_comp _ _
     _ =o[L] fun x' => x' - x := hf.isLittleO
 
 @[fun_prop]
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : βˆ€ (n : β„•) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -215,7 +215,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     HasFDerivAtFilter f^[n] (f' ^ n) x L := by
   induction' n with n ihn
   Β· exact hasFDerivAtFilter_id x L
-  Β· rw [Function.iterate_succ, pow_succ']
+  Β· rw [Function.iterate_succ, pow_succ]
     rw [← hx] at ihn
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
@@ -245,7 +245,7 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     HasStrictFDerivAt f^[n] (f' ^ n) x := by
   induction' n with n ihn
   Β· exact hasStrictFDerivAt_id x
-  Β· rw [Function.iterate_succ, pow_succ']
+  Β· rw [Function.iterate_succ, pow_succ]
     rw [← hx] at ihn
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -28,25 +28,15 @@ noncomputable section
 section
 
 variable {π•œ : Type*} [NontriviallyNormedField π•œ]
-
 variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E]
-
 variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F]
-
 variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π•œ G]
-
 variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π•œ G']
-
 variable {f fβ‚€ f₁ g : E β†’ F}
-
 variable {f' fβ‚€' f₁' g' : E β†’L[π•œ] F}
-
 variable (e : E β†’L[π•œ] F)
-
 variable {x : E}
-
 variable {s t : Set E}
-
 variable {L L₁ Lβ‚‚ : Filter E}
 
 section Composition
feat: set up fun_prop for Differentiable and HasFDeriv (#11153)

Basic setup for fun_prop for Differentiable(At/On/Within) and HasFDeriv(At/Within/Strict).

Mainly consists of marking theorems with fun_prop attribute but I had to formulate appropriate _pi and _apply theorems. Proofs of _apply theorems can probably be golfed into neater form.

Diff
@@ -84,18 +84,21 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
     _ =O[L] fun x' => f x' - f x - f' (x' - x) := (g'.isBigO_comp _ _)
     _ =o[L] fun x' => x' - x := hf.isLittleO
 
+@[fun_prop]
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   HasFDerivAtFilter.comp x hg hf <| hf.continuousWithinAt.tendsto_nhdsWithin hst
 #align has_fderiv_within_at.comp HasFDerivWithinAt.comp
 
+@[fun_prop]
 theorem HasFDerivAt.comp_hasFDerivWithinAt {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasFDerivAt g g' (f x)) (hf : HasFDerivWithinAt f f' s x) :
     HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
   hg.comp x hf hf.continuousWithinAt
 #align has_fderiv_at.comp_has_fderiv_within_at HasFDerivAt.comp_hasFDerivWithinAt
 
+@[fun_prop]
 theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x)
     (hst : Tendsto f (𝓝[s] x) (𝓝[t] f x)) : HasFDerivWithinAt (g ∘ f) (g'.comp f') s x :=
@@ -103,28 +106,33 @@ theorem HasFDerivWithinAt.comp_of_mem {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : S
 #align has_fderiv_within_at.comp_of_mem HasFDerivWithinAt.comp_of_mem
 
 /-- The chain rule. -/
+@[fun_prop]
 theorem HasFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAt g g' (f x))
     (hf : HasFDerivAt f f' x) : HasFDerivAt (g ∘ f) (g'.comp f') x :=
   HasFDerivAtFilter.comp x hg hf hf.continuousAt
 #align has_fderiv_at.comp HasFDerivAt.comp
 
+@[fun_prop]
 theorem DifferentiableWithinAt.comp {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x)
     (h : MapsTo f s t) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   (hg.hasFDerivWithinAt.comp x hf.hasFDerivWithinAt h).differentiableWithinAt
 #align differentiable_within_at.comp DifferentiableWithinAt.comp
 
+@[fun_prop]
 theorem DifferentiableWithinAt.comp' {g : F β†’ G} {t : Set F}
     (hg : DifferentiableWithinAt π•œ g t (f x)) (hf : DifferentiableWithinAt π•œ f s x) :
     DifferentiableWithinAt π•œ (g ∘ f) (s ∩ f ⁻¹' t) x :=
   hg.comp x (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _)
 #align differentiable_within_at.comp' DifferentiableWithinAt.comp'
 
+@[fun_prop]
 theorem DifferentiableAt.comp {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableAt π•œ f x) : DifferentiableAt π•œ (g ∘ f) x :=
   (hg.hasFDerivAt.comp x hf.hasFDerivAt).differentiableAt
 #align differentiable_at.comp DifferentiableAt.comp
 
+@[fun_prop]
 theorem DifferentiableAt.comp_differentiableWithinAt {g : F β†’ G} (hg : DifferentiableAt π•œ g (f x))
     (hf : DifferentiableWithinAt π•œ f s x) : DifferentiableWithinAt π•œ (g ∘ f) s x :=
   hg.differentiableWithinAt.comp x hf (mapsTo_univ _ _)
@@ -170,22 +178,26 @@ theorem fderiv.comp_fderivWithin {g : F β†’ G} (hg : DifferentiableAt π•œ g (f
   (hg.hasFDerivAt.comp_hasFDerivWithinAt x hf.hasFDerivWithinAt).fderivWithin hxs
 #align fderiv.comp_fderiv_within fderiv.comp_fderivWithin
 
+@[fun_prop]
 theorem DifferentiableOn.comp {g : F β†’ G} {t : Set F} (hg : DifferentiableOn π•œ g t)
     (hf : DifferentiableOn π•œ f s) (st : MapsTo f s t) : DifferentiableOn π•œ (g ∘ f) s :=
   fun x hx => DifferentiableWithinAt.comp x (hg (f x) (st hx)) (hf x hx) st
 #align differentiable_on.comp DifferentiableOn.comp
 
+@[fun_prop]
 theorem Differentiable.comp {g : F β†’ G} (hg : Differentiable π•œ g) (hf : Differentiable π•œ f) :
     Differentiable π•œ (g ∘ f) :=
   fun x => DifferentiableAt.comp x (hg (f x)) (hf x)
 #align differentiable.comp Differentiable.comp
 
+@[fun_prop]
 theorem Differentiable.comp_differentiableOn {g : F β†’ G} (hg : Differentiable π•œ g)
     (hf : DifferentiableOn π•œ f s) : DifferentiableOn π•œ (g ∘ f) s :=
   hg.differentiableOn.comp hf (mapsTo_univ _ _)
 #align differentiable.comp_differentiable_on Differentiable.comp_differentiableOn
 
 /-- The chain rule for derivatives in the sense of strict differentiability. -/
+@[fun_prop]
 protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     (hg : HasStrictFDerivAt g g' (f x)) (hf : HasStrictFDerivAt f f' x) :
     HasStrictFDerivAt (fun x => g (f x)) (g'.comp f') x :=
@@ -194,11 +206,13 @@ protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
     simpa only [g'.map_sub, f'.coe_comp'] using (g'.isBigO_comp _ _).trans_isLittleO hf
 #align has_strict_fderiv_at.comp HasStrictFDerivAt.comp
 
+@[fun_prop]
 protected theorem Differentiable.iterate {f : E β†’ E} (hf : Differentiable π•œ f) (n : β„•) :
     Differentiable π•œ f^[n] :=
   Nat.recOn n differentiable_id fun _ ihn => ihn.comp hf
 #align differentiable.iterate Differentiable.iterate
 
+@[fun_prop]
 protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn π•œ f s)
     (hs : MapsTo f s s) (n : β„•) : DifferentiableOn π•œ f^[n] s :=
   Nat.recOn n differentiableOn_id fun _ ihn => ihn.comp hf hs
@@ -216,6 +230,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     exact ihn.comp x hf hL
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
+@[fun_prop]
 protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
     (hx : f x = x) (n : β„•) : HasFDerivAt f^[n] (f' ^ n) x := by
   refine' HasFDerivAtFilter.iterate hf _ hx n
@@ -224,6 +239,7 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
   exact hx.symm
 #align has_fderiv_at.iterate HasFDerivAt.iterate
 
+@[fun_prop]
 protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
     HasFDerivWithinAt f^[n] (f' ^ n) s x := by
@@ -233,6 +249,7 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
   exacts [hx.symm, (tendsto_principal_principal.2 hs).mono_left inf_le_right]
 #align has_fderiv_within_at.iterate HasFDerivWithinAt.iterate
 
+@[fun_prop]
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) :
     HasStrictFDerivAt f^[n] (f' ^ n) x := by
@@ -243,11 +260,13 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     exact ihn.comp x hf
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 
+@[fun_prop]
 protected theorem DifferentiableAt.iterate {f : E β†’ E} (hf : DifferentiableAt π•œ f x) (hx : f x = x)
     (n : β„•) : DifferentiableAt π•œ f^[n] x :=
   (hf.hasFDerivAt.iterate hx n).differentiableAt
 #align differentiable_at.iterate DifferentiableAt.iterate
 
+@[fun_prop]
 protected theorem DifferentiableWithinAt.iterate {f : E β†’ E} (hf : DifferentiableWithinAt π•œ f s x)
     (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ f^[n] s x :=
   (hf.hasFDerivWithinAt.iterate hx hs n).differentiableWithinAt
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -20,7 +20,8 @@ composition of functions (the chain rule).
 
 open Filter Asymptotics ContinuousLinearMap Set Metric
 
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Classical
+open Topology NNReal Filter Asymptotics ENNReal
 
 noncomputable section
 
refactor(FDeriv): use structure (#8907)

This way we can easily change the definition so that it works for topological vector spaces without generalizing any of the theorems right away.

Diff
@@ -62,27 +62,26 @@ variable (x)
 theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter F}
     (hg : HasFDerivAtFilter g g' (f x) L') (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L') :
     HasFDerivAtFilter (g ∘ f) (g'.comp f') x L := by
-  let eq₁ := (g'.isBigO_comp _ _).trans_isLittleO hf
-  let eqβ‚‚ := (hg.comp_tendsto hL).trans_isBigO hf.isBigO_sub
-  refine' eqβ‚‚.triangle (eq₁.congr_left fun x' => _)
+  let eq₁ := (g'.isBigO_comp _ _).trans_isLittleO hf.isLittleO
+  let eqβ‚‚ := (hg.isLittleO.comp_tendsto hL).trans_isBigO hf.isBigO_sub
+  refine .of_isLittleO <| eqβ‚‚.triangle <| eq₁.congr_left fun x' => ?_
   simp
 #align has_fderiv_at_filter.comp HasFDerivAtFilter.comp
 
 /- A readable version of the previous theorem, a general form of the chain rule. -/
 example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (L.map f))
     (hf : HasFDerivAtFilter f f' x L) : HasFDerivAtFilter (g ∘ f) (g'.comp f') x L := by
-  unfold HasFDerivAtFilter at hg
   have :=
     calc
       (fun x' => g (f x') - g (f x) - g' (f x' - f x)) =o[L] fun x' => f x' - f x :=
-        hg.comp_tendsto le_rfl
+        hg.isLittleO.comp_tendsto le_rfl
       _ =O[L] fun x' => x' - x := hf.isBigO_sub
-  refine' this.triangle _
+  refine' .of_isLittleO <| this.triangle _
   calc
     (fun x' : E => g' (f x' - f x) - g'.comp f' (x' - x))
     _ =αΆ [L] fun x' => g' (f x' - f x - f' (x' - x)) := eventually_of_forall fun x' => by simp
     _ =O[L] fun x' => f x' - f x - f' (x' - x) := (g'.isBigO_comp _ _)
-    _ =o[L] fun x' => x' - x := hf
+    _ =o[L] fun x' => x' - x := hf.isLittleO
 
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
chore: tidy various files (#6577)
Diff
@@ -69,8 +69,6 @@ theorem HasFDerivAtFilter.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {L' : Filter
 #align has_fderiv_at_filter.comp HasFDerivAtFilter.comp
 
 /- A readable version of the previous theorem, a general form of the chain rule. -/
-/- porting note: todo: restore the example
-Compile fails because `calc` fails to generate a `Trans` instance
 example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (L.map f))
     (hf : HasFDerivAtFilter f f' x L) : HasFDerivAtFilter (g ∘ f) (g'.comp f') x L := by
   unfold HasFDerivAtFilter at hg
@@ -81,12 +79,10 @@ example {g : F β†’ G} {g' : F β†’L[π•œ] G} (hg : HasFDerivAtFilter g g' (f x) (
       _ =O[L] fun x' => x' - x := hf.isBigO_sub
   refine' this.triangle _
   calc
-    (fun x' : E => g' (f x' - f x) - g'.comp f' (x' - x)) =αΆ [L] fun x' =>
-        g' (f x' - f x - f' (x' - x)) :=
-      eventually_of_forall fun x' => by simp
+    (fun x' : E => g' (f x' - f x) - g'.comp f' (x' - x))
+    _ =αΆ [L] fun x' => g' (f x' - f x - f' (x' - x)) := eventually_of_forall fun x' => by simp
     _ =O[L] fun x' => f x' - f x - f' (x' - x) := (g'.isBigO_comp _ _)
     _ =o[L] fun x' => x' - x := hf
--/
 
 theorem HasFDerivWithinAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G} {t : Set F}
     (hg : HasFDerivWithinAt g g' t (f x)) (hf : HasFDerivWithinAt f f' s x) (hst : MapsTo f s t) :
@@ -147,8 +143,7 @@ theorem fderivWithin_fderivWithin {g : F β†’ G} {f : E β†’ F} {x : E} {y : F} {s
     (hxs : UniqueDiffWithinAt π•œ s x) (hy : f x = y) (v : E) :
     fderivWithin π•œ g t y (fderivWithin π•œ f s x v) = fderivWithin π•œ (g ∘ f) s x v := by
   subst y
-  rw [fderivWithin.comp x hg hf h hxs]
-  rfl
+  rw [fderivWithin.comp x hg hf h hxs, coe_comp', Function.comp_apply]
 #align fderiv_within_fderiv_within fderivWithin_fderivWithin
 
 /-- Ternary version of `fderivWithin.comp`, with equality assumptions of basepoints added, in
@@ -225,9 +220,7 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
     (hx : f x = x) (n : β„•) : HasFDerivAt f^[n] (f' ^ n) x := by
   refine' HasFDerivAtFilter.iterate hf _ hx n
   -- Porting note: was `convert hf.continuousAt`
-  have := hf.continuousAt
-  unfold ContinuousAt at this
-  convert this
+  convert hf.continuousAt.tendsto
   exact hx.symm
 #align has_fderiv_at.iterate HasFDerivAt.iterate
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -26,15 +26,15 @@ noncomputable section
 
 section
 
-variable {π•œ : Type _} [NontriviallyNormedField π•œ]
+variable {π•œ : Type*} [NontriviallyNormedField π•œ]
 
-variable {E : Type _} [NormedAddCommGroup E] [NormedSpace π•œ E]
+variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
-variable {F : Type _} [NormedAddCommGroup F] [NormedSpace π•œ F]
+variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F]
 
-variable {G : Type _} [NormedAddCommGroup G] [NormedSpace π•œ G]
+variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π•œ G]
 
-variable {G' : Type _} [NormedAddCommGroup G'] [NormedSpace π•œ G']
+variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π•œ G']
 
 variable {f fβ‚€ f₁ g : E β†’ F}
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.comp
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.Calculus.FDeriv.Basic
 
+#align_import analysis.calculus.fderiv.comp from "leanprover-community/mathlib"@"e3fb84046afd187b710170887195d50bada934ee"
+
 /-!
 # The derivative of a composition (chain rule)
 
fix precedence of Nat.iterate (#5589)
Diff
@@ -203,12 +203,12 @@ protected theorem HasStrictFDerivAt.comp {g : F β†’ G} {g' : F β†’L[π•œ] G}
 #align has_strict_fderiv_at.comp HasStrictFDerivAt.comp
 
 protected theorem Differentiable.iterate {f : E β†’ E} (hf : Differentiable π•œ f) (n : β„•) :
-    Differentiable π•œ (f^[n]) :=
+    Differentiable π•œ f^[n] :=
   Nat.recOn n differentiable_id fun _ ihn => ihn.comp hf
 #align differentiable.iterate Differentiable.iterate
 
 protected theorem DifferentiableOn.iterate {f : E β†’ E} (hf : DifferentiableOn π•œ f s)
-    (hs : MapsTo f s s) (n : β„•) : DifferentiableOn π•œ (f^[n]) s :=
+    (hs : MapsTo f s s) (n : β„•) : DifferentiableOn π•œ f^[n] s :=
   Nat.recOn n differentiableOn_id fun _ ihn => ihn.comp hf hs
 #align differentiable_on.iterate DifferentiableOn.iterate
 
@@ -216,7 +216,7 @@ variable {x}
 
 protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivAtFilter f f' x L) (hL : Tendsto f L L) (hx : f x = x) (n : β„•) :
-    HasFDerivAtFilter (f^[n]) (f' ^ n) x L := by
+    HasFDerivAtFilter f^[n] (f' ^ n) x L := by
   induction' n with n ihn
   Β· exact hasFDerivAtFilter_id x L
   Β· rw [Function.iterate_succ, pow_succ']
@@ -225,7 +225,7 @@ protected theorem HasFDerivAtFilter.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 #align has_fderiv_at_filter.iterate HasFDerivAtFilter.iterate
 
 protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf : HasFDerivAt f f' x)
-    (hx : f x = x) (n : β„•) : HasFDerivAt (f^[n]) (f' ^ n) x := by
+    (hx : f x = x) (n : β„•) : HasFDerivAt f^[n] (f' ^ n) x := by
   refine' HasFDerivAtFilter.iterate hf _ hx n
   -- Porting note: was `convert hf.continuousAt`
   have := hf.continuousAt
@@ -236,7 +236,7 @@ protected theorem HasFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E} (hf :
 
 protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasFDerivWithinAt f f' s x) (hx : f x = x) (hs : MapsTo f s s) (n : β„•) :
-    HasFDerivWithinAt (f^[n]) (f' ^ n) s x := by
+    HasFDerivWithinAt f^[n] (f' ^ n) s x := by
   refine' HasFDerivAtFilter.iterate hf _ hx n
   rw [_root_.nhdsWithin] -- Porting note: Added `rw` to get rid of an error
   convert tendsto_inf.2 ⟨hf.continuousWithinAt, _⟩
@@ -245,7 +245,7 @@ protected theorem HasFDerivWithinAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 
 protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
     (hf : HasStrictFDerivAt f f' x) (hx : f x = x) (n : β„•) :
-    HasStrictFDerivAt (f^[n]) (f' ^ n) x := by
+    HasStrictFDerivAt f^[n] (f' ^ n) x := by
   induction' n with n ihn
   Β· exact hasStrictFDerivAt_id x
   Β· rw [Function.iterate_succ, pow_succ']
@@ -254,12 +254,12 @@ protected theorem HasStrictFDerivAt.iterate {f : E β†’ E} {f' : E β†’L[π•œ] E}
 #align has_strict_fderiv_at.iterate HasStrictFDerivAt.iterate
 
 protected theorem DifferentiableAt.iterate {f : E β†’ E} (hf : DifferentiableAt π•œ f x) (hx : f x = x)
-    (n : β„•) : DifferentiableAt π•œ (f^[n]) x :=
+    (n : β„•) : DifferentiableAt π•œ f^[n] x :=
   (hf.hasFDerivAt.iterate hx n).differentiableAt
 #align differentiable_at.iterate DifferentiableAt.iterate
 
 protected theorem DifferentiableWithinAt.iterate {f : E β†’ E} (hf : DifferentiableWithinAt π•œ f s x)
-    (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ (f^[n]) s x :=
+    (hx : f x = x) (hs : MapsTo f s s) (n : β„•) : DifferentiableWithinAt π•œ f^[n] s x :=
   (hf.hasFDerivWithinAt.iterate hx hs n).differentiableWithinAt
 #align differentiable_within_at.iterate DifferentiableWithinAt.iterate
 
feat: port Analysis.Calculus.Fderiv.Comp (#4184)

Co-authored-by: int-y1 <jason_yuen2007@hotmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Dependencies 10 + 673

674 files ported (98.5%)
300161 lines ported (98.3%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file